Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17202
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor嚴震東(Chen-Tung Yen)
dc.contributor.authorRay-Xin Leeen
dc.contributor.author李昕叡zh_TW
dc.date.accessioned2021-06-08T00:00:47Z-
dc.date.copyright2013-08-17
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citationAizenman CD, Manis PB, Linden DJ (1998) Polarity of long-term synaptic gain change is related to postsynaptic spike firing at a cerebellar inhibitory synapse. Neuron 21:827-835.
Altman J, Bayer S (1997) Development of the cerebellar system: in relation to its evolution, structure, and functions (CRC, Boca Raton, FL).
Andersson G, Armstrong DM (1987) Complex spikes in Purkinje cells in the lateral vermis (b zone) of the cat cerebellum during locomotion. J Physiol 385:107-134.
Angaut P, Cicirata F, Serapide F (1985) Topographic organization of the cerebellothalamic projections in the rat. An autoradiographic study. Neuroscience 15:389-401.
Angelaki DE, Cullen KE (2008a) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125-150.
Angelaki DE, Cullen KE (2008b) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125-150.
Angelaki DE, Klier EM, Snyder LH (2009) A vestibular sensation: probabilistic approaches to spatial perception. Neuron 64:448-461.
Apps R, Hawkes R (2009) Cerebellar cortical organization: a one-map hypothesis. Nat Rev Neurosci 10:670-681.
Ariens Kappers CU, Huber GC, Crosby EC (1960) The comparative anatomy of the nervous system of vertebrates, including man. New York: Hafner Pub. Co.
Armstrong D, Cogdell B, Harvey R (1975) Effects of afferent volleys from the limbs on the discharge patterns of interpositus neurones in cats anaesthetized with alpha-chloralose. The Journal of physiology 248:489-517.
Aumann T, Rawson J, Finkelstein D, Horne M (1994) Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: a light and electron microscopic study using single and double anterograde labelling. Journal of Comparative Neurology 349:165-181.
Aumann T, Rawson J, Pichitpornchai C, Horne M (1996) Projections from the cerebellar interposed and dorsal column nuclei to the thalamus in the rat: a double anterograde labelling study. Journal of Comparative Neurology 368:608-619.
Badura A, Schonewille M, Voges K, Galliano E, Renier N, Gao Z, Witter L, Hoebeek FE, Chedotal A, De Zeeuw CI (2013) Climbing Fiber Input Shapes Reciprocity of Purkinje Cell Firing. Neuron.
Barlow JS (2002) The cerebellum and adaptive control. Cambridge, U.K. ; New York, NY: Cambridge University Press.
Barmack NH, Shojaku H (1995) Vestibular and visual climbing fiber signals evoked in the uvula-nodulus of the rabbit cerebellum by natural stimulation. J Neurophysiol 74:2573-2589.
Barmack NH, Yakhnitsa V (2003) Cerebellar climbing fibers modulate simple spikes in Purkinje cells. J Neurosci 23:7904-7916.
Barmack NH, Yakhnitsa V (2011) Topsy turvy: functions of climbing and mossy fibers in the vestibulo-cerebellum. Neuroscientist 17:221-236.
Bartal IB-A, Decety J, Mason P (2011) Empathy and pro-social behavior in rats. Science 334:1427-1430.
Bauswein E, Kolb FP, Leimbeck B, Rubia FJ (1983) Simple and complex spike activity of cerebellar Purkinje cells during active and passive movements in the awake monkey. J Physiol 339:379-394.
Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, He Q, Ohtsuki G, De Jeu MT, Elgersma Y (2010) Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. The Journal of neuroscience 30:13630-13643.
Bengtsson F, Jorntell H (2007) Ketamine and xylazine depress sensory-evoked parallel fiber and climbing fiber responses. Journal of neurophysiology 98:1697-1705.
Bentivoglio M (1982) The Organization of the Direct Cerebellospinal Projections. Prog Brain Res 57:279-291.
Bentivoglio M (2011) The organization of the direct cerebello-spinal projections. Descending Pathways to the Spinal Cord, Progress in Brain Research 57:279-291.
Blakemore S-J, Wolpert DM, Frith CD (1998) Central cancellation of self-produced tickle sensation. Nature neuroscience 1:635-640.
Bosman LW, Koekkoek SK, Shapiro J, Rijken BF, Zandstra F, Van Der Ende B, Owens CB, Potters JW, De Gruijl JR, Ruigrok TJ (2010) Encoding of whisker input by cerebellar Purkinje cells. The Journal of physiology 588:3757-3783.
Bower JM (2013) Computational Structure of the Cerebellar Molecular Layer. In: Handbook of the Cerebellum and Cerebellar Disorders, pp 1359-1380: Springer.
Bower JM, Woolston DC (1983) Congruence of spatial organization of tactile projections to granule cell and Purkinje cell layers of cerebellar hemispheres of the albino rat: vertical organization of cerebellar cortex. Journal of neurophysiology 49:745-766.
Braak E, Braak H (1983) On three types of large nerve cells in the granular layer of the human cerebellar cortex. Anatomy and embryology 166:67-86.
Brandalise F, Gerber U, Rossi P (2012) Golgi cell-mediated activation of postsynaptic GABA(B) receptors induces disinhibition of the Golgi cell-granule cell synapse in rat cerebellum. PLoS One 7:e43417.
Brogden W, Gantt W (1942) Horsley: Intraneural Conditioning: Cerebellar Conditioned Reflexes. Arch Neurol, if Psychiat, 48: 437 455.
Brooks JX, Cullen KE (2013) The Primate Cerebellum Selectively Encodes Unexpected Self-Motion. Current Biology.
Cavdar S, Onat F, Aker R, ŞEHİRLİ U, ŞAN T, Raci Yananli H (2001) The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. Journal of anatomy 198:463-472.
Cavdar S, Onat F, Yananli HR, Şehirli US, Tulay C, Saka E, Gurdal E (2002) Cerebellar connections to the rostral reticular nucleus of the thalamus in the rat. Journal of anatomy 201:485-491.
Cherici C (2006) Vincenzo Malacarne (1744-1816): a researcher in neurophysiology between anatomophysiology and electrical physiology of the human brain. C R Biol 329:319-329.
Coddington LT, Rudolph S, Vande Lune P, Overstreet-Wadiche L, Wadiche JI (2013) Spillover-Mediated Feedforward Inhibition Functionally Segregates Interneuron Activity. Neuron.
Cody FW, Moore RB, Richardson HC (1981) Patterns of activity evoked in cerebellar interpositus nuclear neurones by natural somatosensory stimuli in awake cats. The Journal of physiology 317:1-20.
Coltz JD, Johnson MT, Ebner TJ (1999) Cerebellar Purkinje cell simple spike discharge encodes movement velocity in primates during visuomotor arm tracking. J Neurosci 19:1782-1803.
Cramer SW, Gao W, Chen G, Ebner TJ (2013) Reevaluation of the beam and radial hypotheses of parallel fiber action in the cerebellar cortex. J Neurosci 33:11412-11424.
Czubayko U, Sultan F, Thier P, Schwarz C (2001) Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. Journal of neurophysiology 85:2017-2029.
Davie JT, Clark BA, Hausser M (2008) The origin of the complex spike in cerebellar Purkinje cells. J Neurosci 28:7599-7609.
De Schutter E, Vos B, Maex R (2000) The function of cerebellar Golgi cells revisited. Prog Brain Res 124:81-93.
De Zeeuw CI, Holstege JC, Ruigrok TJ, Voogd J (1989) Ultrastructural study of the GABAergic, cerebellar, and mesodiencephalic innervation of the cat medial accessory olive: anterograde tracing combined with immunocytochemistry. J Comp Neurol 284:12-35.
De Zeeuw CI, Ruigrok TJ, Holstege JC, Jansen HG, Voogd J (1990a) Intracellular labeling of neurons in the medial accessory olive of the cat: II. Ultrastructure of dendritic spines and their GABAergic innervation. J Comp Neurol 300:478-494.
De Zeeuw CI, Ruigrok TJ, Holstege JC, Schalekamp MP, Voogd J (1990b) Intracellular labeling of neurons in the medial accessory olive of the cat: III. Ultrastructure of axon hillock and initial segment and their GABAergic innervation. J Comp Neurol 300:495-510.
De Zeeuw CI, Simpson JI, Hoogenraad CC, Galjart N, Koekkoek SK, Ruigrok TJ (1998) Microcircuitry and function of the inferior olive. Trends Neurosci 21:391-400.
De Zeeuw CI, Hoebeek FE, Bosman LW, Schonewille M, Witter L, Koekkoek SK (2011) Spatiotemporal firing patterns in the cerebellum. Nat Rev Neurosci 12:327-344.
De Zeeuw CI, Hoogenraad CC, Goedknegt E, Hertzberg E, Neubauer A, Grosveld F, Galjart N (1997) CLIP-115, a novel brain-specific cytoplasmic linker protein, mediates the localization of dendritic lamellar bodies. Neuron 19:1187-1199.
Dean P, Porrill J (2008) Adaptive-filter models of the cerebellum: computational analysis. Cerebellum 7:567-571.
Dean P, Jorntell H, Porrill J (2013) Adaptive Filter Models. Handbook of the cerebellum and cerebellar disorders, Springer Netherlands, Heidelberg:1315-1335.
Dean P, Porrill J, Ekerot C-F, Jorntell H (2009) The cerebellar microcircuit as an adaptive filter: experimental and computational evidence. Nature Reviews Neuroscience 11:30-43.
Dehnes Y, Chaudhry FA, Ullensvang K, Lehre KP, Storm-Mathisen J, Danbolt NC (1998) The glutamate transporter EAAT4 in rat cerebellar Purkinje cells: a glutamate-gated chloride channel concentrated near the synapse in parts of the dendritic membrane facing astroglia. J Neurosci 18:3606-3619.
Dizon MJ, Khodakhah K (2011) The role of interneurons in shaping Purkinje cell responses in the cerebellar cortex. The Journal of neuroscience 31:10463-10473.
Ebner TJ, Bloedel JR (1981) Role of climbing fiber afferent input in determining responsiveness of Purkinje cells to mossy fiber inputs. J Neurophysiol 45:962-971.
Eccles J, Sabah N, Schmidt R, Tabořikova H (1972) Integration by Purkyně cells of mossy and climbing fiber inputs from cutaneous mechanoreceptors. Experimental Brain Research 15:498-520.
Ekerot CF, Jorntell H (2001) Parallel fibre receptive fields of Purkinje cells and interneurons are climbing fibre‐specific. European Journal of Neuroscience 13:1303-1310.
Fortier PA, Kalaska JF, Smith AM (1989) Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J Neurophysiol 62:198-211.
Foust A, Popovic M, Zecevic D, McCormick DA (2010) Action potentials initiate in the axon initial segment and propagate through axon collaterals reliably in cerebellar Purkinje neurons. J Neurosci 30:6891-6902.
Freeman JH, Steinmetz AB (2011) Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning. Learning & Memory 18:666-677.
Frens MA, Mathoera AL, van der Steen J (2001) Floccular complex spike response to transparent retinal slip. Neuron 30:795-801.
Fu QG, Flament D, Coltz JD, Ebner TJ (1997) Relationship of cerebellar Purkinje cell simple spike discharge to movement kinematics in the monkey. J Neurophysiol 78:478-491.
Fujita H, Sugihara I (2013) Branching patterns of olivocerebellar axons in relation to the compartmental organization of the cerebellum. Front Neural Circuits 7:3.
Fushiki H, Barmack NH (1997a) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. Journal of neurophysiology 78:3083-3094.
Fushiki H, Barmack NH (1997b) Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J Neurophysiol 78:3083-3094.
Galliano E, Baratella M, Sgritta M, Ruigrok TJ, Haasdijk ED, Hoebeek FE, D'Angelo E, Jaarsma D, De Zeeuw CI (2013a) Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse. Frontiers in neural circuits 7.
Galliano E, Gao Z, Schonewille M, Todorov B, Simons E, Pop AS, D’Angelo E, van den Maagdenberg AM, Hoebeek FE, De Zeeuw CI (2013b) Silencing the Majority of Cerebellar Granule Cells Uncovers Their Essential Role in Motor Learning and Consolidation. Cell reports.
Gao W, Chen G, Reinert KC, Ebner TJ (2006) Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. The Journal of neuroscience 26:8377-8387.
Graf W, Simpson JI, Leonard CS (1988) Spatial organization of visual messages of the rabbit's cerebellar flocculus. II. Complex and simple spike responses of Purkinje cells. J Neurophysiol 60:2091-2121.
Granit R, Phillips CG (1956) Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol 133:520-547.
Green JT, Steinmetz JE (2005) Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning. Learning & Memory 12:260-269.
Groenewegen H (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379-431.
Hamori J, Szentagothai J (1965) The Purkinje cell baskets: ultrastructure of an inhibitory synapse. Acta Biol Acad Sci Hung 15:465-479.
Haroian AJ, Massopust LC, Young PA (1981) Cerebellothalamic projections in the rat: an autoradiographic and degeneration study. Journal of Comparative Neurology 197:217-236.
Harvey RJ, Napper RM (1988) Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J Comp Neurol 274:151-157.
Harvey RJ, Porter R, Rawson JA (1977) The natural discharges of Purkinje cells in paravermal regions of lobules V and VI of the monkey's cerebellum. J Physiol 271:515-536.
Hewitt AL, Popa LS, Pasalar S, Hendrix CM, Ebner TJ (2011) Representation of limb kinematics in Purkinje cell simple spike discharge is conserved across multiple tasks. J Neurophysiol 106:2232-2247.
Holst E, Mittelstaedt H (1950) Das reafferenzprinzip. Naturwissenschaften 37:464-476.
Holtzman T, Sivam V, Zhao T, Frey O, van der Wal PD, de Rooij NF, Dalley JW, Edgley SA (2011) Multiple extra-synaptic spillover mechanisms regulate prolonged activity in cerebellar Golgi cell-granule cell loops. J Physiol 589:3837-3854.
Hosy E, Piochon C, Teuling E, Rinaldo L, Hansel C (2011) SK2 channel expression and function in cerebellar Purkinje cells. The Journal of physiology 589:3433-3440.
Huang CM, Wang L, Huang RH (2006) Cerebellar granule cell: ascending axon and parallel fiber. Eur J Neurosci 23:1731-1737.
Hull C, Regehr WG (2012) Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity. Neuron 73:149-158.
Inan OT, Etemadi M, Widrow B, Kovacs GT (2010) Adaptive cancellation of floor vibrations in standing ballistocardiogram measurements using a seismic sensor as a noise reference. IEEE Trans Biomed Eng 57:722-727.
Ito M (1983) Evidence for synaptic plasticity in the cerebellar cortex. Acta morphologica Hungarica 31:213.
Ito M (2006) Cerebellar circuitry as a neuronal machine. Prog Neurobiol 78:272-303.
Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 324:113-134.
Jorntell H, Ekerot C-F (2002) Reciprocal bidirectional plasticity of parallel fiber receptive fields in cerebellar Purkinje cells and their afferent interneurons. Neuron 34:797-806.
Jorntell H, Ekerot C-F (2003) Receptive field plasticity profoundly alters the cutaneous parallel fiber synaptic input to cerebellar interneurons in vivo. The Journal of neuroscience 23:9620-9631.
Johnston JB (1902) The brain of Petromyzon. Granville, Ohio,.
Kandel ER (2012) Principles of neural science, 5th Edition. New York: McGraw-Hill.
Ke MC, Guo CC, Raymond JL (2009) Elimination of climbing fiber instructive signals during motor learning. Nat Neurosci 12:1171-1179.
Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibulo-ocular reflex. Annual review of neuroscience 18:409-441.
Larsell O (1952) The morphogenesis and adult pattern of the lobules and fissures of the cerebellum of the white rat. J Comp Neurol 97:281-356.
Larsell O, Jansen J (1967) The comparative anatomy and histology of the cerebellum. Minneapolis,: University of Minnesota Press.
Lee KJ, Park IS, Kim H, Greenough WT, Pak DT, Rhyu IJ (2013) Motor Skill Training Induces Coordinated Strengthening and Weakening between Neighboring Synapses. J Neurosci 33:9794-9799.
Lee RX, Huang J-J, Chen R-F, Huang C, Yen C-T (2012) Collateral projections from vestibular and inferior olivary neurons to cerebellar lingula (lobule I) and uvulonodular lobe (lobules IX/X) in rats: A double retrograde labeling study. 2012 Neuroscience Meeting.
Leonard CS, Simpson JI, Graf W (1988) Spatial organization of visual messages of the rabbit's cerebellar flocculus. I. Typology of inferior olive neurons of the dorsal cap of Kooy. J Neurophysiol 60:2073-2090.
Llinas R, Muhlethaler M (1988) Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. The Journal of physiology 404:241-258.
Llinas R, Yarom Y (1986) Oscillatory properties of guinea-pig inferior olivary neurones and their pharmacological modulation: an in vitro study. J Physiol 376:163-182.
Llinas R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in cat inferior olive. J Neurophysiol 37:560-571.
Lu H, Esquivel AV, Bower JM (2009) 3D electron microscopic reconstruction of segments of rat cerebellar Purkinje cell dendrites receiving ascending and parallel fiber granule cell synaptic inputs. J Comp Neurol 514:583-594.
Maekawa K, Simpson JI (1973) Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J Neurophysiol 36:649-666.
Majorossy K, Rethelyi M, Szentagothai J (1965) The large glomerular synapse of the pulvinar. J Hirnforsch 7:415-432.
Mano N, Yamamoto K (1980) Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. J Neurophysiol 43:713-728.
Marple-Horvat DE, Stein JF (1987) Cerebellar neuronal activity related to arm movements in trained rhesus monkeys. J Physiol 394:351-366.
Marr D (1969) A theory of cerebellar cortex. J Physiol 202:437-470.
Mathews PJ, Lee KH, Peng Z, Houser CR, Otis TS (2012) Effects of climbing fiber driven inhibition on Purkinje neuron spiking. J Neurosci 32:17988-17997.
Medina JF, Lisberger SG (2008) Links from complex spikes to local plasticity and motor learning in the cerebellum of awake-behaving monkeys. Nature neuroscience 11:1185-1192.
Miall R, Weir D, Wolpert D, Stein J (1993) Is the cerebellum a Smith predictor? Journal of motor behavior 25:203-216.
Miles F, Braitman D, Dow B (1980) Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. Journal of Neurophysiology 43:1477-1493.
Mitrofanis J (2001) Organisation of connections between the zona incerta and the interposed nucleus. Anatomy and embryology 204:153-159.
Mittmann W, Hausser M (2007) Linking synaptic plasticity and spike output at excitatory and inhibitory synapses onto cerebellar Purkinje cells. The Journal of neuroscience 27:5559-5570.
Molineux ML, McRory JE, McKay BE, Hamid J, Mehaffey WH, Rehak R, Snutch TP, Zamponi GW, Turner RW (2006) Specific T-type calcium channel isoforms are associated with distinct burst phenotypes in deep cerebellar nuclear neurons. Proceedings of the National Academy of Sciences 103:5555-5560.
Nam SC, Hockberger PE (1997) Analysis of spontaneous electrical activity in cerebellar Purkinje cells acutely isolated from postnatal rats. Journal of neurobiology 33:18-32.
Napper RM, Harvey RJ (1988) Quantitative study of the Purkinje cell dendritic spines in the rat cerebellum. J Comp Neurol 274:158-167.
Nguyen-Vu T, Kohli A, Deisseroth K, Raymond JL (2012) The activity of cerebellar Purkinje cells contributes to the induction of motor learning. 2012 Neuroscience Meeting.
Nieuwenhuys R (1967) Comparative anatomy of the cerebellum. Prog Brain Res 25:1-93.
Nieuwenhuys R, Nicholson C (1967) Cerebellum of mormyrids. Nature 215:764-765.
Palmer LM, Clark BA, Grundemann J, Roth A, Stuart GJ, Hausser M (2010) Initiation of simple and complex spikes in cerebellar Purkinje cells. J Physiol 588:1709-1717.
Pasalar S, Roitman AV, Durfee WK, Ebner TJ (2006) Force field effects on cerebellar Purkinje cell discharge with implications for internal models. Nat Neurosci 9:1404-1411.
Person AL, Raman IM (2011) Purkinje neuron synchrony elicits time-locked spiking in the cerebellar nuclei. Nature 481:502-505.
Person AL, Raman IM (2012) Synchrony and neural coding in cerebellar circuits. Frontiers in neural circuits 6.
Popa LS, Hewitt AL, Ebner TJ (2012) Predictive and feedback performance errors are signaled in the simple spike discharge of individual Purkinje cells. The Journal of neuroscience 32:15345-15358.
Popa LS, Hewitt AL, Ebner TJ (2013) Purkinje Cell Simple Spike Discharge Encodes Error Signals Consistent with a Forward Internal Model. The Cerebellum:1-3.
Porrill J, Dean P (2008) Silent Synapses, LTP, and the Indirect Parallel-Fibre Pathway: Computational Consequences of Optimal Cerebellar Noise-Processing. PLoS Computational Biology 4.
Precht W, Llinas R (1969) Functional organization of the vestibular afferents to the cerebellar cortex of frog and cat. Exp Brain Res 9:30-52.
Purkyně J (1837) Beobachtungen betreffend die innerste Struktur der Nerven. Obers. d. Arb Schles Ges vaterl Cultur:88.
Quy PN, Fujita H, Sakamoto Y, Na J, Sugihara I (2011) Projection patterns of single mossy fiber axons originating from the dorsal column nuclei mapped on the aldolase C compartments in the rat cerebellar cortex. J Comp Neurol 519:874-899.
Ramon y Cajal S (1995) Histology of the nervous system of man and vertebrates. New York: Oxford University Press.
Raman IM, Bean BP (1999) Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci 19:1663-1674.
Rochefort C, Arabo A, Andre M, Poucet B, Save E, Rondi-Reig L (2011) Cerebellum shapes hippocampal spatial code. Science 334:385-389.
Roitman AV, Pasalar S, Johnson MT, Ebner TJ (2005) Position, direction of movement, and speed tuning of cerebellar Purkinje cells during circular manual tracking in monkey. J Neurosci 25:9244-9257.
Rowland NC, Jaeger D (2005) Coding of tactile response properties in the rat deep cerebellar nuclei. Journal of neurophysiology 94:1236-1251.
Ruigrok TJ, de Zeeuw CI, van der Burg J, Voogd J (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: I. Physiology and light microscopy. J Comp Neurol 300:462-477.
Rushmer DS, Roberts WJ, Augter GK (1976) Climbing fiber responses of cerebellar Purkinje cells to passive movement of the cat forepaw. Brain Res 106:1-20.
Rutherford JG (1995) An investigation of a possible direct projection from the medial nucleus of the cerebellum to the paraventricular nucleus of the hypothalamus in the rat: a study using retrograde WGA-HRP and Fluoro-Gold tracing techniques. Anatomy and embryology 192:229-238.
Safo P, Regehr WG (2008) Timing dependence of the induction of cerebellar LTD. Neuropharmacology 54:213-218.
Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248-263.
Schmahmann JD (1997) The Cerebellum and Cognition: The Cerebellum and Cognition: Access Online via Elsevier.
Schmidt RA, Lee T (1988) Motor Control and Learning, 5E: Human kinetics.
Schmolesky MT, Weber JT, De Zeeuw CI, Hansel C (2002) The making of a complex spike: ionic composition and plasticity. Ann N Y Acad Sci 978:359-390.
Schonewille M, Belmeguenai A, Koekkoek S, Houtman S, Boele H, Van Beugen B, Gao Z, Badura A, Ohtsuki G, Amerika W (2010) Purkinje cell-specific knockout of the protein phosphatase PP2B impairs potentiation and cerebellar motor learning. Neuron 67:618-628.
Schonewille M, Gao Z, Boele HJ, Veloz MF, Amerika WE, Simek AA, De Jeu MT, Steinberg JP, Takamiya K, Hoebeek FE, Linden DJ, Huganir RL, De Zeeuw CI (2011) Reevaluating the role of LTD in cerebellar motor learning. Neuron 70:43-50.
Shinoda Y (1999) Visualization of the entire trajectory of long axons of single mammalian CNS neurons. Brain Res Bull 50:387-388.
Shinoda Y, Sugihara I (2013) Axonal Trajectories of Single Climbing and Mossy Fiber Neurons in the Cerebellar Cortex and Nucleus. Handbook of the Cerebellum and Cerebellar Disorders:437-467.
Shinoda Y, Sugiuchi Y, Futami T (1993) Organization of excitatory inputs from the cerebral cortex to the cerebellar dentate nucleus. Can J Neurol Sci 20 Suppl 3:S19-28.
Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 67:547-560.
Simat M, Ambrosetti L, Lardi-Studler B, Fritschy JM (2007) GABAergic synaptogenesis marks the onset of differentiation of basket and stellate cells in mouse cerebellum. Eur J Neurosci 26:2239-2256.
Sotelo C, Llinas R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electrotonic coupling. J Neurophysiol 37:541-559.
Sugihara I, Shinoda Y (2004) Molecular, topographic, and functional organization of the cerebellar cortex: a study with combined aldolase C and olivocerebellar labeling. The Journal of neuroscience 24:8771-8785.
Sugihara I, Shinoda Y (2007) Molecular, topographic, and functional organization of the cerebellar nuclei: analysis by three-dimensional mapping of the olivonuclear projection and aldolase C labeling. J Neurosci 27:9696-9710.
Sugihara I, Wu HS, Shinoda Y (2001) The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. The Journal of neuroscience 21:7715-7723.
Sugihara I, Ebata S, Shinoda Y (2004) Functional compartmentalization in the flocculus and the ventral dentate and dorsal group y nuclei: an analysis of single olivocerebellar axonal morphology. J Comp Neurol 470:113-133.
Szapiro G, Barbour B (2007) Multiple climbing fibers signal to molecular layer interneurons exclusively via glutamate spillover. Nat Neurosci 10:735-742.
Teune T, Van Der Burg J, Van Der Moer J, Voogd J, Ruigrok T (2000) Topography of cerebellar nuclear projections to the brain stem in the rat. Prog Brain Res 124:141-172.
Thach WT, Jr. (1967) Somatosensory receptive fields of single units in cat cerebellar cortex. J Neurophysiol 30:675-696.
Tsai PT, Chu Y, Greene-Colozzi E, Sadowski AR, Leech JM, Steinberg J, Crawley JN, Regehr WG, Sahin M (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647-651.
Uusisaari MY, Knopfel T (2013) Neurons of the Deep Cerebellar Nuclei. Handbook of the Cerebellum and Cerebellar Disorders:1101-1110.
Voogd J, Glickstein M (1998) The anatomy of the cerebellum. Trends Cogn Sci 2:307-313.
Walter JT, Dizon M-J, Khodakhah K (2009) The functional equivalence of ascending and parallel fiber inputs in cerebellar computation. The Journal of neuroscience 29:8462-8473.
Ward D (2012) Golgi cell mediated inhibition in the cerebellar granule cell layer. In: UCL (University College London).
Watanabe D, Nakanishi S (2003) mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Neuron 39:821-829.
Welsh JP, Yamaguchi H, Zeng X-H, Kojo M, Nakada Y, Takagi A, Sugimori M, Llinas RR (2005) Normal motor learning during pharmacological prevention of Purkinje cell long-term depression. Proceedings of the National Academy of Sciences of the United States of America 102:17166-17171.
Wen Y-Q, Zhu J-N, Zhang Y-P, Wang J-J (2004) Cerebellar interpositus nuclear inputs impinge on paraventricular neurons of the hypothalamus in rats. Neuroscience letters 370:25-29.
Widrow B, Stearns SD (1985) Adaptive signal processing. Englewood Cliffs, N.J.: Prentice-Hall.
Wu HS, Sugihara I, Shinoda Y (1999) Projection patterns of single mossy fibers originating from the lateral reticular nucleus in the rat cerebellar cortex and nuclei. J Comp Neurol 411:97-118.
Wulff P, Schonewille M, Renzi M, Viltono L, Sassoe-Pognetto M, Badura A, Gao Z, Hoebeek FE, van Dorp S, Wisden W (2009) Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nature neuroscience 12:1042-1049.
Xu W, Edgley SA (2008) Climbing fibre-dependent changes in Golgi cell responses to peripheral stimulation. J Physiol 586:4951-4959.
Yakhnitsa V, Barmack NH (2006) Antiphasic Purkinje cell responses in mouse uvula-nodulus are sensitive to static roll-tilt and topographically organized. Neuroscience 143:615-626.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17202-
dc.description.abstract維持平衡涉及小腦的神經元可塑性。然而,在同時具有主動與被動運動的自然學習過程中,感覺訊息輸入的計算調整依然不清楚。本論文中,我們研究大鼠於高懸短桿上嘗試維持身體平衡時,小腦浦金耶氏細胞(PC)的峰電位活動。我們發現頭部的擺動隨著大鼠於桿上的適應逐漸下降(十八隻大鼠),暗示著平衡控制中存在短期運動學習。PC的簡單(SS;二十六顆神經元中的十七顆)與複雜峰電位(CS;十二顆中的七顆)均有發現對頭部角運動編碼的情形。在這些編碼神經元中,大多數(十七顆中的十四顆)SS放電頻率與頭部運動的角速度呈線性相關。對於CS訊息編碼的PC,其SS以互逆(七顆中的五顆)或同向(七顆中的兩顆)的關係編碼相同的訊息。SS放電頻率與頭部角運動的相關性與站桿時的運動程度呈現正相關。選用運動程度相近的時間區間,我們發現其中大部分(十七顆中的十顆)PC的編碼能力於站桿任務中隨著時間顯著下降,並伴隨著SS與CS之間互動的減弱。這種編碼能力在提供非預期性擾動而增加被動運動,或在動物被麻醉後又恢復。因此,我們推論濾除主動運動所帶來之感覺輸入的神經可塑性發生在維持平衡的學習過程中。我們的發現首度揭示小腦皮質對主動與被動運動所造成感覺輸入計算的學習動態。zh_TW
