Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17171
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳建德
dc.contributor.authorWan-Jing Wenen
dc.contributor.author溫婉菁zh_TW
dc.date.accessioned2021-06-07T23:59:28Z-
dc.date.copyright2013-09-06
dc.date.issued2013
dc.date.submitted2013-08-16
dc.identifier.citation蘇彥碩。2005。逆境下菸草 (Nicotiana benthaminan) 脯胺酸代謝基因之調控。國
立臺灣大學農業化學系碩士論文。臺北。臺灣。
宋偉杰,王崢,王利琳。2007。利用病毒誘導的基因沉默技術研究一個豌豆PI
同源基因的功能。科學通報。52, 1644-1648
胡智傑。2008。利用病毒誘導基因沉寂探討逆境誘導下菸草脯胺酸合成酵素角色。
國立臺灣大學農業化學系碩士論文。臺北。臺灣。
劉畊甫。2009。利用病毒誘導基因沉寂系統探討銅逆境下菸草脯胺酸之生成及代
謝。國立臺灣大學農業化學系碩士論文。臺北。臺灣。
Alia, P. and P. P. Saradhi. 1995. Effect of zinc on free radicals and proline in Brassica
and Cajanus. Phytochemistry 39: 45-47.
Ashraf M. and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving
plant abiotic stress resistance. Environ. Exp. Bot. 59: 206-216.
Baker D.E. and J.P. Senef. 1990. Heavy metals in soils. New York: John Wiley,
179-205.
Bennypaul H. S., J. S. Mutti, S. Rustgi, N. Kumar, P. A.Okubara and K. S. Gill. 2012.
Virus-induced gene silencing (VIGS) of genes expressed in root, leaf, and meiotic tissues of wheat. Funct. Integr. Genomics. 12: 143-156.
Bernacki S, M. Karimi, P. Hilson and N. Robertson. 2010. Virus-Induced Gene
Silencing as a Reverse Genetics Tool to Study Gene Function. In: Hennig L, Kohler C, eds. Plant Developmental Biology. Humana Press, 27-45.
Bouazizi H, H. Jouili, A. Geitmann and E. Ferjani. 2010. Structural Changes of Cell
Wall and Lignifying Enzymes Modulations in Bean Roots in Response to Copper Stress. Biol. Trace. Elem. Res. 136: 232-240.
Burch-Smith T. M., J. C. Anderson, G. B. Martin and S. P. Dinesh-Kumar. 2004.
Applications and advantages of virus-induced gene silencing for gene function studies in plants. The Plant J. 39: 734-746.
Chen C. T., T. H. Chen, K. F. Lo and C. Y. Chiu. 2004. Effects of proline on copper
transport in rice seedlings under excess copper stress. Plant Sci. 166: 103-111.
Cherian S.and M. M. Oliveira. 2005. Transgenic plants in phytoremediation: recent
advances and new possibilities. Environ. Sci. Tech. 39: 9377-9390.
Dhankher O. P., E. A. Pilon-Smits, R. B. Meagher and S. Doty. 2011. Biotechnological
approaches for phytoremediation. Plant Biol. and Agric. 309-328.
Freedman J. H., M. R. Ciriolo and J. Peisach. 1989. The role of glutathione in copper
metabolism and toxicity. J. Biol. Chem. 364: 5598-5605.
Halliwell B. and J. Gutteridge. 1984. Oxygen toxicity, oxygen radicals, transition
metals and disease. Biochem. J. 219: 1-14.
Hare P., W. Cress and J. S. Van. 1999. Proline synthesis and degradation: a model
system for elucidating stress-related signal transduction. J. Exp. Bot. 50: 413-34.
Hou W., X. Chen , G. Song, Q. Wang and C. C. Chi. 2007. Effects of copper and
cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol. Biochem. 45: 62-69.
Jan F. J., C. Fagoaga, S. Z. Pang and D. Gonsalves. 2000. A single chimeric transgene
derived from two distinct viruses confers multi-virus resistance in transgenic plants through homology-dependent gene silencing. J. Gen. Virol. 81: 2103-2109.
Jarvis S. C. 1978. Copper uptake and accumulation by perennial ryegrass grown in soil
and solution culture. J. Sci. Food Agric. 29: 12-18.
Kawashima C., M. Noji, M. Nakamura, Y. Ogra, K. Suzuki and K. Saito. 2004. Heavy
metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol. Lett. 26: 153-157.
Keller B. 1993. Structural Cell Wall Proteins. Plant Physiol. 101: 1127-1130.
Kim Y. N., J. S. Kim, S. G. Seo, Y. Lee, S. W. Beak, I. S. Kim, H. S. Yoon, K. R. Kim,
S. H. Kim and K. H. Kim. 2011. Cadmium resistance in tobacco plants expressing the MuSI gene. Plant Biotechnol. Rep. 5: 323-329.
Kishor P. K., Z. Hong, G. H. Miao, C. A. Hu and D. P. S. Verma. 1995. Overexpression
of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol. 108: 1387-1394.
Noda T., N. Tanaka, Y. Mano, S. Nabeshima, H. Ohkawa, C. Matsui. 1987.
Regeneration of horseradish hairy roots incited by Agrobacterium rhizogenes infection. Plant Cell Rep. 6: 283-286.
O'neiil M., P. Albersheim, A. Darvill. 1990. The Pectic Polysaccharides of Primary
Cell Walls. Carb. 2: 415.
Pan A., F. Tie, Z. Duau, M. Yang, Z. Wang, L. Li, Z. Chen, B. Ru. 1994. α-Domain
of human metallothionein IA can bind to metals in transgenic tobacco plants. Mol. Gen. Genet. 242: 666-674.
Pflieger S., S. Blanchet, L. Camborde, G. Drugeon, A. Rousseau, M. Noizet, S.
Planchais and I. Jupin. 2008. Efficient virus-induced gene silencing in Arabidopsis using a ‘one-step’ TYMV-derived vector. Plant J. 56: 678-90.
Rentel M. C., M. R. Knight. 2004. Oxidative stress-induced calcium signaling in
Arabidopsis. Plant Physiol. 135: 1471-1479.
Robinson B., T. Mills, D. Petit, L. Fung, S. Green, B. Clothier. 2000. Natural and
induced cadmium-accumulation in poplar and willow: Implications for
phytoremediation. Plant Soil. 227: 301-306.
Rubinelli P., S. Siripornadulsil, F. G. Rubinelli, R. Sayre. 2002. Cadmium- and
iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Planta 215: 1-13.
Saifuddin M., D. M. Chandy, N. Osman, N. Khalid. 2013. Induction of fine roots in
Leucaena leucocephala using Agrobacterium rhizogenes. Aust. J. Crop Sci. 7: 573-579.
Salt D. E., R. D. Smith, I. Raskin. 1998. Phytoremediation. Annu. Rev. Plant
Physiol. Plant Mol. Biol. 49: 643-668.
Samuel G. 1934. The movement of tobacco mosaic virus within the plant. Ann. Appl.
Biol. 21: 90-111.
Schat H., S. S. Sharma, R. Vooijs. 1997. Heavy metal-induced accumulation of free
proline in a metal-tolerant and a nontolerant ecotype of Silene vulgaris. Physiol.
Plantarum. 101: 477-482.
Shah K., R. S. Dubey. 1998. A18 kDa cadmium inducible protein Complex: its
isolation and characterisation from rice (Oryza sativa L.) seedlings. J. Plant
Physiol. 152: 448-454.
Showalter A. M. 1993. Structure and function of plant cell wall proteins. Plant Cell 5:
9-23.
Smith E. F., C. Townsend. 1907. A plant-tumor of bacterial origin. Science. 25:
671-673.
Sommer-Knudsen J., A. Bacic. 1997. A micro-scale method for determining
relative metal-binding affinities of proteins. Mol. Biotechnol. 8: 215-218.
Song W. Y., E. J. Sohn, E. Martinoia, Y J. Lee, Y. Y. Yang, M. Jasinski, C. Forestier, I.
Hwang and Y. Lee. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotech. 21: 914-919.
Strobel G. A. and A. Nachmias.1985. Agrobacterium rhizogenes promotes the initial
growth of bare root stock almond. J. Gen. Microbiol. 131: 1245-1249.
Sudha C. G., B. O. Reddy, G. A. Ravishankar, S. Seeni. 2003. Production of
ajmalicine and ajmaline in hairy root cultures of Rauvolfia micrantha Hook f., a rare and endemic medicinal plant. Biotechnol. Lett. 25: 631-636.
Szabados L., A. Savoure. 2010. Proline: a multifunctional amino acid. Trends Plant
Sci. 15: 89-97.
Toka I., S. Planchais, C. Cabassa, A. M. Justin, D. D. Vos, L. Richard, A. Savoure and
P. Carol. 2010. Mutations in the hyperosmotic stress-responsive mitochondrial BASIC AMINO ACID CARRIER2 enhance proline accumulation in Arabidopsis. Plant Physiol. 152: 1851-1862.
Tripathi L., J. N. Tripathi. 2003. Role of biotechnology in medicinal plants. Trop. J.
Pharm. Res. 2: 243-253.
Velasquez A.C., S. Chakravarthy, G. B. Martin. 2009. Virus-induced gene silencing
(VIGS) in Nicotiana benthamiana and tomato. J. Vis. Exp. 1-4.
Verbruggen N. and C. Hermans. 2008. Proline accumulation in plants: a review. Amino
Acids 35: 753-759.
Waterhouse P. M. and C. A. Helliwell. 2003. Exploring plant genomes by
RNA-induced gene silencing. Nat. Rev. Genet. 4: 29-38.
Wierzbicka M. 1994. Resumption of mitotic activity in Allium cepa L. root tips during
treatment with lead salts. Environ. Exp. Bot. 34: 173-180.
Xu J., H. Yin and X. Li. 2009. Protective effects of proline against cadmium toxicity in
micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Rep. 28: 325-333.
Yang J.L., X. F. Zhu, Y. X. Peng, C. Zeng, G. X. Li, Y. Liu,Y. Z. Shi and S. J.
Zheng .2011. Cell wall hemicellulose contributes significantly to aluminum adsorption and root growth in Arabidopsis. Plant Physiol. 155: 1885-1892.
Yang Z. B., D. Eticha, I. M. Rao and W. J. Horst. 2010. Alteration of cell-wall porosity
is involved in osmotic stress-induced enhancement of aluminium resistance in common bean (Phaseolus vulgaris L.). J. Exp. Bot. 61: 3245-3258.
Zhu B., J. Su, M. Chang, D. P. S. Verma, Y. L. Fan and R. Wu. 1998. Overexpression
of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to
water- and salt-stress in transgenic rice. Plant Sci. 139: 41-48.
Zinn K. E., U. O. Minnesota. 2008. White Lupin Phosphorus Deficiency Signaling:
Cis Acting Elements and Transcription Factors. University of Minnesota.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17171-
dc.description.abstract在許多污染土壤皆可見過量銅存在,植物可能因銅毒害而無法生長,也可能透過生物累積進入食物鏈中,進而造成人體之危害。植生復育是利用植物體對於汙染物的吸收進行土壤復育的技術。但植體於過量重金屬逆境下,會進行生理調節機阻抗重金屬進入。研究顯示脯胺酸的增加是其中一種阻抗機制,導致重金屬吸收能力受抑制,亦有研究指出細胞壁是金屬吸附的第一線位置。本研究利用帶有脯胺酸合成基因反股核苷酸片段之菸草鑲嵌病毒 (pTMV-antiP5CS) 降低菸草在乾旱逆境下葉片脯胺酸的累積,以期望達到銅累積增加之效。試驗結果顯示在5 mM硫酸銅48小時處理下,接種pTMV-antiP5CS之菸草植株對銅的吸收量較對照組菸草多。於一公分根尖菸草吸附試驗中觀察到,經pTMV-antiP5CS接種之菸草細胞壁對於4 mg L-1 銅離子處理的吸附能力較對照組菸草差,推測接種pTMV-antiP5CS抑制菸草脯胺酸合成酵素的作用可能會導致根部細胞壁對於銅離子的吸附能力降低,進而使銅離子易於進入植體內。另施用根毛農桿菌於栽培介質中,發現施用OD600 0.01菌液濃度處理的菸草植體,在2 mM硫酸銅48小時處理下,其銅累積量較無菌液處理組高,推測可能為根毛農桿菌可使毛狀根增生之故。總結而言,抑制脯胺酸合成酵素,導致菸草根尖細胞壁對於銅的吸附能力降低。施用根毛農桿菌之菸草,在2 mM硫酸銅處理下,銅累積量增加,可能是毛狀根細胞壁對銅吸附力較低,也可能是根吸收面積增大所致,尚待進一步的試驗釐清。zh_TW
dc.description.abstractMany heavy metal contaminated soils contain excess copper in Taiwan. The mechanisms of plant against the toxicity could be used in phytoremediation. Many studies indicated under heavy metals stress, the accumulation of proline in plant could tolerate the toxicity and reduce the heavy metal absorption and the root cell wall was the main location of heavy metal adsorption. The objective of this study was to use virus-induced gene siliencing (VIGS) technique and inoculate Agrobacterium rhizogenes to Nicotiana benthamiana and to see if the N. benthamiana can accumulate copper under high concentration of copper treatment. The results showed the copper concentration of cell wall of 1 cm root tips in inoculating proline synthesis gene (pTMV-antiP5CS) was lower than control under 4 mg L-1 copper treatment. However, the copper concentration of shoot with inoculation pTMV-antiP5CS tobacco was higher than that of control under 5 mM CuSO4 treatment. These results indicated that the cell wall of 1 cm root tips in pTMV-antiP5CS tobacco plant had smaller copper adsorption capability. The shoot of pTMV-antiP5CS tobacco plant accumulated greater copper compared with the wild type. N. benthamiana inoculated with OD600 0.01 A. rhizogenes had higher concentration of copper compared with that of without inoculation under 2 mM CuSO4 solution treating for 48 h. N. benthamiana treated with A. rhizogenes induced the hair root formation and enhanced the adsorption area in plant root.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:59:28Z (GMT). No. of bitstreams: 1
ntu-102-R00623020-1.pdf: 1898521 bytes, checksum: fbc9fe23e3616b2050a7c1704472482f (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents謝誌 I
摘要 III
ABSTRACT IV
目錄 V
縮寫對照表 VII
第一章、前言 1
第二章、前人研究 3
一、病毒誘導沉寂系統 3
二、脯胺酸在植物體內代謝生成 4
三、脯胺酸和重金屬之關係 5
四、銅與脯胺酸及細胞壁之關係 6
五、農桿菌根系 6
六、植生復育 7
第三章、研究目的 8
第四章、材料與方法 9
一、植物材料 9
二、誘導基因沉寂病毒載體 9
三、生體外轉錄作用 (IN VITRO TRANSCRIPTION) 9
四、砂耕系統 10
五、葉乾旱逆境處理 10
六、農桿菌菌液注射菸草植株及組織培養 11
七、農桿菌菌液施用 11
八、根部細胞壁分離 12
九、植體銅處理 12
十、脯胺酸含量測定 13
十一、植體元素含量分析 14
十二、植體水分含量分析 15
十三、菸草植株株高、葉片長寬測定 15
十四、數據分析 15
第五章 結果與討論 16
一、病毒誘導基因沉寂之確認及病毒接種對菸草生長之影響 16
二、銅處理對菸草植株之影響 21
三、經VIGS抑制脯胺酸合成基因酵素菸草之根部細胞壁對銅吸收之影響 21
四、注射根毛農桿菌菌液及利用組織培養探討菸草毛狀根生長 32
五、施用根毛農桿菌菌液對菸草植株之影響 32
六、施用根毛農桿菌對菸草銅吸收之影響 45
第六章 結論 53
參考文獻 54
dc.language.isozh-TW
dc.title抑制脯胺酸合成酵素基因表現或施用根毛農桿菌對菸草銅累積之影響zh_TW
dc.titleInhibited proline synthesis gene expression or inoculated Agrobacetrium rhizogenes affect copper accumulation in Nicotiana benthamianaen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.coadvisor鍾仁賜
dc.contributor.oralexamcommittee詹富智,李昆達,洪傳揚
dc.subject.keyword病毒誘導基因沉寂,根毛農桿菌,脯胺酸,細胞壁,菸草,銅,zh_TW
dc.subject.keywordvirus-induced gene siliencing (VIGS),proline,root cell wall,copper,tobacco,en
dc.relation.page61
dc.rights.note未授權
dc.date.accepted2013-08-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved