請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17180完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明富(Ming-Fu Chang) | |
| dc.contributor.author | Chia-Tsen Lai | en |
| dc.contributor.author | 賴佳岑 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:59:50Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 1. Groneberg, D. A., L. Zhang, T. Welte, P. Zabel, and K. F. Chung. Severe acute respiratory syndrome: global initiatives for disease diagnosis. 2003. QJM. 96: 845-52.
2. Peiris, J. S., S. T. Lai, L. L. Poon, Y. Guan, L. Y. Yam, W. Lim, J. Nicholls, W. K. Yee, W. W. Yan, M. T. Cheung, V. C. Cheng, K. H. Chan, D. N. Tsang, R. W. Yung, T. K. Ng, K. Y. Yuen, and Sars study group. Coronavirus as a possible cause of severe acute respiratory syndrome. 2003. Lancet. 361: 1319-25. 3. Lee, N., D. Hui, A. Wu, P. Chan, P. Cameron, G. M. Joynt, A. Ahuja, M. Y. Yung, C. B. Leung, K. F. To, S. F. Lui, C. C. Szeto, S. Chung, and J. J. Sung. A major outbreak of severe acute respiratory syndrome in Hong Kong. 2003. N Engl J Med. 348: 1986-94. 4. Lo, A. W., N. L. Tang, and K. F. To. How the SARS coronavirus causes disease: host or organism? 2006. J Pathol. 208: 142-51. 5. Perlman, S. and J. Netland. Coronaviruses post-SARS: update on replication and pathogenesis. 2009. Nat Rev Microbiol. 7: 439-50. 6. Snijder, E. J., P. J. Bredenbeek, J. C. Dobbe, V. Thiel, J. Ziebuhr, L. L. Poon, Y. Guan, M. Rozanov, W. J. Spaan, and A. E. Gorbalenya. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. 2003. J Mol Biol. 331: 991-1004. 7. Drexler, J. F., F. Gloza-Rausch, J. Glende, V. M. Corman, D. Muth, M. Goettsche, A. Seebens, M. Niedrig, S. Pfefferle, S. Yordanov, L. Zhelyazkov, U. Hermanns, P. Vallo, A. Lukashev, M. A. Muller, H. Deng, G. Herrler, and C. Drosten. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. 2010. J Virol. 84: 11336-49. 8. Drosten, C., S. Gunther, W. Preiser, S. van der Werf, H. R. Brodt, S. Becker, H. Rabenau, M. Panning, L. Kolesnikova, R. A. Fouchier, A. Berger, A. M. Burguiere, J. Cinatl, M. Eickmann, N. Escriou, K. Grywna, S. Kramme, J. C. Manuguerra, S. Muller, V. Rickerts, M. Sturmer, S. Vieth, H. D. Klenk, A. D. Osterhaus, H. Schmitz, and H. W. Doerr. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. 2003. N Engl J Med. 348: 1967-76. 9. Kuiken, T., R. A. Fouchier, M. Schutten, G. F. Rimmelzwaan, G. van Amerongen, D. van Riel, J. D. Laman, T. de Jong, G. van Doornum, W. Lim, A. E. Ling, P. K. Chan, J. S. Tam, M. C. Zambon, R. Gopal, C. Drosten, S. van der Werf, N. Escriou, J. C. Manuguerra, K. Stohr, J. S. Peiris, and A. D. Osterhaus. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. 2003. Lancet. 362: 263-70. 10. Marra, M. A., S. J. Jones, C. R. Astell, R. A. Holt, A. Brooks-Wilson, Y. S. Butterfield, J. Khattra, J. K. Asano, S. A. Barber, S. Y. Chan, A. Cloutier, S. M. Coughlin, D. Freeman, N. Girn, O. L. Griffith, S. R. Leach, M. Mayo, H. McDonald, S. B. Montgomery, P. K. Pandoh, A. S. Petrescu, A. G. Robertson, J. E. Schein, A. Siddiqui, D. E. Smailus, J. M. Stott, G. S. Yang, F. Plummer, A. Andonov, H. Artsob, N. Bastien, K. Bernard, T. F. Booth, D. Bowness, M. Czub, M. Drebot, L. Fernando, R. Flick, M. Garbutt, M. Gray, A. Grolla, S. Jones, H. Feldmann, A. Meyers, A. Kabani, Y. Li, S. Normand, U. Stroher, G. A. Tipples, S. Tyler, R. Vogrig, D. Ward, B. Watson, R. C. Brunham, M. Krajden, M. Petric, D. M. Skowronski, C. Upton, and R. L. Roper. The Genome sequence of the SARS-associated coronavirus. 2003. Science. 300: 1399-404. 11. Leung, W. K., K. F. To, P. K. Chan, H. L. Chan, A. K. Wu, N. Lee, K. Y. Yuen, and J. J. Sung. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. 2003. Gastroenterology. 125: 1011-7. 12. Sawicki, S. G., D. L. Sawicki, and S. G. Siddell. A contemporary view of coronavirus transcription. 2007. J Virol. 81: 20-9. 13. Ziebuhr, J. Molecular biology of severe acute respiratory syndrome coronavirus. 2004. Curr Opin Microbiol. 7: 412-9. 14. Thiel, V., K. A. Ivanov, A. Putics, T. Hertzig, B. Schelle, S. Bayer, B. Weissbrich, E. J. Snijder, H. Rabenau, H. W. Doerr, A. E. Gorbalenya, and J. Ziebuhr. Mechanisms and enzymes involved in SARS coronavirus genome expression. 2003. J Gen Virol. 84: 2305-15. 15. Li, F., W. Li, M. Farzan, and S. C. Harrison. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. 2005. Science. 309: 1864-8. 16. Du, L., Y. He, Y. Zhou, S. Liu, B. J. Zheng, and S. Jiang. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. 2009. Nat Rev Microbiol. 7: 226-36. 17. Ying, W., Y. Hao, Y. Zhang, W. Peng, E. Qin, Y. Cai, K. Wei, J. Wang, G. Chang, W. Sun, S. Dai, X. Li, Y. Zhu, J. Li, S. Wu, L. Guo, J. Dai, J. Wang, P. Wan, T. Chen, C. Du, D. Li, J. Wan, X. Kuai, W. Li, R. Shi, H. Wei, C. Cao, M. Yu, H. Liu, F. Dong, D. Wang, X. Zhang, X. Qian, Q. Zhu, and F. He. Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus. 2004. Proteomics. 4: 492-504. 18. Raamsman, M. J., J. K. Locker, A. de Hooge, A. A. de Vries, G. Griffiths, H. Vennema, and P. J. Rottier. Characterization of the coronavirus mouse hepatitis virus strain A59 small membrane protein E. 2000. J Virol. 74: 2333-42. 19. Mortola, E. and P. Roy. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. 2004. FEBS Lett. 576: 174-8. 20. Chen, I. Y., S. C. Chang, H. Y. Wu, T. C. Yu, W. C. Wei, S. Lin, C. L. Chien, and M. F. Chang. Upregulation of the chemokine (C-C motif) ligand 2 via a severe acute respiratory syndrome coronavirus spike-ACE2 signaling pathway. 2010. J Virol. 84: 7703-12. 21. Hsieh, P. K., S. C. Chang, C. C. Huang, T. T. Lee, C. W. Hsiao, Y. H. Kou, I. Y. Chen, C. K. Chang, T. H. Huang, and M. F. Chang. Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. 2005. J Virol. 79: 13848-55. 22. He, R., A. Leeson, A. Andonov, Y. Li, N. Bastien, J. Cao, C. Osiowy, F. Dobie, T. Cutts, M. Ballantine, and X. Li. Activation of AP-1 signal transduction pathway by SARS coronavirus nucleocapsid protein. 2003. Biochem Biophys Res Commun. 311: 870-6. 23. Surjit, M., B. Liu, S. Jameel, V. T. Chow, and S. K. Lal. The SARS coronavirus nucleocapsid protein induces actin reorganization and apoptosis in COS-1 cells in the absence of growth factors. 2004. Biochem J. 383: 13-8. 24. 鄭又華. Specific interaction between SARS-CoV nucleocapsid protein and cellular factor Daxx 2005. 國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文. 25. 黃俊凱. SARS-CoV nucleocapsid protein deregulates transcripional repression of death-associated protein. 2006. 國立台灣大學醫學院生物化學暨分子生物學研究所碩士論文. 26. Yount, B., R. S. Roberts, A. C. Sims, D. Deming, M. B. Frieman, J. Sparks, M. R. Denison, N. Davis, and R. S. Baric. Severe acute respiratory syndrome coronavirus group-specific open reading frames encode nonessential functions for replication in cell cultures and mice. 2005. J Virol. 79: 14909-22. 27. McBride, R. and B. C. Fielding. The role of severe acute respiratory syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis. 2012. Viruses. 4: 2902-23. 28. Chan, C. M., H. Tsoi, W. M. Chan, S. Zhai, C. O. Wong, X. Yao, W. Y. Chan, S. K. Tsui, and H. Y. Chan. The ion channel activity of the SARS-coronavirus 3a protein is linked to its pro-apoptotic function. 2009. Int J Biochem Cell Biol. 41: 2232-9. 29. Lu, W., B. J. Zheng, K. Xu, W. Schwarz, L. Du, C. K. Wong, J. Chen, S. Duan, V. Deubel, and B. Sun. Severe acute respiratory syndrome-associated coronavirus 3a protein forms an ion channel and modulates virus release. 2006. Proc Natl Acad Sci U S A. 103: 12540-5. 30. Padhan, K., R. Minakshi, M. A. Towheed, and S. Jameel. Severe acute respiratory syndrome coronavirus 3a protein activates the mitochondrial death pathway through p38 MAP kinase activation. 2008. J Gen Virol. 89: 1960-9. 31. Narayanan, K., C. Huang, and S. Makino. SARS coronavirus accessory proteins. 2008. Virus Res. 133: 113-21. 32. Kanzawa, N., K. Nishigaki, T. Hayashi, Y. Ishii, S. Furukawa, A. Niiro, F. Yasui, M. Kohara, K. Morita, K. Matsushima, M. Q. Le, T. Masuda, and M. Kannagi. Augmentation of chemokine production by severe acute respiratory syndrome coronavirus 3a/X1 and 7a/X4 proteins through NF-kappaB activation. 2006. FEBS Lett. 580: 6807-12. 33. Chen, C. Y., Y. H. Ping, H. C. Lee, K. H. Chen, Y. M. Lee, Y. J. Chan, T. C. Lien, T. S. Jap, C. H. Lin, L. S. Kao, and Y. M. Chen. Open reading frame 8a of the human severe acute respiratory syndrome coronavirus not only promotes viral replication but also induces apoptosis. 2007. J Infect Dis. 196: 405-15. 34. Law, P. Y., Y. M. Liu, H. Geng, K. H. Kwan, M. M. Waye, and Y. Y. Ho. Expression and functional characterization of the putative protein 8b of the severe acute respiratory syndrome-associated coronavirus. 2006. FEBS Lett. 580: 3643-8. 35. Jonassen, C. M., T. O. Jonassen, and B. Grinde. A common RNA motif in the 3' end of the genomes of astroviruses, avian infectious bronchitis virus and an equine rhinovirus. 1998. J Gen Virol. 79 ( Pt 4): 715-8. 36. Guan, Y., B. J. Zheng, Y. Q. He, X. L. Liu, Z. X. Zhuang, C. L. Cheung, S. W. Luo, P. H. Li, L. J. Zhang, Y. J. Guan, K. M. Butt, K. L. Wong, K. W. Chan, W. Lim, K. F. Shortridge, K. Y. Yuen, J. S. Peiris, and L. L. Poon. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. 2003. Science. 302: 276-8. 37. Lau, S. K., P. C. Woo, K. S. Li, Y. Huang, H. W. Tsoi, B. H. Wong, S. S. Wong, S. Y. Leung, K. H. Chan, and K. Y. Yuen. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. 2005. Proc Natl Acad Sci U S A. 102: 14040-5. 38. Chinese, Sars Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. 2004. Science. 303: 1666-9. 39. Li, W., C. Zhang, J. Sui, J. H. Kuhn, M. J. Moore, S. Luo, S. K. Wong, I. C. Huang, K. Xu, N. Vasilieva, A. Murakami, Y. He, W. A. Marasco, Y. Guan, H. Choe, and M. Farzan. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. 2005. EMBO J. 24: 1634-43. 40. Sheahan, T., B. Rockx, E. Donaldson, D. Corti, and R. Baric. Pathways of cross-species transmission of synthetically reconstructed zoonotic severe acute respiratory syndrome coronavirus. 2008. J Virol. 82: 8721-32. 41. Song, H. D., C. C. Tu, G. W. Zhang, S. Y. Wang, K. Zheng, L. C. Lei, Q. X. Chen, Y. W. Gao, H. Q. Zhou, H. Xiang, H. J. Zheng, S. W. Chern, F. Cheng, C. M. Pan, H. Xuan, S. J. Chen, H. M. Luo, D. H. Zhou, Y. F. Liu, J. F. He, P. Z. Qin, L. H. Li, Y. Q. Ren, W. J. Liang, Y. D. Yu, L. Anderson, M. Wang, R. H. Xu, X. W. Wu, H. Y. Zheng, J. D. Chen, G. Liang, Y. Gao, M. Liao, L. Fang, L. Y. Jiang, H. Li, F. Chen, B. Di, L. J. He, J. Y. Lin, S. Tong, X. Kong, L. Du, P. Hao, H. Tang, A. Bernini, X. J. Yu, O. Spiga, Z. M. Guo, H. Y. Pan, W. Z. He, J. C. Manuguerra, A. Fontanet, A. Danchin, N. Niccolai, Y. X. Li, C. I. Wu, and G. P. Zhao. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. 2005. Proc Natl Acad Sci U S A. 102: 2430-5. 42. Inoue, Y., N. Tanaka, Y. Tanaka, S. Inoue, K. Morita, M. Zhuang, T. Hattori, and K. Sugamura. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. 2007. J Virol. 81: 8722-9. 43. Simmons, G., D. N. Gosalia, A. J. Rennekamp, J. D. Reeves, S. L. Diamond, and P. Bates. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. 2005. Proc Natl Acad Sci U S A. 102: 11876-81. 44. Stertz, S., M. Reichelt, M. Spiegel, T. Kuri, L. Martinez-Sobrido, A. Garcia-Sastre, F. Weber, and G. Kochs. The intracellular sites of early replication and budding of SARS-coronavirus. 2007. Virology. 361: 304-15. 45. Tipnis, S. R., N. M. Hooper, R. Hyde, E. Karran, G. Christie, and A. J. Turner. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. 2000. J Biol Chem. 275: 33238-43. 46. Turner, A. J. and N. M. Hooper. The angiotensin-converting enzyme gene family: genomics and pharmacology. 2002. Trends Pharmacol Sci. 23: 177-83. 47. Donoghue, M., F. Hsieh, E. Baronas, K. Godbout, M. Gosselin, N. Stagliano, M. Donovan, B. Woolf, K. Robison, R. Jeyaseelan, R. E. Breitbart, and S. Acton. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. 2000. Circ Res. 87: E1-9. 48. Raizada, M. K. and A. J. Ferreira. ACE2: a new target for cardiovascular disease therapeutics. 2007. J Cardiovasc Pharmacol. 50: 112-9. 49. Iyer, S. N., D. B. Averill, M. C. Chappell, K. Yamada, A. J. Allred, and C. M. Ferrario. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. 2000. Hypertension. 36: 417-22. 50. Marceau, F., J. F. Hess, and D. R. Bachvarov. The B1 receptors for kinins. 1998. Pharmacol Rev. 50: 357-86. 51. Li, W., M. J. Moore, N. Vasilieva, J. Sui, S. K. Wong, M. A. Berne, M. Somasundaran, J. L. Sullivan, K. Luzuriaga, T. C. Greenough, H. Choe, and M. Farzan. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. 2003. Nature. 426: 450-4. 52. Wang, P., J. Chen, A. Zheng, Y. Nie, X. Shi, W. Wang, G. Wang, M. Luo, H. Liu, L. Tan, X. Song, Z. Wang, X. Yin, X. Qu, X. Wang, T. Qing, M. Ding, and H. Deng. Expression cloning of functional receptor used by SARS coronavirus. 2004. Biochem Biophys Res Commun. 315: 439-44. 53. Babcock, G. J., D. J. Esshaki, W. D. Thomas, Jr., and D. M. Ambrosino. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. 2004. J Virol. 78: 4552-60. 54. Haga, S., N. Yamamoto, C. Nakai-Murakami, Y. Osawa, K. Tokunaga, T. Sata, N. Yamamoto, T. Sasazuki, and Y. Ishizaka. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. 2008. Proc Natl Acad Sci U S A. 105: 7809-14. 55. Lambert, D. W., M. Yarski, F. J. Warner, P. Thornhill, E. T. Parkin, A. I. Smith, N. M. Hooper, and A. J. Turner. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). 2005. J Biol Chem. 280: 30113-9. 56. Lai, Z. W., I. Hanchapola, D. L. Steer, and A. I. Smith. Angiotensin-converting enzyme 2 ectodomain shedding cleavage-site identification: determinants and constraints. 2011. Biochemistry. 50: 5182-94. 57. Kuba, K., Y. Imai, S. Rao, H. Gao, F. Guo, B. Guan, Y. Huan, P. Yang, Y. Zhang, W. Deng, L. Bao, B. Zhang, G. Liu, Z. Wang, M. Chappell, Y. Liu, D. Zheng, A. Leibbrandt, T. Wada, A. S. Slutsky, D. Liu, C. Qin, C. Jiang, and J. M. Penninger. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. 2005. Nat Med. 11: 875-9. 58. Imai, Y., K. Kuba, S. Rao, Y. Huan, F. Guo, B. Guan, P. Yang, R. Sarao, T. Wada, H. Leong-Poi, M. A. Crackower, A. Fukamizu, C. C. Hui, L. Hein, S. Uhlig, A. S. Slutsky, C. Jiang, and J. M. Penninger. Angiotensin-converting enzyme 2 protects from severe acute lung failure. 2005. Nature. 436: 112-6. 59. Black, R. A., C. T. Rauch, C. J. Kozlosky, J. J. Peschon, J. L. Slack, M. F. Wolfson, B. J. Castner, K. L. Stocking, P. Reddy, S. Srinivasan, N. Nelson, N. Boiani, K. A. Schooley, M. Gerhart, R. Davis, J. N. Fitzner, R. S. Johnson, R. J. Paxton, C. J. March, and D. P. Cerretti. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. 1997. Nature. 385: 729-33. 60. Edwards, D. R., M. M. Handsley, and C. J. Pennington. The ADAM metalloproteinases. 2008. Mol Aspects Med. 29: 258-89. 61. Nakamura, T., H. Abe, A. Hirata, and C. Shimoda. ADAM family protein Mde10 is essential for development of spore envelopes in the fission yeast Schizosaccharomyces pombe. 2004. Eukaryot Cell. 3: 27-39. 62. Huxley-Jones, J., T. K. Clarke, C. Beck, G. Toubaris, D. L. Robertson, and R. P. Boot-Handford. The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. 2007. BMC Evol Biol. 7: 63. 63. Scheller, J., A. Chalaris, C. Garbers, and S. Rose-John. ADAM17: a molecular switch to control inflammation and tissue regeneration. 2011. Trends Immunol. 32: 380-7. 64. Gooz, M. ADAM-17: the enzyme that does it all. 2010. Crit Rev Biochem Mol Biol. 45: 146-69. 65. Gonzales, P. E., A. Solomon, A. B. Miller, M. A. Leesnitzer, I. Sagi, and M. E. Milla. Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain. 2004. J Biol Chem. 279: 31638-45. 66. Gonzales, P. E., J. D. Galli, and M. E. Milla. Identification of key sequence determinants for the inhibitory function of the prodomain of TACE. 2008. Biochemistry. 47: 9911-9. 67. Schlondorff, J., J. D. Becherer, and C. P. Blobel. Intracellular maturation and localization of the tumour necrosis factor alpha convertase (TACE). 2000. Biochem J. 347 Pt 1: 131-8. 68. Peiretti, F., M. Canault, P. Deprez-Beauclair, V. Berthet, B. Bonardo, I. Juhan-Vague, and G. Nalbone. Intracellular maturation and transport of tumor necrosis factor alpha converting enzyme. 2003. Exp Cell Res. 285: 278-85. 69. Tellier, E., M. Canault, L. Rebsomen, B. Bonardo, I. Juhan-Vague, G. Nalbone, and F. Peiretti. The shedding activity of ADAM17 is sequestered in lipid rafts. 2006. Exp Cell Res. 312: 3969-80. 70. Caescu, C. I., G. R. Jeschke, and B. E. Turk. Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10. 2009. Biochem J. 424: 79-88. 71. Wang, X., K. He, M. Gerhart, Y. Huang, J. Jiang, R. J. Paxton, S. Yang, C. Lu, R. K. Menon, R. A. Black, G. Baumann, and S. J. Frank. Metalloprotease-mediated GH receptor proteolysis and GHBP shedding. Determination of extracellular domain stem region cleavage site. 2002. J Biol Chem. 277: 50510-9. 72. Lambert, M. H., R. K. Blackburn, T. D. Seaton, D. B. Kassel, D. S. Kinder, M. A. Leesnitzer, D. M. Bickett, J. R. Warner, M. W. Andersen, J. G. Badiang, D. J. Cowan, M. D. Gaul, K. G. Petrov, M. H. Rabinowitz, R. W. Wiethe, J. D. Becherer, D. L. McDougald, D. L. Musso, R. C. Andrews, and M. L. Moss. Substrate specificity and novel selective inhibitors of TNF-alpha converting enzyme (TACE) from two-dimensional substrate mapping. 2005. Comb Chem High Throughput Screen. 8: 327-39. 73. Giancotti, F. G. and E. Ruoslahti. Integrin signaling. 1999. Science. 285: 1028-32. 74. Huveneers, S., H. Truong, and H. J. Danen. Integrins: signaling, disease, and therapy. 2007. Int J Radiat Biol. 83: 743-51. 75. Bax, D. V., A. J. Messent, J. Tart, M. van Hoang, J. Kott, R. A. Maciewicz, and M. J. Humphries. Integrin alpha5beta1 and ADAM-17 interact in vitro and co-localize in migrating HeLa cells. 2004. J Biol Chem. 279: 22377-86. 76. Diaz-Rodriguez, E., J. C. Montero, A. Esparis-Ogando, L. Yuste, and A. Pandiella. Extracellular signal-regulated kinase phosphorylates tumor necrosis factor alpha-converting enzyme at threonine 735: a potential role in regulated shedding. 2002. Mol Biol Cell. 13: 2031-44. 77. Xu, P. and R. Derynck. Direct activation of TACE-mediated ectodomain shedding by p38 MAP kinase regulates EGF receptor-dependent cell proliferation. 2010. Mol Cell. 37: 551-66. 78. Fan, H., C. W. Turck, and R. Derynck. Characterization of growth factor-induced serine phosphorylation of tumor necrosis factor-alpha converting enzyme and of an alternatively translated polypeptide. 2003. J Biol Chem. 278: 18617-27. 79. Soond, S. M., B. Everson, D. W. Riches, and G. Murphy. ERK-mediated phosphorylation of Thr735 in TNFalpha-converting enzyme and its potential role in TACE protein trafficking. 2005. J Cell Sci. 118: 2371-80. 80. Dreymueller, D., C. Martin, T. Kogel, J. Pruessmeyer, F. M. Hess, K. Horiuchi, S. Uhlig, and A. Ludwig. Lung endothelial ADAM17 regulates the acute inflammatory response to lipopolysaccharide. 2012. EMBO Mol Med. 4: 412-23. 81. Widmann, C., S. Gibson, M. B. Jarpe, and G. L. Johnson. Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. 1999. Physiol Rev. 79: 143-80. 82. Kveiborg, M., R. Instrell, C. Rowlands, M. Howell, and P. J. Parker. PKCalpha and PKCdelta regulate ADAM17-mediated ectodomain shedding of heparin binding-EGF through separate pathways. 2011. PLoS One. 6: e17168. 83. English, W. R., P. Corvol, and G. Murphy. LPS activates ADAM9 dependent shedding of ACE from endothelial cells. 2012. Biochem Biophys Res Commun. 421: 70-5. 84. Kohlstedt, K., F. Shoghi, W. Muller-Esterl, R. Busse, and I. Fleming. CK2 phosphorylates the angiotensin-converting enzyme and regulates its retention in the endothelial cell plasma membrane. 2002. Circ Res. 91: 749-56. 85. Oudit, G. Y., G. C. Liu, J. Zhong, R. Basu, F. L. Chow, J. Zhou, H. Loibner, E. Janzek, M. Schuster, J. M. Penninger, A. M. Herzenberg, Z. Kassiri, and J. W. Scholey. Human recombinant ACE2 reduces the progression of diabetic nephropathy. 2010. Diabetes. 59: 529-38. 86. Tallant, E. A. and M. A. Clark. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1-7). 2003. Hypertension. 42: 574-9. 87. Zhong, J. C., J. Y. Ye, H. Y. Jin, X. Yu, H. M. Yu, D. L. Zhu, P. J. Gao, D. Y. Huang, M. Shuster, H. Loibner, J. M. Guo, X. Y. Yu, B. X. Xiao, Z. H. Gong, J. M. Penninger, and G. Y. Oudit. Telmisartan attenuates aortic hypertrophy in hypertensive rats by the modulation of ACE2 and profilin-1 expression. 2011. Regul Pept. 166: 90-7. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17180 | - |
| dc.description.abstract | 嚴重急性呼吸道症候群冠狀病毒 (Severe acute respiratory syndrome coronavirus, SARS-CoV) 是導致嚴重急性呼吸道症候群 (SARS) 的病原體,在2002年至2003年間於全世界造成了至少8000例的感染、接近10%的死亡率。SARS-CoV主要傳播途徑為飛沫傳染與密切的接觸,初期症狀類似感冒所常見的發高燒、頭痛和肌肉痠痛等,進一步會引起患者肺部浸潤、纖維化等非典型肺炎症狀。血管收縮素轉化酵素2 (angiotensin-converting enzyme 2, ACE2),被證實為SARS-CoV感染宿主時重要的細胞表面受器。先前的研究發現,SARS-CoV和SARS-CoV棘蛋白質 (spike) 施予都會誘發a disintegrin and metalloproteinase 17 (ADAM17) 對ACE2作用,切除其extracellular domain,造成ACE2脫離 (shedding)。由本實驗室先前之研究已知,SARS-CoV類病毒顆粒和SARS-CoV棘蛋白質均會透過ACE2進一步引發下游的訊息傳遞,活化extracellular signal regulated kinase (ERK) 與activator protein 1 (AP-1) 使chemokine C-C motif ligand 2 (CCL2) 的表現量增加。ADAM17的活化與CCL2的表現量增加在引發宿主的發炎及免疫反應上,扮演著相當重要的角色。為了探討病毒感染時參與在ACE2 shedding過程中的訊息傳遞路徑,實驗利用會表現SARS-CoV spike蛋白質的重組桿狀病毒感染昆蟲細胞Sf9,表現並純化全長的spike蛋白質作為研究材料。對能夠被SARS-CoV感染的非洲綠猴腎臟細胞株Vero E6施予此經純化的spike蛋白質,並利用西方墨點法以及偵測ACE2的活性來分析ACE2 shedding的程度。實驗結果發現,利用此一系統表現與純化的SARS-CoV spike確實能夠導致Vero E6細胞株ACE2的shedding。透過施予各種kinase的抑制劑,進一步實驗發現ERK以及protein kinase C (PKC) 可能參與在spike蛋白質所導致的ACE2 shedding過程當中。本篇研究模擬病毒感染時的作用,顯示spike蛋白質與ACE2交互作用後可能會透過ERK以及PKC活化ADAM17進而增加ACE2 shedding。這些結果對SARS-CoV感染時所引起的發炎及免疫反應等致病性提供了可能的分子機制。 | zh_TW |
| dc.description.abstract | Severe acute respiratory syndrome (SARS) is an emerging infectious disease caused by SARS-coronavirus (SARS-CoV). Epidemic of SARS in 2002–2003 results in over 8000 infected cases with approximately 10% mortality. SARS-CoV spreads primarily through droplets (respiratory secretions) and close person-to-person contact. SARS symptoms usually start off like those of the common cold including high fever, headache and muscle aches. As the illness progresses, people may develop cellular infiltration, fibrosis, cytokine secretion and accumulation of leukocytes in lungs. Angiotensin converting enzyme 2 (ACE2) was identified to be the human cell surface receptor to which SARS-CoV binds through the viral spike protein. In addition, both SARS-CoV and the viral spike protein can induce the proteolytic activity of a disintegrin and metalloproteinase 17 (ADAM17) to target ACE2 and produced a catalytically active soluble form of ACE2 ectodomain shedding from the plasma membrane. Furthermore, previous studies in our laboratory have demonstrated that the interaction between SARS-CoV spike protein and the ACE2 receptor can mediate the phosphorylation of extracellular signal regulated kinase (ERK) and activator protein 1 (AP-1), resulting in an upregulation of chemokine C-C motif ligand 2 (CCL2) expression. Both CCL2 upregulation and ADAM17 activation play important roles in inflammatory regulation and immune responses. To understand the signaling pathways that are involved in ACE2 shedding, SARS-CoV spike protein was expressed in insect sf9 cells following an infection with the recombinant baculovirus expressing the full-length SARS-CoV spike protein. The recombinant spike protein was purified and incubated with Vero E6 cells. Degree of ACE2 shedding was then analyzed by Western blot analysis and ACE2 activity assay. Results showed that SARS-CoV spike protein purified from the sf9 expression system did mimic natural infection of SARS-CoV to induce shedding of the ACE2 ectodomain. In addition, ERK and protein kinase C (PKC) inhibitors, but not JNK inhibitor reduced ACE2 shedding. These results indicate that ERK and PKC signaling pathways may be involved in the ADAM17-mediated cleavage of ACE2 ectodomain. Taken together, the interaction between spike and ACE2 induces ACE2 shedding through PKC- and ERK-mediated activation of ADAM17. This study provides a possible mechanism in the association between ADAM17 activation and SARS-CoV-induced inflammation and immune responses. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:59:50Z (GMT). No. of bitstreams: 1 ntu-102-R00442028-1.pdf: 1726785 bytes, checksum: a7f86030aa3582f8158e4f7ef4bb5fd2 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要 i
英文摘要 ii 縮寫表 iv 緒論 1 研究主題 14 材料來源 15 實驗方法 18 實驗結果 24 討論 28 圖表 32 參考文獻 47 | |
| dc.language.iso | zh-TW | |
| dc.title | 嚴重急性呼吸道症候群冠狀病毒棘蛋白質參與ACE2脫離之分子機制 | zh_TW |
| dc.title | Molecular Mechanisms of the SARS-CoV Spike Protein Involved in the ACE2 Shedding | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李明學,陳美如,張富雄 | |
| dc.subject.keyword | 嚴重急性呼吸道症候群,冠狀病毒, | zh_TW |
| dc.subject.keyword | SARS-CoV Spike Protein,ACE2,ADAM17, | en |
| dc.relation.page | 59 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 1.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