dc.description.abstractMaintenance of balance involves neuronal plasticity in the cerebellum. However, plasticity mechanisms underlying the adjustment in the computation of sensory afference during a natural learning process with both active and passive motions still remain unclear. In this thesis, we investigated the readout of the cerebellar cortex, the Purkinje cell (PC) spiking, when the rat tried to balance itself on a short beam high above the ground. We found the fluctuation of the head gradually decreased as the rat adapted on the beam (n = 18 rats), suggesting a short-term motor learning of balance control. Both simple (SSs; n=17 of 26 neurons) and complex spikes (CSs; n=7 of 12) of Purkinje cells were shown to code head motion in the sagittal plane. Among the coding neurons, most (n = 14 of 17 neurons) had their SS firing frequency linearly correlated with the angular velocity of the head motion. PCs with CS information coding had their SS code the same information in either a reciprocal (n=5 of 7) or a one-sided manner (n=2 of 7). The correlation between SS firing frequency and the angular motions of the head correlated positively with the motion level during beam standing. Using periods with comparable motion level, we found the SS coding capability in most PCs (n = 10 of 17) decreased significantly during the beam standing task, with the reduction in the interaction between simple and complex spikes. SS coding capability of these PCs was recovered under unexpected perturbations or under anesthesia. Hence, we demonstrate that neural plasticity for filtering out sensory afference of active motions happened in the learning process of balance maintenance. Our findings reveal, for the first time, the learning dynamics of sensory afference computation between active and passive motions in the cerebellar cortex.en
dc.description.provenanceMade available in DSpace on 2021-06-08T00:00:47Z (GMT). No. of bitstreams: 1
ntu-102-R01B41009-1.pdf: 3740542 bytes, checksum: e7136a28d3f6ee7064453c48d470d715 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝辭 1
摘要 2
Abstract 3
List of Figures 6
1. Introduction 7
1.1 Anatomical Perspective of the Cerebellar System 7
1.1.1 History of the Cerebellum Studies before 20th Century 7
1.1.2 Comparative Anatomy of the Cerebellum 8
1.1.3 Cytoarchitectonics of the Cerebellar Cortex 9
1.1.4 Projection Patterns of Mossy Fibers and Climbing Fibers 18
1.1.5 Topographic Organization of the Corticonuclear Projections 22
1.1.6 Cerebellar Outputs: the Tracing Studies in Rats 27
1.2 Information Processing in the Cerebellar Purkinje Cells 30
1.2.1 Purkinje Cell Computation of Synaptic Inputs 30
1.2.2 Propagation of Action Potentials in the Purkinje Cell 34
1.2.3 Neural Plasticity of the Purkinje Cell 35
1.3 Aims of this Study 44
2. Materials and Methods 45
2.1 Animals 45
2.2 Behavior Training and Test 45
2.3 Surgery for Implantation 47
2.4 Histology 48
2.5 Data Analysis 49
3. Results 50
3.1 Behavior Showed Learning 50
3.2 Simple Spike Firing Regularity Depended on Behavior States 52
3.3 Information Coding of Purkinje Cells 57
3.4 Coding Capability Depended on Motion Level 63
3.5 Coding Capability Attenuated during Learning Process 66
3.6 Coding Capability Recovered by Unexpected Perturbation 70
3.7 Interactions between Simple and Complex Spikes in Different Behavior and Physiology States 71
4. Discussion 75
4.1 Summary 75
4.2 Limitation and Functional Implication 75
4.3 Conclusion 78
Bibliography 79
dc.language.isoen
dc.title小腦浦金耶氏細胞於自主平衡控制中的訊息編碼可塑性zh_TW
dc.titleInformation Coding Plasticity of Cerebellar Purkinje Cells in Voluntary Balance Controlen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee閔明源(Ming-Yuan Min),蔡孟利(Meng-Li Tsai),謝秀梅(Hsiu-Mei Hsieh)
dc.subject.keyword小腦皮質,神經可塑性,運動學習,感覺運動整合,大小腦互動,zh_TW
dc.subject.keywordcerebellar cortex,neural plasticity,motor learning,sensorimotor integration,cerebrocerebellar interaction,en
dc.relation.page100
dc.rights.note未授權
dc.date.accepted2013-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
3.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved