Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor沈中華
dc.contributor.authorChun-Ying Chenen
dc.contributor.author陳俊英zh_TW
dc.date.accessioned2021-06-07T23:58:47Z-
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-17
dc.identifier.citationAlvarez-Plata, P. and M. Schrooten (2004). 'Misleading indicators? The Argentinean currency crisis.' Journal of Policy Modeling 26(5): 587-603.
Berg, A. (1999). 'Predicting currency crises: The Indicators Approach and an Alternative.' Journal of International Money and Finance.
Berg, A. and C. Pattillo (1999). 'Are currency crises predictable? A test.' International Monetary Fund Staff Papers 46(2): 107-138.
Caprio, G. and D. Klingebiel (1999). 'Bank Insolvencies: Cross-Country Experi-ence.' Research Working papers 1(1): 1-52.
Caprio Jr, G. and D. Klingebiel (1996). Bank insolvencies: cross-country experience, The World Bank.
Comelli, F. (2013). Parametric and Non-parmetric Early Warning Systems for Currency Crises in Emerging Market Economies. IMF Working Paper: 13/134.
Davis, E. P. and D. Karim (2008). 'Comparing early warning systems for banking crises.' Journal of Financial Stability 4(2): 89-120.
Demirguc-Kunt, A. and E. Detragiache (1998). 'The determinants of banking crises in developing and developed countries.' International Monetary Fund Staff Papers 45(1): 81-109.
Edison, H. J. (2003). 'Do indicators of financial crises work? An evaluation of an early warning system.' International Journal of Finance & Economics 8(1): 11-53.
Frankel, J. A. and A. K. Rose (1996). 'Currency crashes in emerging markets: An empirical treatment.' Journal of International Economics 41(3-4): 351-366.
Goldfajn, I. and R. O. Valdes (1998). 'Are currency crises predictable?' European Economic Review 42(3-5): 873-885.
Kaminsky, G., S. Lizondo and C. M. Reinhart (1998). Leading indicators of currency crises. Staff Papers-International Monetary Fund: 1-48.
Laeven, L. and F. Valencia (2008). Systemic Banking Crises: A New Database. IMF Working Paper: 08/224.
Misati, R. N. and E. M. Nyamongo (2012). 'Financial liberalization, financial fragility and economic growth in Sub-Saharan Africa.' Journal of Financial Stability 8(3): 150-160.
Peng, D. and C. Bajona (2008). 'China's vulnerability to currency crisis: A KLR signals approach.' China Economic Review 19(2): 138-151.
Ahn, D., S. Figlewski, and B. Gao (1999). Pricing Discrete Barrier Options with an Adaptive
Mesh Model. Journal of Derivatives 6 (4), 33{43.
Benson, R. and N. Daniel (1991). Up, Over and Out. Risk 4 (6), 172{179.
Black, F. and M. Scholes (1973). The Pricing of Options and Corporate Liabilities. Journal of
Political Economy 81 (3), 637{654.
Broadie, M., P. Glasserman, and S. Kou (1997). A Continuity Correction for Discrete Barrier
Options. Mathematical Finance 7 (4), 325{349.
Brockman, P. and H. J. Turtle (2003). A barrier option framework for corporate security valuation.
Journal of Financial Economics 67 (3), 511{529.
Carr, P. (1995). Two Extensions to Barrier Option Valuation. Applied Mathematical Fi-
nance 2 (3), 173{209.
Chris, C., M. Richard, T. Yawar, and K. Simon (2005). Structured Products Handbook 2005.
Hong Kong: Asiamoney.
Curnow, R. and C. Dunnett (1962). The Numerical Evaluation of Certain Multivariate Normal
Integrals. The Annals of Mathematical Statistics 33 (2), 571{579.
Fusai, G., I. Abrahams, and C. Sgarra (2006). An Exact Analytical Solution for Discrete Barrier
Options. Finance and Stochastics 10 (1), 1{26.
Haug, E. (1998). The Complete Guide to Option Pricing Formulas. New York: McGraw-Hill.
Hudson, M. (1992). The Value in Going Out: From Black Scholes to Black Holes. Risk 5, 183{186.
Kou, S. (2003). On Pricing of Discrete Barrier Options. Statistica Sinica 13 (4), 955{964.
Merton, R. (1973). Theory of Rational Option Pricing. Bell Journal of Economics 4 (1), 141{183.
Rubinstein, M. and E. Reiner (1991). Breaking Down the Barriers. Risk 4 (8), 28{35.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17155-
dc.description.abstract本文提出新式危機預警模型,並稱之為最佳預測成本法(簡稱成本法)危機預警模型。此新模型以平均預測成本作為預測好壞之比較標準,由此建構出最佳預警方案。相較知名的 KLR (Kaminsky, Lizondo and Reinhart, 1998) 雜信比法危機預警模型,成本法模型在理論上有幾個不同特點:
一、基本概念不同:成本是會計概念,雜信比為機率概念。對比較預警方案、制定預警政策的政策決定者而言,成本法模型更直覺好用。
二、錯誤預測時權重不同:雜信比機率概念將型一錯誤預測和型二錯誤預測視作相同,但成本法可設定不同的權重給不同類型之錯誤預測,政策決定者實務上也確有此種權重設定需求。
三、預警方案範圍不同:成本法預警模型的最佳預警方案可能不存在雜信比,換言之,成本法最佳方案範圍比雜信比法最佳方案範圍更大。
四、預警方案特性不同:雜信比法最佳預警方案有可能為了預警到唯一的危機卻發出過多的預警,造成預警成效低落。成本法在危機很少且錯誤預測成本時,最佳預警方案為不發出任何預警。
五、篩選指標方法不同:成本法當某指標變數的成本法最佳預警方案不包含任何預警信號時,在模型中可剔除該指標變數而不減少預警成效。雜信比法普遍用雜信比大於1時剔除指標變數。
成本法模型和雜信比法模型的不同之處源自於預測哲學的不同:成本法模型可能不去預測任何危機,而雜信比法要求一定要預測到某些危機。乍看之下很難理解,成本法模型的預測哲學反而會有較好的平均預測成效。深思過後可以理解,正因為放棄了必須有正確預測紀錄的這種負擔,成本法反而能得到更好的平均預測成效。
zh_TW
dc.description.abstractThis paper proposes a new kind of early warning system (EWS) based on the optimal forecast cost and we call it “the cost-based EWS” for short. Our new EWS adopts the average forecast cost of error as the forecast performance measure to find the optimal forecast policy. Compared to the famous KLR’s (Kaminsky, Lizondo and Reinhart, 1998) NSR-based EWS, our model has several different features:
1. Different fundamental concepts: The concept of cost is an accounting one, and that of the noise-to-signal ratio (NSR) is a probability one. It is more intuitive for policymakers to compare and decide forecast policies in the optimal cost model.
2. Different weights of forecast errors: The type-I forecast error and type-II forecast error are regarded as equal important in the calculation of NSR, while these errors can be specified with different weights to different types. The flexible weight settings can satisfy the practical needs of policymakers.
3. Different scopes of forecast policies: The optimal cost-based forecast policy may have no NSR, i.e., the scope of the optimal cost-based forecast policy is wider than that of the optimal NSR-based forecast policy.
4. Different forecast characteristics: the optimal NSR-based forecast policy needs at least one correct forecast and it may issue too many warnings to satisfy this requirement. This may make the optimal NSR-based forecast policy inefficient. The optimal cost-based forecast policy may issue no warning signal when there are few crises and the cost without warning a crisis is relatively low.
5. Different criteria for index selection: In the cost-based EWS, an indicator can be excluded if its optimal cost-based forecast policy contains no warning signal. The exclusion of this indicator does not reduce forecast efficiency. On the other hand, it is usual to exclude an indicator when the optimal NSR-based forecast policy is greater than one in the NSR-based EWS.
The different features in the NSR-based EWS and in the cost-based EWS root in their fundamental differences in forecast philosophies: The cost-based EWS may fail to warn any crises while the NSR-based EWS must warn some crises correctly. It seems unreasonable at first that the forecast philosophy in the cost-based EWS may benefit the forecast performance in average. However, on reflection one would admit that the cost-based EWS obtains better average performance by giving up the load of the must-warn property that is not a must in forecast.
Thesis 2: Formulas for Brick Options of Two Bricks
This paper presents closed-form formulas for a broad class of barrier-type options which we call brick options. The building blocks, called bricks for short, may contain continuous and discrete barriers. A brick option is serially built from 7 types of bricks, and its barrier structure may have plentiful mixtures. Trigger events can be classified according to barrier types and the brick's time period,
and three commonly used rebate schemes are considered. We survey the brick options of two bricks, and present the closed-form formulas for 27 scenarios. These formulas also unify previous results on the barrier-type options of various barrier structures. Just as the barrier option framework beneficial to corporate securities valuation,
Our brick option framework, including the barrier option framework as a special case, will benefit future research.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:58:47Z (GMT). No. of bitstreams: 1
ntu-102-D95723006-1.pdf: 1359167 bytes, checksum: daac88dc24ae0676e0d72bb568aa2830 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 i
目錄 ii
誌謝 v
中文摘要 vi
Abstract vii
List of Figures ix
List of Tables x
1 Introduction 1
2 Cost-Based Early Warning Systems 6
2.1 Optimal Forecast for an Indicator 6
2.1.1 Indicator Variables 7
2.1.2 Signal Functions 7
2.1.3 Signal Variables 8
2.1.4 Crisis Variables 9
2.1.5 Forward Time Window 10
2.1.6 Forward Crisis Variables 10
2.1.7 Forecast Classification and Statistics 10
2.1.8 Forecast Assessment 11
2.1.9 Optmal Forecast Solution 12
2.2 Optimal Forecast for the Composite Indicator 14
2.2.1 Optimal Forecast for Indivisual Indicators 15
2.2.2 The Weighted Composite Indicator 15
2.2.3 Optimal Forecast for the Weighted Composite Indicator 16
3 Comparisons between the Cost-Based and the NSR-Based EWSs 18
3.1 Flowchart for the Cost-Based and NSR-Based EWSs 18
3.2 Sample Data for Indivisual Indicators 19
3.3 Similarities Between the Cost-Based and NSR-Based EWSs 21
3.4 Policy Scope in the Cost-Based EWS Is Broder than That in the NSR-Based EWS 22
3.5 The Distinctive Feature in the Cost-Based EWS 23
3.6 The Effect on the Opitmal Forecast Solution When the Cost of Forecast Error Varies 24
3.7 Comparisons between the Cost-Based EWS and the NSR-Based EWS 25
3.7.1 Comparisons between the Restricted Cost-Based (γ=1) EWS and the NSR-Based EWS 27
3.7.2 Comparisons between the Restricted Cost-Based (γ=5) EWS and the NSR-Based EWS 28
3.7.3 Comparisons between the Unrestricted Cost-Based (γ=5) EWS and the NSR-Based EWS 30
4 Empirical Results for the Weighted Composite Index 33
4.1 Data and Weight Settings for Empirical Results on the Weighted Composite Indicator 33
4.2 Comparisons of Forecast Performance for Different Weight Settings and EWSs 34
4.2.1 The Forecast Performance for a Single Country 34
4.2.2 The Forecast Performance for America 38
4.2.3 The Forecast Performance for All Countries 42
5 Conclusion 48
Appendix 50
A.1 Indicator Variables 50
A.2 Crisis Variables 55
A.3 Optimal Solutions for the NSR-Based EWS, the Restricted Cost-Based EWS and the Unrestricted Cost-Based EWS 56
A.3.1 Optimal Solutions for the NSR-Based EWS 56
A.3.2 Optimal Solutions for the Restricted Cost-Based EWS with γ=1 58
A.3.3 Optimal Solutions for the Restricted Cost-Based EWS with γ=5 60
A.3.4 Optimal Solutions for the Unrestricted Cost-Based EWS with γ=1 62
A.3.5 Optimal Solutions for the Unrestricted Cost-Based EWS with γ=5 65
Reference 68
Thesis 2: Formulas for Brick Options of Two Bricks
Abstract 69
1. Introduction 70
2. Brick Option Framework 71
2.1 Model Setting 71
2.2 Bricks and Barrier Structure 71
2.3 Trigger Events and Rebate Schemes 72
3. Valuation 74
3.1 Payoff Decomposition and a Real Product Example 74
3.2 Reducing Expected Discounted Rebates 75
3.3 Evaluating Probabilities 76
4. Conclusions 78
Appendix A. The Formulas 89
Reference 92
dc.language.isoen
dc.subject平均錯誤預測成本zh_TW
dc.subject雜信比zh_TW
dc.subject危機預警模型zh_TW
dc.subjectNSRen
dc.subjectACFEen
dc.subjectEWSen
dc.title最佳預測成本法危機預警模型及複合式障礙選擇權評價zh_TW
dc.titleEarly Warning Systems Based on the Optimal Forecast
Cost and Valuation of Complex Barrier-Type Options
en
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree博士
dc.contributor.oralexamcommittee陳明賢,葉國俊,黃玉麗,林昌平,周秀霞
dc.subject.keyword危機預警模型,雜信比,平均錯誤預測成本,zh_TW
dc.subject.keywordEWS,NSR,ACFE,en
dc.relation.page92
dc.rights.note未授權
dc.date.accepted2013-08-17
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved