Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17252
Title: 多動作情境式拉霸問題之研究
Study on Contextual Bandit Problem with Multiple Actions
Authors: Ya-Hsuan Chang
張雅軒
Advisor: 林軒田(Hsuan-Tien Lin)
Keyword: 機器學習,情境式拉霸問題,信心值上界,
Machine Learning,Contextual Bandit Problem,Upper Confidence Bound,
Publication Year : 2013
Degree: 碩士
Abstract: 情境式拉霸問題 (Contextual Bandit Problem) 經常被使 用來模擬線上的應用,像是文章推薦系統。然而,我們 觀察到這些線上應用有部分的特性是傳統的情境式拉霸 問題無法模擬的,像是單回合多動作的設定。於是我們 提出一個新的多動作情境式拉霸問題 (Contextual Bandit with Multiple Actions) 來模擬這個特性。我們將一些現 有的方法調整後用在這個新問題上,同時我們也針對 新問題的特性提出了偶式回歸配合最高信心上界方法 (Pairwise Regression with Upper Confidence Bound). 實驗 的結果顯示我們提出的新方法表現的比現有的方法好。
The contextual bandit problem is usually used to model online applications like article recommendation. Somehow the problem cannot fully meet some needs of these applica- tions, such as making multiple actions at the same time. We propose a new Contextual Bandit Problem with Multiple Ac- tions (CBMA), which is an extension of the traditional con- textual bandit problem and fits the online applications better. We adapt some existing contextual bandit algorithms for our CBMA problem, and propose a new Pairwise Regression with Upper Confidence Bound (PairUCB) algorithm which utilizes the new properties of the CBMA problem, The experiment re- sults demostrate that PairUCB outperforms other algorithms.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17252
Fulltext Rights: 未授權
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-102-1.pdf
  Restricted Access
610.74 kBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved