Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17203
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明富(Ming-Fu Chang)
dc.contributor.authorYng-Cun Taen
dc.contributor.author戴勇存zh_TW
dc.date.accessioned2021-06-08T00:00:50Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation1. Combe, J. J. (1822) History of a case of anaemia. Trans Med Chir Soc Edinb 1, 194-204
2. Addison, T. (1849) Anaemia: disease of the suprarenal capsules. London Med Gazette 8, 517-518
3. Biermer, M. A. (1872) Eine eigenthumliche Form von progressiver pernicioser Anaemie. Correspondenz-Blatt fur Schweizer Aerzte, Basel, 2, 15-18
4. Robscheit-Robbins, F. S., and Whipple, G. H. (1925) Blood regeneration in severe anemia II. Favorable influence of liver, heart and skeletal muscle in diet. American Journal of Physiology 72, 408-418
5. Minot, G. R., and Murphy, W. P. (1926) Treatment of pernicious anemia by a special diet. Journal of the American Medical Association 87, 470-476
6. Rickes, E. L., Brink, N. G., Koniuszy, F. R., Wood, T. R., and Folkers, K. (1948) Crystalline vitamin-B12. Science 107, 396-397
7. Smith, E. L. (1952) The discovery and identification of vitamin-B12. British Journal of Nutrition 6, 295-299
8. Eschenmoser, A., Ruzicka, L., Jeger, O., and Arigoni, D. (1955) Zur Kenntnis Der Triterpene. 190. Eine stereochemische interpretation der biogenetischen isoprenregel bei den triterpenen. Helvetica Chimica Acta 38, 1890-1904
9. Hodgkin, D. C., Kamper, J., Mackay, M., Pickworth, J., Trueblood, K. N., and White, J. G. (1956) Structure of Vitamin-B12. Nature 178, 64-66
10. Woodward, R. B. (1973) The total synthesis of vitamin B12. Pure and Applied Chemistry 33, 145-177
11. Froese, D. S., and Gravel, R. A. (2010) Genetic disorders of vitamin B-12 metabolism: eight complementation groups - eight genes. Expert Reviews in Molecular Medicine 12, e37
12. Krautler, B. (2005) Vitamin B-12: chemistry and biochemistry. Biochemical Society Transactions 33, 806-810
13. Banerjee, R. (2006) B-12 trafficking in mammals: A case for coenzyme escort service. ACS Chemical Biology 1, 149-159
14. Banerjee, R., Gherasim, C., and Padovani, D. (2009) The tinker, tailor, soldier in intracellular B-12 trafficking. Current Opinion in Chemical Biology 13, 484-491
15. Scott, A. I. (1993) How nature synthesizes vitamin-B12 - a survey of the last 4 billion years. Angewandte Chemie International Edition 32, 1223-1243
16. Rondon, M. R., Trzebiatowski, J. R., and Escalante-Semerena, J. C. (1997) Biochemistry and molecular genetics of cobalamin biosynthesis. Progress in Nucleic Acid Research and Molecular Biology 56, 347-384
17. Marsh, E. N. G. (1999) Coenzyme B-12 (cobalamin)-dependent enzymes. Essays in Biochemistry 34, 139-154
18. Roth, J. R., Lawrence, J. G., and Bobik, T. A. (1996) Cobalamin (coenzyme B-12): Synthesis and biological significance. Annual Review of Microbiology 50, 137-181
19. Watanabe, F. (2007) Vitamin B-12 sources and bioavailability. Experimental Biology and Medicine 232, 1266-1274
20. Dali-Youcef, N., and Andres, E. (2009) An update on cobalamin deficiency in adults. Qjm-an International Journal of Medicine 102, 17-28
21. Moestrup, S. K., Kozyraki, R., Kristiansen, M., Kaysen, J. H., Rasmussen, H. H., Brault, D., Pontillon, F., Goda, F. O., Christensen, E. I., Hammond, T. G., and Verroust, P. J. (1998) The intrinsic factor vitamin B-12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. Journal of Biological Chemistry 273, 5235-5242
22. Fyfe, J. C., Madsen, M., Hojrup, P., Christensen, E. I., Tanner, S. M., de la Chapelle, A., He, Q. C., and Moestrup, S. K. (2004) The functional cobalamin (vitamin B-12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood 103, 1573-1579
23. Beedholm-Ebsen, R., van de Wetering, K., Hardlei, T., Nexo, E., Borst, P., and Moestrup, S. K. (2010) Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 115, 1632-1639
24. Morkbak, A. L., Hvas, A. M., Lloyd-Wright, Z., Sanders, T. A. B., Bleie, O., Refsum, H., Nygaard, O. K., and Nexo, E. (2006) Effect of vitamin B-12 treatment on haptocorrin. Clinical Chemistry 52, 1104-1111
25. Finkler, A. E., and Hall, C. A. (1967) Nature of relationship between vitamin B12 binding and cell uptake. Archives of Biochemistry and Biophysics 120, 79-85
26. Hall, C. A., and Finkler, A. E. (1963) A second vitamin B12-binding substance in human plasma. Biochimica et Biophysica Acta 78, 234-&
27. Moestrup, S. K., Birn, H., Fischer, P. B., Petersen, C. M., Verroust, P. J., Sim, R. B., Christensen, E. I., and Nexo, E. (1996) Megalin-mediated endocytosis of transcobalamin-vitamin-B-12 complexes suggests a role of the receptor in vitamin-B-12 homeostasis. Proceedings of the National Academy of Sciences of the United States of America 93, 8612-8617
28. Quadros, E. V., Nakayama, Y., and Sequeira, J. M. (2009) The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood 113, 186-192
29. Hippe, E., Haber, E., and Olesen, H. (1971) Nature of vitamin B12 binding .2. Steric orientation of vitamin B12 on binding and number of combining sites of human intrinsic factor and transcobalamins. Biochimica et Biophysica Acta 243, 75-82
30. Hippe, E. (1970) Changes in stokes radius on binding of vitamin-B12 to human intrinsic factor and transcobalamins. Biochimica et Biophysica Acta 208, 337-339
31. Nexo, E., Hansen, M., Poulsen, S. S., and Olsen, P. S. (1985) Characterization and immunohistochemical localization of rat salivary cobalamin-binding protein and comparison with human salivary haptocorrin. Biochimica et Biophysica Acta 838, 264-269
32. Wuerges, J., Garau, G., Geremia, S., Fedosov, S. N., Petersen, T. E., and Randaccio, L. (2006) Structural basis for mammalian vitamin B-12 transport by transcobalamin. Proceedings of the National Academy of Sciences of the United States of America 103, 4386-4391
33. Wuerges, J., Geremia, S., and Randaccio, L. (2007) Structural study on ligand specificity of human vitamin B12 transporters. Biochemical Journal 403, 431-440
34. Mathews, F. S., Gordon, M. M., Chen, Z., Rajashankar, K. R., Ealick, S. E., Alpers, D. H., and Sukumar, N. (2007) Crystal structure of human intrinsic factor: Cobalamin complex at 2.6-A resolution. Proceedings of the National Academy of Sciences of the United States of America 104, 17311-17316
35. Drennan, C. L., Huang, S., Drummond, J. T., Matthews, R. G., and Ludwig, M. L. (1994) How a protein binds B-12 - a 3.0-Angstrom X-ray structure of B-12-binding domains of methionine synthase. Science 266, 1669-1674
36. Mancia, F., Keep, N. H., Nakagawa, A., Leadlay, P. F., McSweeney, S., Rasmussen, B., Bosecke, P., Diat, O., and Evans, P. R. (1996) How coenzyme B-12 radicals are generated: The crystal structure of methylmalonyl-coenzyme A mutase at 2 angstrom resolution. Structure 4, 339-350
37. Nexo, E. (1998) Cobalamin binding proteins. In vitamin B12 and B12-proteins, B.Krautler, D.Arigoni, and B.T.Golding, eds, Weinheim: Wiley-VCH Verlag GmbH
38. Ogawa, K., Kudo, H., Kim, Y. C., Nakashima, Y., Ohshio, G., Yamabe, H., Inada, M., and Hamashima, Y. (1987) Immunohistochemical distribution of vitamin-B12 R-binder in renal-cell carcinoma. Virchows Archiv a-Pathological Anatomy and Histopathology 412, 23-26
39. Nexo, E., Olesen, H., Christensen, J. M., Thomsen, J., and Kristiansen, K. (1975) Characterization of a cobalamin-binding plasma protein from a patient with hepatoma. Scandinavian Journal of Clinical and Laboratory Investigation 35, 683-690
40. Hurliman.J, and Zuber, C. (1969) Vitamin B12-binders in human body fluids. I. Antigenic and physico-chemical characteristics. Clinical and Experimental Immunology 4, 125-&
41. Hansen, M., and Nexo, E. (1992) Cobalamin binding-proteins in human seminal plasma. Scandinavian Journal of Clinical and Laboratory Investigation 52, 647-652
42. Markle, H. V. (1996) Cobalamin. Critical Reviews in Clinical Laboratory Sciences 33, 247-356
43. Gordon, M. M., Hu, C., Chokshi, H., Hewitt, J. E., and Alpers, D. H. (1991) Glycosylation is not required for ligand or receptor-binding by expressed rat intrinsic-factor. American Journal of Physiology 260, G736-G742
44. Kolhouse, J. F., and Allen, R. H. (1977) Absorption, plasma transport, and cellular retention of cobalamin analogs in rabbit - Evidence for existence of multiple mechanisms that prevent absorption and tissue dissemination of naturally occurring cobalamin analogs. Journal of Clinical Investigation 60, 1381-1392
45. Stupperich, E., and Nexo, E. (1991) Effect of the cobalt-N coordination on the cobamide recognition by the human vitamin-B12 binding-proteins intrinsic-factor, transcobalamin and haptocorrin. European Journal of Biochemistry 199, 299-303
46. Qureshi, A. A., Rosenblatt, D. S., and Cooper, B. A. (1994) Inherited disorders of cobalamin metabolism. Critical Reviews in Oncology/Hematology 17, 133-151
47. Quadros, E. V., Rothenberg, S. P., Pan, Y. C. E., and Stein, S. (1986) Purification and molecular characterization of human transcobalamin-II. Journal of Biological Chemistry 261, 5455-5460
48. Fedosov, S. N., Fedosova, N. U., Nexo, E., and Petersen, T. E. (2000) Conformational changes of transcobalamin induced by aquocobalamin binding - Mechanism of substitution of the cobalt-coordinated group in the bound ligand. Journal of Biological Chemistry 275, 11791-11798
49. Allen, R. H. (1975) Human vitamin B12 transport proteins. Progress in Hematology 9, 57-84
50. Jacob, E., Baker, S. J., and Herbert, V. (1980) Vitamin-B12 - binding proteins. Physiological Reviews 60, 918-960
51. Quadros, E. V., Rothenberg, S. P., and Jaffe, E. A. (1989) Endothelial-cells from human umbilical vein secrete functional transcobalamin-II. American Journal of Physiology 256, C296-C303
52. Mato, J. M., Martinez-Chantar, M. L., and Lu, S. C. (2008) Methionine metabolism and liver disease. Annual Review of Nutrition 28, 273-293
53. Banerjee, R., and Ragsdale, S. W. (2003) The many faces of vitamin B-12: Catalysis by cobalamin-dependent enzymes. Annual Review of Biochemistry 72, 209-247
54. Li, F., Watkins, D., and Rosenblatt, D. S. (2009) Vitamin B(12) and birth defects. Molecular Genetics and Metabolism 98, 166-172
55. Gravel, R. A., Mahoney, M. J., Ruddle, F. H., and Rosenberg, L. E. (1975) Genetic complementation in heterokaryons of human fibroblasts defective in cobalamin metabolism. Proceedings of the National Academy of Sciences of the United States of America 72, 3181-3185
56. Willard, H. F., Mellman, I. S., and Rosenberg, L. E. (1978) Genetic complementation among inherited deficiencies of methylmalonyl-CoA mutase activity - evidence for a new class of human cobalamin mutant. American Journal of Human Genetics 30, 1-13
57. Watkins, D., and Rosenblatt, D. S. (2013) Lessons in biology from patients with inborn errors of vitamin B-12 metabolism. Biochimie 95, 1019-1022
58. Rosenblatt, D. S., and Cooper, B. A. (1989) Selective deficiencies of methyl-B12 (Cble and Cblg). Clinical and Investigative Medicine 12, 270-271
59. Ghosh, J. C., Siegelin, M. D., Dohi, T., and Altieri, D. C. (2010) Heat shock protein 60 regulation of the mitochondrial permeability transition pore in tumor cells. Cancer Research 70, 8988-8993
60. Padovani, D., and Banerjee, R. (2009) A G-protein editor gates coenzyme B-12 loading and is corrupted in methylmalonic aciduria. Proceedings of the National Academy of Sciences of the United States of America 106, 21567-21572
61. Dobson, C. M., Wai, T., Leclerc, D., Kadir, H., Narang, M., Lerner-Ellis, J. P., Hudson, T. J., Rosenblatt, D. S., and Gravel, R. A. (2002) Identification of the gene responsible for the cblB complementation group of vitamin B-12-dependent methylmalonic aciduria. Human Molecular Genetics 11, 3361-3369
62. Rosenblatt, D. S., Hosack, A., Matiaszuk, N. V., Cooper, B. A., and Laframboise, R. (1985) Defect in vitamin-B12 release from lysosomes - newly described inborn error of vitamin-B12 metabolism. Science 228, 1319-1321
63. Rutsch, F., Gailus, S., Miousse, I. R., Suormala, T., Sagne, C., Toliat, M. R., Nurnberg, G., Wittkampf, T., Buers, I., Sharifi, A., Stucki, M., Becker, C., Baumgartner, M., Robenek, H., Marquardt, T., Hohne, W., Gasnier, B., Rosenblatt, D. S., Fowler, B., and Nurnberg, P. (2009) Identification of a putative lysosomal cobalamin exporter altered in the cblF defect of vitamin B-12 metabolism. Nature Genetics 41, 234-239
64. Coelho, D., Kim, J. C., Miousse, I. R., Fung, S., du Moulin, M., Buers, I., Suormala, T., Burda, P., Frapolli, M., Stucki, M., Nurnberg, P., Thiele, H., Robenek, H., Hohne, W., Longo, N., Pasquali, M., Mengel, E., Watkins, D., Shoubridge, E. A., Majewski, J., Rosenblatt, D. S., Fowler, B., Rutsch, F., and Baumgartner, M. R. (2012) Mutations in ABCD4 cause a new inborn error of vitamin B-12 metabolism. Nature Genetics 44, 1152-1155
65. Hannibal, L., Kim, J., Brasch, N. E., Wang, S. H., Rosenblatt, D. S., Banerjee, R., and Jacobsen, D. W. (2009) Processing of alkylcobalamins in mammalian cells: A role for the MMACHC (cblC) gene product. Molecular Genetics and Metabolism 97, 260-266
66. Kim, J., Gherasim, C., and Banerjee, R. (2008) Decyanation of vitamin B-12 by a trafficking chaperone. Proceedings of the National Academy of Sciences of the United States of America 105, 14551-14554
67. Lerner-Ellis, J. P., Tirone, J. C., Pawelek, P. D., Dore, C., Atkinson, J. L., Watkins, D., Morel, C. F., Fujiwara, T. M., Moras, E., Hosack, A. R., Dunbar, G. V., Antonicka, H., Forgetta, V., Dobson, C. M., Leclerc, D., Gravel, R. A., Shoubridge, E. A., Coulton, J. W., Lepage, P., Rommens, J. M., Morgan, K., and Rosenblatt, D. S. (2006) Identification of the gene responsible for methylmalonic aciduria and homocystinuria, cblC type. Nature Genetics 38, 957-957
68. Suormala, T., Baumgartner, M. R., Coelho, D., Zavadakova, P., Kozich, V., Koch, H. G., Berghauser, M., Wraith, J. E., Burlina, A., Sewell, A., Herwig, J., and Fowler, B. (2004) The cblD defect causes either isolated or combined deficiency of methylcobalamin and adenosylcobalamin synthesis. Journal of Biological Chemistry 279, 42742-42749
69. Plesa, M., Kim, J., Paquette, S. G., Gagnon, H., Ng-Thow-Hing, C., Gibbs, B. F., Hancock, M. A., Rosenblatt, D. S., and Coulton, J. W. (2011) Interaction between MMACHC and MMADHC, two human proteins participating in intracellular vitamin B(12) metabolism. Molecular Genetics and Metabolism 102, 139-148
70. Kelsey, J. S., Fastman, N. M., and Blumberg, D. D. (2012) Evidence of an evolutionarily conserved LMBR1 domain-containing protein that associates with endocytic cups and plays a role in cell migration in dictyostelium discoideum. Eukaryotic Cell 11, 401-416
71. Wojnar, P., Lechnar, M., Merschak, P., and Redl, B. (2001) Molecular cloning of a novel lipocalin-1 interacting human cell membrane receptor using phage display. Journal of Biological Chemistry 276, 20206-20212
72. Lettice, L. A., Horikoshi, T., Heaney, S. J. H., van Baren, M. J., van der Linde, H. C., Breedveld, G. J., Joosse, M., Akarsu, N., Oostra, B. A., Endo, N., Shibata, M., Suzuki, M., Takahashi, E., Shinka, T., Nakahori, Y., Ayusawa, D., Nakabayashi, K., Scherer, S. W., Heutink, P., Hill, R. E., and Noji, S. (2002) Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proceedings of the National Academy of Sciences of the United States of America 99, 7548-7553
73. Wang, Y. H., Chang, S. C., Huang, C., Li, Y. P., Lee, C. H., and Chang, M. F. (2005) Novel nuclear export signal-interacting protein, NESI, critical for the assembly of hepatitis delta virus. Journal of Virology 79, 8113-8120
74. Gailus, S., Hohne, W., Gasnier, B., Nurnberg, P., Fowler, B., and Rutsch, F. (2010) Insights into lysosomal cobalamin trafficking: lessons learned from cblF disease. Journal of Molecular Medicine-Jmm 88, 459-466
75. Idriss, J. M., and Jonas, A. J. (1991) Vitamin-B12 transport by rat-liver lysosomal membrane-vesicles. Journal of Biological Chemistry 266, 9438-9441
76. Rutsch, F., Gailus, S., Suormala, T., and Fowler, B. (2011) LMBRD1: the gene for the cblF defect of vitamin B-12 metabolism. Journal of Inherited Metabolic Disease 34, 121-126
77. Froese, D. S., Zhang, J., Healy, S., and Gravel, R. A. (2009) Mechanism of vitamin B-12-responsiveness in cblC methylmalonic aciduria with homocystinuria. Molecular Genetics and Metabolism 98, 338-343
78. Reddy, A., Caler, E. V., and Andrews, N. W. (2001) Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell 106, 157-169
79. Chu, R. C., Begley, J. A., Colligan, P. D., and Hall, C. A. (1993) The methylcobalamin metabolism of cultured human fibroblasts. Metabolism, Clinical and Experimental 42, 315-319
80. Froese, D. S., Healy, S., McDonald, M., Kochan, G., Oppermann, U., Niesen, F. H., and Gravel, R. A. (2010) Thermolability of mutant MMACHC protein in the vitamin B12-responsive cblC disorder. Molecular Genetics and Metabolism 100, 29-36
81. Nielsen, M. J., Rasmussen, M. R., Andersen, C. B. F., Nexo, E., and Moestrup, S. K. (2012) Vitamin B-12 transport from food to the body's cells-a sophisticated, multistep pathway. Nature Reviews Gastroenterology and Hepatology 9, 345-354
82. Noinaj, N., Guillier, M., Barnard, T. J., and Buchanan, S. K. (2010) TonB-dependent transporters: regulation, structure, and function. Annual Review of Microbiology 64, 43-60
83. Wiener, M. C. (2005) TonB-dependent outer membrane transport: going for Baroque? Current Opinion in Structural Biology 15, 394-400
84. Borths, E. L., Poolman, B., Hvorup, R. N., Locher, K. P., and Rees, D. C. (2005) In vitro functional characterization of BtuCD-F, the Escherichia coli ABC transporter for vitamin B-12 uptake. Biochemistry 44, 16301-16309
85. Havugimana, P. C., Hart, G. T., Nepusz, T., Yang, H. X., Turinsky, A. L., Li, Z. H., Wang, P. I., Boutz, D. R., Fong, V., Phanse, S., Babu, M., Craig, S. A., Hu, P. Z., Wan, C. H., Vlasblom, J., Dar, V. U. N., Bezginov, A., Clark, G. W., Wu, G. C., Wodak, S. J., Tillier, E. R. M., Paccanaro, A., Marcotte, E. M., and Emili, A. (2012) A Census of Human Soluble Protein Complexes. Cell 150, 1068-1081
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17203-
dc.description.abstract維生素B12是一個水溶性的維生素,又稱為氰鈷胺,在哺乳類動物細胞中主要做為酵素反應的輔因子,協助執行甲硫胺酸(methionine)的生合成及methylmalonyl- CoA與succinyl-CoA之間的異構化。至於維生素B12在細胞內經溶酶體釋出至細胞質再轉成酵素反應的輔因子的代謝路徑則瞭解相當有限。目前,藉由代謝缺失病人的纖維母細胞進行研究,發現共有九種維生素B12代謝缺失的互補型,命名為cblA-G,J及mut。其中LMBR1 domain containing 1 (lmbrd1)基因被認為是cblF的對應基因。lmbrd1基因發生frameshift之病人其細胞內維生素B12會累積在溶酶體內,無法被細胞所利用。lmbrd1基因會轉譯出不同的isoforms,其中全長含540個胺基酸之LMBD1蛋白質,被認為可能是在溶酶體上的維生素B12輸出蛋白質,負責將維生素B12送到細胞質中。本研究的目的在探討LMBD1蛋白質如何參與維生素B12從溶酶體運送至細胞質。首先將His/myc-tagged LMBD1表現質體轉染HEK293T細胞,48小時之後收取細胞蛋白質並與甲基氰鈷胺進行反應,再用nickel管柱進行純化分析,結果在LMBD1蛋白質存在的區段同時偵測到維生素B12吸光值的波峰。這個結果顯示LMBD1蛋白質可能與維生素B12結合。為了釐清LMBD1蛋白質是否直接與維生素B12的結合,進一步將大量表現的LMBD1經nickel管柱在2 M氯化鈉存在下純化得到較純的LMBD1後與甲基氰鈷胺進行反應,再利用ICP-MS分析法對鈷離子定量,以未加入甲基氰鈷胺的LMBD1當作對照組做比較,結果偵測到實驗組中的鈷離子有顯著上升,計算維生素B12與LMBD1蛋白質的結合莫耳數比為1-3:1。經由共軛焦螢光顯微鏡分析結果發現LMBD1與ABCD4及MMACHC蛋白質有共位現象。此外,使用myc-tag專一性抗體辨認myc-tagged LMBD1進行免疫共沉澱,發現ABCD4及MMACHC蛋白質專一性地與LMBD1結合,推斷ABCD4及MMACHC可能參與在LMBD1蛋白質運送維生素B12的過程。此外,為了探討LMBD1蛋白質與維生素B12的結合位,利用Stimulated emission depletion (STED) microscopy分析,確定LMBD1蛋白質在溶酶體上其C端朝向細胞質,進而推測LMBD1蛋白質面向溶酶體內側的片段329-DKALHSAG-336及452-DNHKG-456為維生素B12的結合位。以上研究結果支持LMBD1蛋白質與維生素B12直接結合的可能性,且經由ABCD4及MMACHC蛋白質的協助參與維生素B12的代謝過程。zh_TW
dc.description.abstractVitamin B12 (cobalamin) is a water-soluble vitamin. It functions as a coenzyme that mediates enzymatic reactions for the methionine biosynthesis and the interconversion of methylmalonyl coenzyme A and succinyl coenzyme A in mammalian cells. However, the intracellular metabolic pathway of cobalamin released from the lysosome to the cytosol and converted into cofactor is complicated and rarely revealed. Currently, nine complementation groups, cblA-G, J and mut, which stand for different defects in intracellular cobalamin metabolism have been identified from clinical analyses of fibroblasts isolated from patients with disorders of cobalamin metabolism. LMBR1 domain containing 1 (lmbrd1) is the corresponding gene for cblF, frameshift mutations in lmbrd1 cause accumulation of free cobalamin in lysosomes. lmbrd1 gene encodes several isoforms among which LMBD1 represents the full-length protein with 540 amino acid residues. Previous studies suggested that LMBD1 is a transpoter to translocate free cobalamin from the lysosome to the cytosol. As an exporter, LMBD1 was proposed to directly bind to cobalamin through its loops toward the lysosomal compartment. The specific aim of this study is to understand how LMBD1 involves in the export of cobalamin from the lysosome to the cytosol. HEK293T cells were transfected with an expression plasmid encoding a His/myc-tagged full length LMBD1 protein. Protein lysates were harvested 48 h posttransfection and incubated with methylcobalamin prior to purification of the LMBD1-His-myc protein by FPLC with nickel column. Unique absorption peaks of cobalamin were detected from the partially purified LMBD1 fractions, suggesting that cobalamin binds to LMBD1 protein. To examine whether cobalamin directly binds to LMBD1, LMBD1 protein was overexpressed and subjected to partial purification by FPLC with nickel column in the presence of 2 M NaCl that excludes non-specific binding proteins. Further ICP-MS analysis demonstrated that cobalamin bound to LMBD1 at a molar ratio of 1-3:1. Confocal microscopy analysis showed that LMBD1 colocalized with ABCD4 and MMACHC. Immunoprecipitation analysis further identified specific interaction of ABCD4 and MMACHC with LMBD1, suggesting that these two proteins play roles in helping LMBD1 to export cobalamin out of the lysosome. Stimulated emission depletion (STED) microscopy was performed to analyze the orientation of LMBD1 protein on the lysosome. Results showed that the C-terminus of LMBD1 was toward the cytosol, indicating that the LMBD1 motifs 329-DKALHSAG-336 and 452-DNHKG-456 with sequences similar to the consensus cobalamin binding sequence and faces to the lysosomal compartment. Our results support that LMBD1 can directly bind cobalamin and involves in its metabolism mediated by ABCD4 and MMACHC.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:00:50Z (GMT). No. of bitstreams: 1
ntu-102-R00442009-1.pdf: 6437212 bytes, checksum: 187f02305a441d0f65ca5b29c45ff421 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents目次
中文摘要………………………………………………i
英文摘要……………………………………………..iii
縮寫表…………………………………………………v
緒論……………………………………………………1
研究主題……………………………………………..13
材料來源……………………………………………..14
實驗方法……………………………………………..19
實驗結果……………………………………………..35
討論…………………………………………………..41
圖表…………………………………………………..46
參考文獻……………………………………………..66
dc.language.isozh-TW
dc.title探討LMBD1及其結合蛋白質參與維生素B12輸送之機制zh_TW
dc.titleMechanisms of LMBD1 and Its Associated Proteins Involved in the Vitamin B12 Transporten
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾秀如(Shiou-Ru Tzeng),林淑華(Shu-Wha Lin),詹迺立(Nei-Li Chan)
dc.subject.keywordLMBD1,維生素B12,zh_TW
dc.subject.keywordLMBD1,vitamin B12,en
dc.relation.page73
dc.rights.note未授權
dc.date.accepted2013-08-16
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
6.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved