Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17215Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 劉?睿(Je-Ruei Liu) | |
| dc.contributor.author | Yi-Fang Zeng | en |
| dc.contributor.author | 曾意芳 | zh_TW |
| dc.date.accessioned | 2021-06-08T00:01:24Z | - |
| dc.date.copyright | 2013-08-17 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-15 | |
| dc.identifier.citation | [1] Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J Biomat Sci-Polym E. 2000;11:439-57.
[2] Qureshi IA, Mehler MF. Emerging roles of non-coding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528-41. [3] Scholz C, Wagner E. Therapeutic plasmid DNA versus siRNA delivery: common and different tasks for synthetic carriers. J Control Release. 2012;161:554-65. [4] Zhang S, Zhao B, Jiang H, Wang B, Ma B. Cationic lipids and polymers mediated vectors for delivery of siRNA. J Control Release. 2007;123:1-10. [5] Boulaiz H, Marchal JA, Prados J, Melguizo C, Aranega A. Non-viral and viral vectors for gene therapy. Cell Mol Biol (Noisy-le-grand). 2005;51:3-22. [6] McCrudden CM, McCarthy HO. Cancer gene therapy – key biological concepts in the design of multifunctional non-viral delivery systems. Gene therapy - tools and potential applications. Martin F, (Ed.). InTech. 2013. [7] Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci. 2003;4:353-64. [8] Guo X, Huang L. Recent advances in nonviral vectors for gene delivery. Acc Chem Res. 2012;45:971-9. [9] Nayerossadat N, Maedeh T, Ali PA. Viral and nonviral delivery systems for gene delivery. Adv Biomed Res. 2012;1:27. [10] Gilbert JL, Purcell J, Strappe P, McCabe M, O'Brien T, O'Dea S. Comparative evaluation of viral, nonviral and physical methods of gene delivery to normal and transformed lung epithelial cells. Anticancer Drugs. 2008;19:783-8. [11] Mellott AJ, Forrest ML, Detamore MS. Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng. 2013;41:446-68. [12] Akita H, Harashima H. Nonviral gene delivery. Contrib Nephrol. 2008;159:13-29. [13] Zhang Y, Satterlee A, Huang L. In vivo gene delivery by nonviral vectors: overcoming hurdles? Mol Ther. 2012;20:1298-304. [14] Ostrove JM. Safety testing programs for gene therapy viral vectors. Cancer Gene Ther. 1994;1:125-31. [15] Roy R, Jerry DJ, Thayumanavan S. Virus-inspired approach to nonviral gene delivery vehicles. Biomacromolecules. 2009;10:2189-93. [16] Itaka K, Kataoka K. Recent development of nonviral gene delivery systems with virus-like structures and mechanisms. Eur J Pharm Biopharm. 2009;71:475-83. [17] Auman JT. Gene therapy: Have the risks associated with viral vectors been solved? Curr Opin Mol Ther. 2010;12:637-8. [18] Dean DA, Gasiorowski JZ. Nonviral gene delivery. Cold Spring Harb Protoc. 2011;2011:top101. [19] Fisher KD, Green NK, Hale A, Subr V, Ulbrich K, Seymour LW. Passive tumour targeting of polymer-coated adenovirus for cancer gene therapy. J Drug Target. 2007;15:546-51. [20] Li SD, Huang L. Gene therapy progress and prospects: non-viral gene therapy by systemic delivery. Gene Ther. 2006;13:1313-9. [21] Donkuru M, Badea I, Wettig S, Verrall R, Elsabahy M, Foldvari M. Advancing nonviral gene delivery: lipid- and surfactant-based nanoparticle design strategies. Nanomedicine (Lond). 2010;5:1103-27. [22] Storrie H, Mooney DJ. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering. Adv Drug Deliv Rev. 2006;58:500-14. [23] Brownlie A, Uchegbu IF, Schatzlein AG. PEI-based vesicle-polymer hybrid gene delivery system with improved biocompatibility. Int J Pharm. 2004;274:41-52. [24] Ferrari S, Moro E, Pettenazzo A, Behr JP, Zacchello F, Scarpa M. ExGen 500 is an efficient vector for gene delivery to lung epithelial cells in vitro and in vivo. Gene Ther. 1997;4:1100-6. [25] Tseng SJ, Chien CC, Liao ZX, Chen HH, Kang YD, Wang CL, et al. Controlled hydrogel photopolymerization inside live systems by X-ray irradiation. Soft Matter. 2012;8:1420-7. [26] Billiet T, Vandenhaute M, Schelfhout J, Van Vlierberghe S, Dubruel P. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials. 2012;33:6020-41. [27] Kashyap N, Kumar N, Kumar MN. Hydrogels for pharmaceutical and biomedical applications. Crit Rev Ther Drug Carrier Syst. 2005;22:107-49. [28] Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428:487-92. [29] Tang Y, Heaysman CL, Willis S, Lewis AL. Physical hydrogels with self-assembled nanostructures as drug delivery systems. Expert Opin Drug Deliv. 2011;8:1141-59. [30] Shin S, Shea LD. Lentivirus immobilization to nanoparticles for enhanced and localized delivery from hydrogels. Mol Ther. 2010;18:700-6. [31] Ogris M, Brunner S, Schuller S, Kircheis R, Wagner E. PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther. 1999;6:595-605. [32] Sethuraman VA, Na K, Bae YH. pH-responsive sulfonamide/PEI system for tumor specific gene delivery: an in vitro study. Biomacromolecules. 2006;7:64-70. [33] Lutz GJ, Sirsi SR, Williams JH. PEG-PEI copolymers for oligonucleotide delivery to cells and tissues. Methods Mol Biol. 2008;433:141-58. [34] Merkel OM, Beyerle A, Librizzi D, Pfestroff A, Behr TM, Sproat B, et al. Nonviral siRNA delivery to the lung: investigation of PEG-PEI polyplexes and their in vivo performance. Mol Pharm. 2009;6:1246-60. [35] Huang YC, Riddle K, Rice KG, Mooney DJ. Long-term in vivo gene expression via delivery of PEI-DNA condensates from porous polymer scaffolds. Hum Gene Ther. 2005;16:609-17. [36] Bertrand E, Goncalves C, Billiet L, Gomez JP, Pichon C, Cheradame H, et al. Histidinylated linear PEI: a new efficient non-toxic polymer for gene transfer. Chem Commun (Camb). 2011;47:12547-9. [37] Knop K, Hoogenboom R, Fischer D, Schubert US. Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Ed Engl. 2010;49:6288-308. [38] Eckman AM, Tsakalozou E, Kang NY, Ponta A, Bae Y. Drug release patterns and cytotoxicity of PEG-poly(aspartate) block copolymer micelles in cancer cells. Pharm Res. 2012;29:1755-67. [39] Funhoff AM, Monge S, Teeuwen R, Koning GA, Schuurmans-Nieuwenbroek NM, Crommelin DJ, et al. PEG shielded polymeric double-layered micelles for gene delivery. J Control Release. 2005;102:711-24. [40] Lee H, Jeong JH, Park TG. PEG grafted polylysine with fusogenic peptide for gene delivery: high transfection efficiency with low cytotoxicity. J Control Release. 2002;79:283-91. [41] Pittella F, Zhang M, Lee Y, Kim HJ, Tockary T, Osada K, et al. Enhanced endosomal escape of siRNA-incorporating hybrid nanoparticles from calcium phosphate and PEG-block charge-conversional polymer for efficient gene knockdown with negligible cytotoxicity. Biomaterials. 2011;32:3106-14. [42] Selim KK, Xing ZC, Choi MJ, Chang Y, Guo H, Kang IK. Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer. Nanoscale Res Lett. 2011;6:528. [43] Kievit FM, Veiseh O, Bhattarai N, Fang C, Gunn JW, Lee D, et al. PEI-PEG-Chitosan Copolymer Coated Iron Oxide Nanoparticles for Safe Gene Delivery: synthesis, complexation, and transfection. Adv Funct Mater. 2009;19:2244-51. [44] Lee KM, Lee YB, Oh IJ. Evaluation of PEG-transferrin-PEI nanocomplex as a gene delivery agent. J Nanosci Nanotechnol. 2011;11:7078-81. [45] Alexander C. Temperature- and pH-responsive smart polymers for gene delivery. Expert Opin Drug Deliv. 2006;3:573-81. [46] Schuwer N, Klok HA. Tuning the pH sensitivity of poly(methacrylic acid) brushes. Langmuir. 2011;27:4789-96. [47] Choi I, Suntivich R, Plamper FA, Synatschke CV, Muller AH, Tsukruk VV. pH-controlled exponential and linear growing modes of layer-by-layer assemblies of star polyelectrolytes. J Am Chem Soc. 2011;133:9592-606. [48] Guo XD, Wiradharma N, Liu SQ, Zhang LJ, Khan M, Qian Y, et al. Oligomerized alpha-helical KALA peptides with pendant arms bearing cell-adhesion, DNA-binding and endosome-buffering domains as efficient gene transfection vectors. Biomaterials. 2012;33:6284-91. [49] Zhang Z, Feng SS. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006;27:4025-33. [50] Okuda T, Kobayashi Y, Yanamoto S, Okamoto H. PEG conjugation of a near-infrared fluorescent probe for noninvasive dual imaging of lung deposition and gene expression by pulmonary gene delivery. J Drug Target. 2012;20:801-12. [51] Asayama S, Sudo M, Nagaoka S, Kawakami H. Carboxymethyl poly(L-histidine) as a new pH-sensitive polypeptide to enhance polyplex gene delivery. Mol Pharm. 2008;5:898-901. [52] Li Z, Ning W, Wang J, Choi A, Lee PY, Tyagi P, et al. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res. 2003;20:884-8. [53] Caldorera-Moore M, Peppas NA. Micro- and nanotechnologies for intelligent and responsive biomaterial-based medical systems. Adv Drug Deliv Rev. 2009;61:1391-401. [54] Yang C, Ong ZY, Yang YY, Ee PL, Hedrick JL. Novel biodegradable block copolymers of poly(ethylene glycol) (PEG) and cationic polycarbonate: effects of PEG configuration on gene delivery. Macromol Rapid Commun. 2011;32:1826-33. [55] Jeon O, Bouhadir KH, Mansour JM, Alsberg E. Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties. Biomaterials. 2009;30:2724-34. [56] Wang Q, Xie X, Zhang X, Zhang J, Wang A. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol. 2010;46:356-62. [57] Alexis F, Zeng J, Shu W. PEI Nanoparticles for Targeted Gene Delivery. CSH Protoc. 2006;2006. [58] Malek A, Czubayko F, Aigner A. PEG grafting of polyethylenimine (PEI) exerts different effects on DNA transfection and siRNA-induced gene targeting efficacy. J Drug Target. 2008;16:124-39. [59] Leibbrandt ME. Safety evaluation of gene therapy viral vectors. Curr Opin Drug Discov Devel. 2000;3:48-55. [60] Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27-46. [61] Tseng SJ, Tang SC. Synthesis and characterization of the novel transfection reagent poly(amino ester glycol urethane). Biomacromolecules. 2007;8:50-8. [62] Lindberg MF, Carmoy N, Le Gall T, Fraix A, Berchel M, Lorilleux C, et al. The gene transfection properties of a lipophosphoramidate derivative with two phytanyl chains. Biomaterials. 2012;33:6240-53. [63] Zhou J, Liu J, Cheng CJ, Patel TR, Weller CE, Piepmeier JM, et al. Biodegradable poly(amine-co-ester) terpolymers for targeted gene delivery. Nat Mater. 2012;11:82-90. [64] Mingozzi F, High KA. Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet. 2011;12:341-55. [65] Chulay JD, Ye GJ, Thomas DL, Knop DR, Benson JM, Hutt JA, et al. Preclinical evaluation of a recombinant adeno-associated virus vector expressing human alpha-1 antitrypsin made using a recombinant herpes simplex virus production method. Hum Gene Ther. 2011;22:155-65. [66] Flotte TR, Trapnell BC, Humphries M, Carey B, Calcedo R, Rouhani F, et al. Phase 2 clinical trial of a recombinant adeno-associated viral vector expressing alpha1-antitrypsin: interim results. Hum Gene Ther. 2011;22:1239-47. [67] Yue TW, Chien WC, Tseng SJ, Tang SC. EDC/NHS-mediated heparinization of small intestinal submucosa for recombinant adeno-associated virus serotype 2 binding and transduction. Biomaterials. 2007;28:2350-7. [68] Jang JH, Schaffer DV, Shea LD. Engineering biomaterial systems to enhance viral vector gene delivery. Mol Ther. 2011;19:1407-15. [69] Kidd ME, Shin S, Shea LD. Fibrin hydrogels for lentiviral gene delivery in vitro and in vivo. J Control Release. 2012;157:80-5. [70] Bellocq NC, Kang DW, Wang X, Jensen GS, Pun SH, Schluep T, et al. Synthetic biocompatible cyclodextrin-based constructs for local gene delivery to improve cutaneous wound healing. Bioconjug Chem. 2004;15:1201-11. [71] Ito H, Koefoed M, Tiyapatanaputi P, Gromov K, Goater JJ, Carmouche J, et al. Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy. Nat Med. 2005;11:291-7. [72] Koefoed M, Ito H, Gromov K, Reynolds DG, Awad HA, Rubery PT, et al. Biological effects of rAAV-caAlk2 coating on structural allograft healing. Mol Ther. 2005;12:212-8. [73] Carlisle RC, Briggs SS, Hale AB, Green NK, Fisher KD, Etrych T, et al. Use of synthetic vectors for neutralising antibody resistant delivery of replicating adenovirus DNA. Gene Ther. 2006;13:1579-86. [74] Carlisle RC, Benjamin R, Briggs SS, Sumner-Jones S, McIntosh J, Gill D, et al. Coating of adeno-associated virus with reactive polymers can ablate virus tropism, enable retargeting and provide resistance to neutralising antisera. J Gene Med. 2008;10:400-11. [75] Bazan-Peregrino M, Arvanitis CD, Rifai B, Seymour LW, Coussios CC. Ultrasound-induced cavitation enhances the delivery and therapeutic efficacy of an oncolytic virus in an in vitro model. J Control Release. 2012;157:235-42. [76] Chang KL, Higuchi Y, Kawakami S, Yamashita F, Hashida M. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J Control Release. 2011;156:195-202. [77] Liu R, Li D, He B, Xu X, Sheng M, Lai Y, et al. Anti-tumor drug delivery of pH-sensitive poly(ethylene glycol)-poly(L-histidine-)-poly(L-lactide) nanoparticles. J Control Release. 2011;152:49-56. [78] Lutolf MP, Tirelli N, Cerritelli S, Cavalli L, Hubbell JA. Systematic modulation of Michael-type reactivity of thiols through the use of charged amino acids. Bioconjug Chem. 2001;12:1051-6. [79] Hartgerink JD, Beniash E, Stupp SI. Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci U S A. 2002;99:5133-8. [80] Villanueva I, Weigel CA, Bryant SJ. Cell-matrix interactions and dynamic mechanical loading influence chondrocyte gene expression and bioactivity in PEG-RGD hydrogels. Acta Biomater. 2009;5:2832-46. [81] Song A, Rane AA, Christman KL. Antibacterial and cell-adhesive polypeptide and poly(ethylene glycol) hydrogel as a potential scaffold for wound healing. Acta Biomater. 2012;8:41-50. [82] Dalsin JL, Hu BH, Lee BP, Messersmith PB. Mussel adhesive protein mimetic polymers for the preparation of nonfouling surfaces. J Am Chem Soc. 2003;125:4253-8. [83] Hetherington JJ. Review of Medical Physiology - Ganong,Wf. J Speech Hear Disord. 1968;33:387. [84] Tseng SJ, Tang SC. Development of poly(amino ester glycol urethane)/siRNA polyplexes for gene silencing. Bioconjug Chem. 2007;18:1383-90. [85] Tseng SJ, Chuang CJ, Tang SC. Electrostatic immobilization of DNA polyplexes on small intestinal submucosa for tissue substrate-mediated transfection. Acta Biomater. 2008;4:799-807. [86] Jeon O, Alt DS, Ahmed SM, Alsberg E. The effect of oxidation on the degradation of photocrosslinkable alginate hydrogels. Biomaterials. 2012;33:3503-14. [87] Chandler LA, Doukas J, Gonzalez AM, Hoganson DK, Gu DL, Ma CL, et al. FGF2-targeted adenovirus encoding platelet-derived growth factor-B enhances de Novo tissue formation. Mol Ther. 2000;2:153-60. [88] Doukas J, Chandler LA, Gonzalez AM, Gu DL, Hoganson DK, Ma CL, et al. Matrix immobilization enhances the tissue repair activity of growth factor gene therapy vectors. Hum Gene Ther. 2001;12:783-98. [89] Deshmukh M, Singh Y, Gunaseelan S, Gao DY, Stein S, Sinko PJ. Biodegradable poly(ethylene glycol) hydrogels based on a self-elimination degradation mechanism. Biomaterials. 2010;31:6675-84. [90] Lee M, Kim SW. Polyethylene glycol-conjugated copolymers for plasmid DNA delivery. Pharm Res. 2005;22:1-10. [91] Sabnis A, Rahimi M, Chapman C, Nguyen KT. Cytocompatibility studies of an in situ photopolymerized thermoresponsive hydrogel nanoparticle system using human aortic smooth muscle cells. J Biomed Mater Res A. 2009;91A:52-9. [92] Tseng SJ, Tang SC. Development of poly(amino ester glycol urethane)/siRNA polyplexes for gene silencing. Bioconjug Chem. 2007;18:1383-90. [93] Ifediba MA, Moore A. In vivo imaging of the systemic delivery of small interfering RNA. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4:428-37. [94] Pack DW, Hoffman AS, Pun S, Stayton PS. Design and development of polymers for gene delivery. Nat Rev Drug Discov. 2005;4:581-93. [95] Nakayama Y. Hyperbranched polymeric 'star vectors' for effective DNA or siRNA delivery. Acc Chem Res. 2012;45:994-1004. [96] Yang XZ, Du JZ, Dou S, Mao CQ, Long HY, Wang J. Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano. 2012;6:771-81. [97] Oskuee RK, Dehshahri A, Shier WT, Ramezani M. Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med. 2009;11:921-32. [98] Park J, Singha K, Son S, Kim J, Namgung R, Yun CO, et al. A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy. Cancer Gene Ther. 2012;19:741-8. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17215 | - |
| dc.description.abstract | 無論是使用病毒或非病毒的載體去進行基因傳遞,如何有效的調控一直是個重要的課題,本篇論文中,以高分子材料做為基質或載體,搭配不同的酸鹼敏感性特質去控制基因傳遞的效率,達到更有效的轉導作用。在本論文的第二章節中,介紹我們以生物可相容及對酸鹼敏感的水膠做為基質,將帶有綠色螢光表現基因的重組腺相關病毒包埋於水膠中,利用水膠的特性在局部將病毒釋放而達到基因物質傳遞的效果,並藉由聚組胺酸添加的多寡來控制水膠吸收水分的含量,而直接影響水膠的膨脹及水解程度,藉此可控制包埋於水膠內的病毒釋放量及速率。由實驗結果得知,添加聚組胺酸成分的水膠可更有效率的將病毒釋放,並在人類的纖維瘤細胞株 HT-1080中可得到明顯的轉導效果,隨著聚組胺酸添加濃度的增加,局部基因轉導的效果也更加明顯,但過量添加聚組胺酸將會引起細胞的發炎反應。
接下來於第三個章節中,我們利用支鏈聚乙烯亞胺取代病毒載體,將小分子核醣核酸與聚乙烯亞胺所形成的聚合體送入腫瘤細胞進行基因沉默機制,並藉由添加聚組胺酸及聚麩胺酸來達到聚合體對酸鹼敏感的感受性,利用細胞內環境酸鹼值的差異將聚合體送入細胞內釋放出小分子核糖核酸,最後於細胞核內成功進行表現。此研究中顯示,添加兩種胺基酸後的聚乙烯亞胺高分子材料適合在腫瘤細胞特有的酸性環境中使用,並且明顯的降低了原有的細胞毒性。 由上述研究可知,利用細胞環境酸鹼值的不同來開發具有酸鹼敏感特性的高分子材料做為基因傳遞的載體可增加基因轉導的標靶性,無論是使用病毒或小分子核糖核酸做為基因傳遞的來源,皆可獲得印證。說明了添加具有酸鹼敏感性特質的反應劑於非病毒型載體上可增進基因傳遞系統的轉導效率,並且可更準確的達到在特定部位表現的效果。 | zh_TW |
| dc.description.abstract | Controlled gene delivery is a highly activated approach using viral or nonviral carriers. We used different strategies of gene transfer based on polymeric matrix or carrier for improved their efficiency. In the section of Chapter 2, we designed a biodegradable and pH sensitive polymeric matrix for localized delivery of recombinant adeno-associated virus serotype 2 (rAAV2). The rAAV2 containing the green fluorescent protein gene (rAAV2-GFP) were loaded into poly(ethylene glycol) (PEG) hydrogels, with and without incorporation of poly-L-histidine (polyHis). The fraction of polyHis used controlled the degree of swelling, water uptake and subsequent degradation of the hydrogels and release rate of rAAV2-GFP. As a result, release and transduction efficiency of the rAAV2-GFP from PEG-polyHis hydrogel in human HT-1080 fibrosarcoma cells increased significantly compared to a PEG hydrogel. Transduction rate can be controlled by the hydrogels’ polyHis concentration and is sensitive to localized decreases in pH consistent with inflammation. In the section of Chapter 3, we successfully constructed a high-efficient dual functional gene vector based on polyethylenimine (PEI)-based nonviral vectors. A small interfering RNA (siRNA)-loaded polyelectrolyte constructed with branched polyethylenimine (bPEI) and copolymer, consisting of PEG, histidine (His), and glutamic acid (Glu) was developed in order to provide a tumor acidosis-triggered delivery system with low cytotoxicity.
In summary, we provide some insight into strategies developed for nonviral vectors to overcome intracellular barriers, using the strategy of pH-controllable to nuclear targeting, including the improvement of methods for polyplex preparation and the incorporation of endosomolytic agents or nuclear localization expression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T00:01:24Z (GMT). No. of bitstreams: 1 ntu-102-D97642012-1.pdf: 2499753 bytes, checksum: a437b7b57d0a6837c56cb1098e73ac74 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 I
ABSTRACT II TABLE OF CONTENTS III LIST OF SCHEMES V LIST OF TABLE VI LIST OF FIGURES VII CHAPTER 1:INTRODUCTION 1 1.1 The approaches for gene delivery 1 1.2 Synthetic polymer-based systems 3 1.2.1 Hydrogels 4 1.2.2 Polyethylenimine (PEI) 6 1.2.3 Poly(ethylene glycol) (PEG) 7 1.3 pH-responsive polymers for gene delivery 8 1.3.1 pH-responsive hydrogels as a controlled gene delivery system 10 1.3.2 Endosomolytic PEI-based cationic polymers for gene delivery 11 1.4 Overview of thesis works 12 1.4.1 pH-responsive hydrogels for recombinant adeno-associated virus serotype 2 (rAAV2) delivery 12 1.4.2 Use of bPEI as a pH-responsive material for switchable delivery of small interfering RNA (siRNA) 14 CHAPTER 2:CONTROLLED DELIVERY OF RECOMBINANT ADENO-ASSOCIATED VIRUS SEROTYPE 2 USING pH-SENSITIVE POLY(ETHYLENE GLYCOL)-POLY-L-HISTIDINE HYDROGELS 16 2.1 Introduction 16 2.2 Materials and methods 18 2.2.1 Chemicals 18 2.2.2 Synthesis of PEG and PEG-polyHis hydrogels 19 2.2.3 Hydrogel characterization 20 2.2.4 Cytotoxicity of PEG and PEG-polyHis hydrogels 20 2.2.5 pH-dependent release of rAAV2-GFP from hydrogels 21 2.2.6 Assay of transgene expression 22 2.2.7 Localized delivery of rAAV2-GFP from hydrogels 23 2.3 Results and discussions 23 2.3.1 Swelling characteristics of the PEG-polyHis hydrogels 23 2.3.2 Release of rAAV2-GFP from the PEG-polyHis hydrogels 25 2.3.3 Long-term release of rAAV2-GFP from PEG-polyHis hydrogels 26 2.3.4 Degradation of the PEG-polyHis hydrogels 27 2.3.5 Cytotoxicity of the PEG-polyHis hydrogels 27 2.3.6 Release of rAAV2-GFP from PEG-polyHis hydrogel for localized transduction 28 CHAPTER 3:SWITCHABLE DELIVERY OF SMALL INTERFERING RNA USING A NEGATIVELY-CHARGED pH-RESPONSIVE POLYETHYLENIMINE-BASED POLYELECTROLYTE COMPLEX 31 3.1 Introduction 31 3.2 Materials and methods 33 3.2.1 Materials 33 3.2.2 Synthesis of p(PEG-His(1-x)-PEG-Glux) 34 3.2.3 Characterization of synthesized copolymer 35 3.2.4 Preparation and characterization of siRNA-loaded polyelectrolyte (siR-PE) 35 3.2.5 Cellular uptake 36 3.2.6 Silencing reporter expression 37 3.2.7 Cytotoxicity analysis 38 3.3 Results and discussions 38 3.3.1 Properties of synthesis of poly(PEG-His-PEG-Glu) 38 3.3.2 Hydrodynamic size and ζ-potential of a series of siR-PE complexes 40 3.3.3 Transfection efficiency of the bPEI/siRNA or siR-PE complexes 41 3.3.4 Suppression efficiency of the bPEI/siRNA and siR-PE complexes 42 3.3.5 Cytotoxicity of the bPEI/siRNA and siR-PE complexes 43 CHAPTER 4:CONCLUSION 44 REFERENCES 46 | |
| dc.language.iso | en | |
| dc.title | 利用酸鹼敏感型高分子材料做為控制病毒或基因傳遞之載體於生物醫學上之應用 | zh_TW |
| dc.title | Switchable gene or virus delivery system using pH-sensitive polymeric carrier for biomedical application | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 游信和,劉啟德,鄭光成,曾士傑 | |
| dc.subject.keyword | 基因傳遞,酸鹼敏感型,水膠,病毒,聚乙烯亞胺,小分子核醣核酸, | zh_TW |
| dc.subject.keyword | gene delivery,pH-sensitive,hydrogel,virus,polyethylenimine,siRNA, | en |
| dc.relation.page | 81 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物科技研究所 | zh_TW |
| Appears in Collections: | 生物科技研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-102-1.pdf Restricted Access | 2.44 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
