Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17234
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡懷楨(Huai-Jan Tsai)
dc.contributor.authorJie-Shin Chenen
dc.contributor.author陳潔心zh_TW
dc.date.accessioned2021-06-08T00:02:16Z-
dc.date.copyright2013-08-23
dc.date.issued2013
dc.date.submitted2013-08-15
dc.identifier.citation1. Filipowicz W, Bhattacharyya SN, Sonenberg N. (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9: 102-114.
2. Stefani G, Slack FJ. (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9: 219-230.
3. Fabian MR, Sonenberg N, Filipowicz W. (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79: 351-379.
4. Braun T, Gautel M. (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12: 349-361.
5. Buckingham M, Vincent SD. (2009) Distinct and dynamic myogenic populations in the vertebrate embryo. Curr Opin Genet Dev 19: 444-453.
6. Ge Y, Chen J. (2011) MicroRNAs in skeletal myogenesis. Cell Cycle 10: 441-448.
7. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, et al. (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38: 228-233.
8. Chen JF, Tao Y, Li J, Deng Z, Yan Z, et al. (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190: 867-879.
9. Dey BK, Gagan J, Dutta A. (2011) miR-206 and -486 induce myoblast differentiation by downregulating Pax7. Mol Cell Biol 31: 203-214.
10. van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, et al. (2009) A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 17: 662-673.
11. Mishima Y, Abreu-Goodger C, Staton AA, Stahlhut C, Shou C, et al. (2009) Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization. Genes Dev 23: 619-632.
12. Zhao Y, Samal E, Srivastava D. (2005) Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436: 214-220.
13. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. (2006) Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 103: 8721-8726.
14. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, et al. (2007) An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 104: 20844-20849.
15. Sweetman D, Goljanek K, Rathjen T, Oustanina S, Braun T, et al. (2008) Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133. Dev Biol 321: 491-499.
16. Lin CY, Chen YH, Lee HC, Tsai HJ. (2004) Novel cis-element in intron 1 represses somite expression of zebrafish myf-5. Gene 334: 63-72.
17. Hsu RJ, Lin CY, Hoi HS, Zheng SK, Lin CC, et al. (2010) Novel intronic microRNA represses zebrafish myf5 promoter activity through silencing dickkopf-3 gene. Nucleic Acids Res 38: 4384-4393.
18. Hsiao CC. (2010) The Mechanism of microRNA-In300 regulates myogenesis through silencing the target gene homer-1b in zebrafish embryos. Master Thesis. Institute of Molecullar and Cellular Biology, College of Life Science, National Taiwan University.
19. Hsu RJ, Yang HJ, Tsai HJ. (2009) Labeled microRNA pull-down assay system: an experimental approach for high-throughput identification of microRNA-target mRNAs. Nucleic Acids Res 37: e77.
20. Chen YH, Lee WC, Liu CF, Tsai HJ. (2001) Molecular structure, dynamic expression, and promoter analysis of zebrafish (Danio rerio) myf-5 gene. Genesis 29: 22-35.
21. Hsu RJ, Lin CC, Su YF, Tsai HJ. (2011) dickkopf-3-related gene regulates the expression of zebrafish myf5 gene through phosphorylated p38a-dependent Smad4 activity. J Biol Chem 286: 6855-6864.
22. Feng W, Tu J, Yang T, Vernon PS, Allen PD, et al. (2002) Homer regulates gain of ryanodine receptor type 1 channel complex. J Biol Chem 277: 44722-44730.
23. Lin CY, Yung RF, Lee HC, Chen WT, Chen YH, et al. (2006) Myogenic regulatory factors Myf5 and Myod function distinctly during craniofacial myogenesis of zebrafish. Dev Biol 299: 594-608.
24. Westerfield M. (1995) The Zebrafish Book, 3rd edn. University of Oregon Press, Eugene, OR.
25. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. (1995) Stages of embryonic development of the zebrafish. Dev Dyn 203: 253-310.
26. Lee HC, Huang HY, Lin CY, Chen YH, Tsai HJ. (2006) Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev Biol 290: 359-372.
27. Lee HC, Huang HY, Lin CY, Chen YH, Tsai HJ. (2006) Foxd3 mediates zebrafish myf5 expression during early somitogenesis. Dev Biol 290: 359-372.
28. Maves L, Waskiewicz AJ, Paul B, CaoY, Tyler A, et al. (2007) Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation. Development 134: 3371-3382.
29. Lin CY, Chen WT, Lee HC, Yang PH, Yang HJ et al. (2009) The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev Biol 331: 152-166.
30. Tallafuss A, Gibson D, Morcos P, Li Y, Seredick S, et al.. (2012) Turning gene function ON and OFF using sense and antisense photo-morpholinos in zebrafish. Development 139: 1691-1699.
31. Eisenhoffer GT, Loftus PD, Yoshigi M, Otsuna H, Chien CB, et al. (2012) Crowding induces live cell extrusion to maintain homeostatic cell numbers in epithelia. Nature 484: 546-549.
32. Myhre JL, Pilgrim DB. (2010) Cellular differentiation in primary cell cultures from single zebrafish embryos as a model for the study of myogenesis. Zebrafish 7: 255-266.
33. Grynkiewicz G, Poenie M, Tsien RY. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450.
34. Ferrante MI, Kiff RM, Goulding DA, Stemple DL. (2011) Troponin T is essential for sarcomere assembly in zebrafish skeletal muscle. J Cell Sci 124: 565-577.
35. Wang YX, Qian LX, Yu Z, Jiang Q, Dong YX, et al. (2005) Requirements of myocyte-specific enhancer factor 2A in zebrafish cardiac contractility. FEBS Lett 579: 4843-4850.
36. Te W, Lv Q, Wong CK, Hu S, Fu C, et al. (2008) The effect of central loops in miRNA:MRE duplexes on the efficiency of miRNA-mediated gene regulation. PLoS One 3: e1719.
37. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, et al. (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126: 1203-1217.
38. Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10: 1507-1517.
39. Fagni L, Worley PF, Ango F. (2002) Homer as both a scaffold and transduction molecule. Sci STKE 2002: re8.
40. Stiber JA, Rosenberg PB. (2011) The role of store-operated calcium influx in skeletal muscle signaling. Cell Calcium 49: 341-349.
41. Hahn K, DeBiasio R, Taylor DL. (1992) Patterns of elevated free calcium and calmodulin activation in living cells. Nature 359: 736-738.
42. Webb SE, Miller AL. (2003) Imaging intercellular calcium waves during late epiboly in intact zebrafish embryos. Zygote 11: 175-182.
43. Ashworth R. (2004) Approaches to measuring calcium in zebrafish: focus on neuronal development. Cell Calcium 35: 393-402.
44. Koulen P, Janowitz T, Johenning FW, Ehrlich BE. (2001) Characterization of the calcium-release channel/ryanodine receptor from zebrafish skeletal muscle. J Membr Biol 183: 155-163.
45. Chen YH, Huang YH, Wen CC, Wang YH, Chen WL, et al. (2008) Movement disorder and neuromuscular change in zebrafish embryos after exposure to caffeine. Neurotoxicol Teratol 30: 440-447.
46. Leung CF, Miller AL, Korzh V, Chong SW, Sleptsova-Freidrich I, et al. (2009) Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos. Dev. Growth Differ 51: 617-637.
47. Salanova M, Priori G, Barone V, Intravaia E, Flucher B, et al. (2002) Homer proteins and InsP(3) receptors co-localise in the longitudinal sarcoplasmic reticulum of skeletal muscle fibres. Cell Calcium 32: 193-200.
48. Ward CW, Feng W, Tu J, Pessah IN, Worley PK, et al. (2004) Homer protein increases activation of Ca2+ sparks in permeabilized skeletal muscle. J Biol Chem 279: 5781-5787.
49. Woo JS, Kim doH, Allen PD, Lee EH. (2008) TRPC3-interacting triadic proteins in skeletal muscle. Biochem J 411: 399-405.
50. Stiber JA, Tabatabaei N, Hawkins AF, Hawke T, Worley PF, et al. (2005) Homer modulates NFAT-dependent signaling during muscle differentiation. Dev Biol 287: 213-224.
51. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, et al. (2008) Mice lacking Homer 1 exhibit a skeletal myopathy characterized by abnormal transient receptor potential channel activity. Mol Cell Biol 28: 2637-2647.
52. Millay DP, Goonasekera SA, Sargent MA, Maillet M, Aronow BJ, et al. (2009) Calcium influx is sufficient to induce muscular dystrophy through a TRPC-dependent mechanism. Proc Natl Acad Sci U S A 106: 19023-19028.
53. Rothschild SC, Easley CA, Francescatto L, Lister JA, Garrity DM, et al. (2009) Tbx5-mediated expression of Ca2+/calmodulin-dependent protein kinase II is necessary for zebrafish cardiac and pectoral fin morphogenesis. Dev Biol 330: 175-184.
54. Bajard L, Relaix F, Lagha M, Rocancourt D, Daubas P, et al. (2006) A novel genetic hierarchy functions during hypaxial myogenesis: Pax3 directly activates Myf5 in muscle progenitor cells in the limb. Genes Dev 20: 2450-2464.
55. Hu P, Geles KG, Paik JH, DePinho RA, Tjian R. (2008) Codependent activators direct myoblast-specific MyoD transcription. Dev Cell 15: 534-546.
56. Goljanek-Whysall K, Sweetman D, Abu-Elmagd M, Chapnik E, Dalmay T, et al. (2011) MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis. Proc Natl Acad Sci U S A., 108: 11936-11941.
57. Winbanks CE, Wang B, Beyer C, Koh P, White L, et al. (2011) TGF-beta regulates miR-206 and miR-29 to control myogenic differentiation through regulation of HDAC4. J Biol Chem 286: 13805-13814.
58. Liu H, Chen SE, Jin B, Carson JA, Niu A, et al. (2010) TIMP3: a physiological regulator of adult myogenesis. J Cell Sci 123: 2914-2921.
59. Wang D, Lu M, Miao J, Li T, Wang E, et al. (2009) Cepred: predicting the co-expression patterns of the human intronic microRNAs with their host genes. PLoS One 4: e4421.
60. Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, et al. (2009) Features of mammalian microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One 4: e5279.
61. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, et al. (2010) Structure and activity of putative intronic miRNA promoters. RNA 16: 495-505.
62. Mi S, Lu J, Sun M, Li Z, Zhang H, et al. (2007) MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 104: 19971-19976.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17234-
dc.description.abstract研究發現,在myf5第一內含子中有了一個miRNA,稱為miR-3906或miR-In300,其標的基因為dickkopf-related protein(dkk3r/dkk3a)。miR-3906藉由抑制Dkk3a蛋白質表現,而抑制宿主基因myf5的啟動子活性,最終成熟體節內的myf5表現生成漸漸減少,使體節細胞繼續走向肌肉分化的命運。然而當宿主基因myf5已經不表現於軀幹部體節內,miR-3906仍然持續表現於體節。另外,以32 hpf斑馬魚胚胎進行LAMP assay並以in vitro/ 及in vivo Dual luciferase reporter system,發現miR-3906能夠結合於homer-1b 3‘UTR。這些結果暗示miR-3906和homer-1b在斑馬魚胚胎肌肉發育過程中可能是具有上下游的關係,但是miR-3906調控homer-1b進而影響晚期肌肉發育的功能仍然不清楚。因此本篇研究主要針對以下兩點進行探討:(1)miR-3906是否能獨立於myf5 transcript且擁有獨立的啟動子;(2)miR-3906和homer-1b對於斑馬魚肌肉發育晚期的生物意義。
為探討miR-3906是否能獨立於myf5 transcript且擁有獨立的啟動子,利用不同長度的myf5外顯子接於luciferase基因之前,並於斑馬魚一細胞時期注射。接著分別收取16、24、32 hpf觀察報導基因的活性,以判別myf5外顯子是否擁有轉錄miR-3906的能力。我們發現myf5外顯子具有啟動子活性,且在myf5不表現時期,其活性更大為增加。這顯示當myf5不表現時期,miR-3906能夠以myf5外顯子作為啟動子開啟表現。另外,針對miR-3906和homer-1b對於斑馬魚肌肉發育晚期的生物意義,我們首先以WISH、q-PCR和Western blot確定miR-3906能夠抑制Homer-1b的表現量。而由於曾有研究指出,Homer family能與鈣離子通道結合,在功能性探討上,我們推測斑馬魚miR-3906能夠過調節Homer-1b表現量參與Ca+2 dependent signal pathways。實驗先在mRNA和蛋白質層次探討miR-3906對於Homer-1b的調控,並針對斑馬魚胚胎24 hpf時,觀察miR-3906和Homer-1b表現量的不正常對於細胞內鈣離子濃度的影響。發現抑制內生性miR-3906或過量表現外源性Homer-1b,會使得細胞內鈣離子濃度上升82.9-97.3%。而過量表現外源性miR-3906或抑制內生性Homer-1b,會使得細胞內鈣離子濃度下降22-29.6%。最後,miR-3906和Homer-1b甚至以影響細胞內鈣離子濃度調控斑馬魚的肌肉發育。在WISH和q-PCR實驗中發現,抑制內生性miR-3906或過量表現外源性Homer-1b,會使得專一快肌分化基因表現量上升。而過量表現外源性miR-3906或抑制內生性Homer-1b,會使得專一快肌分化基因表現量下降。而由於改變miR-3906和Homer-1b表現量所造成的快肌基因的表現缺失,都能夠以彌補或減少鈣離子濃度來進行回覆。顯示miR-3906和Homer-1b確實是以透過影響鈣離子濃度來調控快肌分化基因的表現。除了在基因表現層次上的觀察,我們也發現若是抑制內生性miR-3906或過量表現外源性Homer-1b,會導致肌肉結構的不正常。因此綜合上述結果,當胚胎發育晚期myf5不表現時期,miR-3906能從自身啟動子轉錄出,並接著使Homer-1b維持於正常的表現量,使快肌細胞內鈣離子濃度維持恆定,最終確保快肌的發育過程能夠正常。
zh_TW
dc.description.abstractPreviously we reported an intronic microRNA (miR), miR-In300 or miR-3906, which locates at the first intron of zebrafish myf5 gene, suppresses the transcription of myf5 through silencing dickkopf-related protein 3 (dkk3r/dkk3a) during early development such as 16 hpf when myf5 is highly transcribed. However, when myf5 mRNAs are gradually reduced to undetectable level in mature somites at late developmental stage, miR-3906 is still predominant. We had been performed LAMP assay and in vitro/in vivo luciferase reporter assay, and found that miR-3906 enabled to silence reporter gene fused by homer-1b-3’UTR. The line of these evidences give a clue that (1) miR-3906 may have its own promoter which can transcribe miR-3906 at late stage; and (2) miR-3906 plays an unknown function through regulating homer-1b in muscle development at late stage since Dkk3a is not detected anymore in muscle at that stage.
Firstly, we constructed plasmids in which the luciferase gene was driven by various lengths of upstream segment of miR-3906. After luciferase activity assay was performed in embryos, we found that a motif located at +303/+402 was able to activate luciferase activity, suggesting that +303/+402 cis-element possesses a promoter activity when myf5 mRNA does not exist. Secondly, using WISH, q-PCR and western blotting, we confirmed that miR-3906 negatively modulates the expression levels of homer-1b mRNA and Homer-1b protein. Thirdly, we found that the expression levels of fast muscle-specific gene fmhc4 and calcium-sensitive gene atp2a1 were increased, but slow muscle-specific gene smhc1 was unchanged, in the miR-3906-MO-injected and homer-1b-mRNA-injected embryos. The downregulated expressions of fmhc4 and atp2a1 induced by excessive miR-3906 or absent homer-1b could be rescued by adding exogenous homer-1b mRNA. Fourthly, we observed that the sarcomeric actin arrangement and Z disk were disorganized in the fast muscle of miR-3906-MO-injected and homer-1b-mRNA-injected embryos. They also exhibited abnormal swimming abilities. Furthermore, we found that the [Ca2+]i in the fast muscle cells of either knockdown of miR-3906 embryos or overexpression of homer-1b embryos was increased 82.9-97.3% higher than that of control embryos. In contrast, the [Ca2+]i of the excessive miR-3906 and absent homer-1b embryos was decreased 22-29.6% lower than that of control group. Taken together, we concluded that miR-3906, which is transcribed from its own promoter at late developmental stage, controls [Ca2+]i homeostasis in fast muscle through fine tuning homer-1b expression during differentiation in order to maintain normal muscle development during embryogenesis.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:02:16Z (GMT). No. of bitstreams: 1
ntu-102-R00b43007-1.pdf: 12483230 bytes, checksum: fd4092a1379d7ad97b8756d9002c41a5 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents中文摘要……………………………………………………………………………. 2
英文摘要……………………………………………………………………………. 4
Introduction…………………………………………………………………………. 7
Materials and Methods…………………………………………………………….. 11
Results………………………………………………………………………...…. 21
Discussion………………………………………………………………….....…… 38
Summary……………………………………………………………………...……. 46
References……………………………………………………………………...….. 47
Figure Legends……………………………………………………..……………. 54
Appendix………………………….………………………………..……………. 68
dc.language.isoen
dc.titleMicroRNA-3906藉由微調Homer-1b使斑馬魚快肌內鈣離子濃度維持恆定zh_TW
dc.titleMicroRNA-3906 Maintains Fast Muscle Intracellular Calcium Homeostasis through Fine Tuning the Homer-1b in Zebrafishen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱家瑩,蔡振寧,鄭登貴,胡清華
dc.subject.keyword肌肉發育,zh_TW
dc.subject.keywordMuscle development,MicroRNA,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2013-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
12.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved