請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17152完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭生興(Sang-Heng Kok) | |
| dc.contributor.author | Wan-Yi Shie | en |
| dc.contributor.author | 謝宛宜 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:58:40Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-16 | |
| dc.identifier.citation | 1 M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, 'Prospective Identification of Tumorigenic Breast Cancer Cells', Proc Natl Acad Sci U S A, 100 (2003), 3983-8.
2 S. A. Beausoleil, M. Jedrychowski, D. Schwartz, J. E. Elias, J. Villen, J. Li, M. A. Cohn, L. C. Cantley, and S. P. Gygi, 'Large-Scale Characterization of Hela Cell Nuclear Phosphoproteins', Proc Natl Acad Sci U S A, 101 (2004), 12130-5. 3 J. H. Beumer, R. A. Parise, E. M. Newman, J. H. Doroshow, T. W. Synold, H. J. Lenz, and M. J. Egorin, 'Concentrations of the DNA Methyltransferase Inhibitor 5-Fluoro-2'-Deoxycytidine (Fdcyd) and Its Cytotoxic Metabolites in Plasma of Patients Treated with Fdcyd and Tetrahydrouridine (Thu)', Cancer Chemother Pharmacol, 62 (2008), 363-8. 4 KEVIN D. BUNTING, 'Abc Transporters as Phenotypic Markers and Functional Regulators of Stem Cells', STEM CELLS (2002). 5 F. Cammas, M. Herzog, T. Lerouge, P. Chambon, and R. Losson, 'Association of the Transcriptional Corepressor Tif1beta with Heterochromatin Protein 1 (Hp1): An Essential Role for Progression through Differentiation', Genes Dev, 18 (2004), 2147-60. 6 F. Cammas, A. Janoshazi, T. Lerouge, and R. Losson, 'Dynamic and Selective Interactions of the Transcriptional Corepressor Tif1 Beta with the Heterochromatin Protein Hp1 Isotypes During Cell Differentiation', Differentiation, 75 (2007), 627-37. 7 F. Cammas, M. Oulad-Abdelghani, J. L. Vonesch, Y. Huss-Garcia, P. Chambon, and R. Losson, 'Cell Differentiation Induces Tif1beta Association with Centromeric Heterochromatin Via an Hp1 Interaction', J Cell Sci, 115 (2002), 3439-48. 8 C. W. Chang, H. Y. Chou, Y. S. Lin, K. H. Huang, C. J. Chang, T. C. Hsu, and S. C. Lee, 'Phosphorylation at Ser473 Regulates Heterochromatin Protein 1 Binding and Corepressor Function of Tif1beta/Kap1', BMC Mol Biol, 9 (2008), 61. 9 A. Chatterjee, E. Mambo, and D. Sidransky, 'Mitochondrial DNA Mutations in Human Cancer', Oncogene, 25 (2006), 4663-74. 10 M. Esteller, 'Cancer Epigenomics: DNA Methylomes and Histone-Modification Maps', Nat Rev Genet, 8 (2007), 286-98. 11 J. R. Friedman, W. J. Fredericks, D. E. Jensen, D. W. Speicher, X. P. Huang, E. G. Neilson, and F. J. Rauscher, 3rd, 'Kap-1, a Novel Corepressor for the Highly Conserved Krab Repression Domain', Genes Dev, 10 (1996), 2067-78. 12 R. A. Gatenby, and R. J. Gillies, 'Why Do Cancers Have High Aerobic Glycolysis?', Nat Rev Cancer, 4 (2004), 891-9. 13 L. E. Gerweck, and K. Seetharaman, 'Cellular Ph Gradient in Tumor Versus Normal Tissue: Potential Exploitation for the Treatment of Cancer', Cancer Res, 56 (1996), 1194-8. 14 M. A. Goodell, K. Brose, G. Paradis, A. S. Conner, and R. C. Mulligan, 'Isolation and Functional Properties of Murine Hematopoietic Stem Cells That Are Replicating in Vivo', J Exp Med, 183 (1996), 1797-806. 15 Wenjun Guo, Zuzana Keckesova, Joana Liu Donaher, Tsukasa Shibue, Verena Tischler, Ferenc Reinhardt, Shalev Itzkovitz, Aurelia Noske, Ursina Zurrer-Hardi, George Bell, Wai Leong Tam, Sendurai A Mani, Alexander van Oudenaarden, and Robert A Weinberg, 'Slug and Sox9 Cooperatively Determine the Mammary Stem Cell State', Cell, 148 (2012), 1015-28. 16 S. Hatakeyama, 'Trim Proteins and Cancer', Nat Rev Cancer, 11 (2011), 792-804. 17 D. Hernandez-Verdun, P. Roussel, M. Thiry, V. Sirri, and D. L. Lafontaine, 'The Nucleolus: Structure/Function Relationship in Rna Metabolism', Wiley Interdiscip Rev RNA, 1 (2010), 415-31. 18 A. B. Hjelmeland, Q. Wu, J. M. Heddleston, G. S. Choudhary, J. MacSwords, J. D. Lathia, R. McLendon, D. Lindner, A. Sloan, and J. N. Rich, 'Acidic Stress Promotes a Glioma Stem Cell Phenotype', Cell Death Differ, 18 (2011), 829-40. 19 M. M. Ho, A. V. Ng, S. Lam, and J. Y. Hung, 'Side Population in Human Lung Cancer Cell Lines and Tumors Is Enriched with Stem-Like Cancer Cells', Cancer Res, 67 (2007), 4827-33. 20 P. P. Hsu, and D. M. Sabatini, 'Cancer Cell Metabolism: Warburg and Beyond', Cell, 134 (2008), 703-7. 21 G. Hu, J. Kim, Q. Xu, Y. Leng, S. H. Orkin, and S. J. Elledge, 'A Genome-Wide Rnai Screen Identifies a New Transcriptional Module Required for Self-Renewal', Genes Dev, 23 (2009), 837-48. 22 A. Iglesias-Linares, R. M. Yanez-Vico, and M. A. Gonzalez-Moles, 'Potential Role of Hdac Inhibitors in Cancer Therapy: Insights into Oral Squamous Cell Carcinoma', Oral Oncol, 46 (2010), 323-9. 23 S. Iyengar, and P. J. Farnham, 'Kap1 Protein: An Enigmatic Master Regulator of the Genome', J Biol Chem, 286 (2011), 26267-76. 24 C. R. Jeter, M. Badeaux, G. Choy, D. Chandra, L. Patrawala, C. Liu, T. Calhoun-Davis, H. Zaehres, G. Q. Daley, and D. G. Tang, 'Functional Evidence That the Self-Renewal Gene Nanog Regulates Human Tumor Development', STEM CELLS, 27 (2009), 993-1005. 25 K. Khetchoumian, M. Teletin, M. Mark, T. Lerouge, M. Cervino, M. Oulad-Abdelghani, P. Chambon, and R. Losson, 'Tif1delta, a Novel Hp1-Interacting Member of the Transcriptional Intermediary Factor 1 (Tif1) Family Expressed by Elongating Spermatids', J Biol Chem, 279 (2004), 48329-41. 26 K. Koberna, J. Malinsky, A. Pliss, M. Masata, J. Vecerova, M. Fialova, J. Bednar, and I. Raska, 'Ribosomal Genes in Focus: New Transcripts Label the Dense Fibrillar Components and Form Clusters Indicative of 'Christmas Trees' in Situ', J Cell Biol, 157 (2002), 743-8. 27 Sirard C Lapidot T, Vormoor J, et al:, 'A Cell Initiating Human Acute Myeloid Leukaemia after Transplantation into Scid Mice.', Nature Reviews Cancer, 367 (6464) (1994), 645-48. 28 S. Le Jan, C. Amy, A. Cazes, C. Monnot, N. Lamande, J. Favier, J. Philippe, M. Sibony, J. M. Gasc, P. Corvol, and S. Germain, 'Angiopoietin-Like 4 Is a Proangiogenic Factor Produced During Ischemia and in Conventional Renal Cell Carcinoma', Am J Pathol, 162 (2003), 1521-8. 29 M. S. Lechner, G. E. Begg, D. W. Speicher, and F. J. Rauscher, 3rd, 'Molecular Determinants for Targeting Heterochromatin Protein 1-Mediated Gene Silencing: Direct Chromoshadow Domain-Kap-1 Corepressor Interaction Is Essential', Mol Cell Biol, 20 (2000), 6449-65. 30 L. Li, 'Normal Stem Cells and Cancer Stem Cells: The Niche Matters', Cancer Research, 66 (2006), 4553-57. 31 Z. Li, and J. N. Rich, 'Hypoxia and Hypoxia Inducible Factors in Cancer Stem Cell Maintenance', Curr Top Microbiol Immunol, 345 (2010), 21-30. 32 D. J. Manalo, A. Rowan, T. Lavoie, L. Natarajan, B. D. Kelly, S. Q. Ye, J. G. Garcia, and G. L. Semenza, 'Transcriptional Regulation of Vascular Endothelial Cell Responses to Hypoxia by Hif-1', Blood, 105 (2005), 659-69. 33 Sendurai A. Mani, Wenjun Guo, Mai-Jing Liao, Elinor Ng Eaton, Ayyakkannu Ayyanan, Alicia Y. Zhou, Mary Brooks, Ferenc Reinhard, Cheng Cheng Zhang, Michail Shipitsin, Lauren L. Campbell, Kornelia Polyak, Cathrin Brisken, Jing Yang, and Robert A. Weinberg, 'The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells', Cell, 133 (2008), 704-15. 34 D. M. Messerschmidt, W. de Vries, M. Ito, D. Solter, A. Ferguson-Smith, and B. B. Knowles, 'Trim28 Is Required for Epigenetic Stability During Mouse Oocyte to Embryo Transition', Science, 335 (2012), 1499-502. 35 S. Naito, A. C. von Eschenbach, R. Giavazzi, and I. J. Fidler, 'Growth and Metastasis of Tumor Cells Isolated from a Human Renal Cell Carcinoma Implanted into Different Organs of Nude Mice', Cancer Res, 46 (1986), 4109-15. 36 K. K. Niakan, E. C. Davis, R. C. Clipsham, M. Jiang, D. B. Dehart, K. K. Sulik, and E. R. McCabe, 'Novel Role for the Orphan Nuclear Receptor Dax1 in Embryogenesis, Different from Steroidogenesis', Mol Genet Metab, 88 (2006), 261-71. 37 K. Niederreither, E. Remboutsika, A. Gansmuller, R. Losson, and P. Dolle, 'Expression of the Transcriptional Intermediary Factor Tif1alpha During Mouse Development and in the Reproductive Organs', Mech Dev, 88 (1999), 111-7. 38 R. Nitschke, E. I. Smith, S. Shochat, G. Altshuler, H. Travers, J. J. Shuster, F. A. Hayes, R. Patterson, and N. McWilliams, 'Localized Neuroblastoma Treated by Surgery: A Pediatric Oncology Group Study', J Clin Oncol, 6 (1988), 1271-9. 39 David W. Buck* Nobuko Uchida*†, Dongping He*, Michael J. Reitsma*, Marilyn Masek*, Thinh V. Phan*,, and Fred H. Gage‡ Ann S. Tsukamoto*, and Irving L. Weissman§, 'Direct Isolation of Human Central Nervous System Stem Cells', PNAS ( 2000). 40 H. Peng, G. E. Begg, D. C. Schultz, J. R. Friedman, D. E. Jensen, D. W. Speicher, and F. J. Rauscher, 3rd, 'Reconstitution of the Krab-Kap-1 Repressor Complex: A Model System for Defining the Molecular Anatomy of Ring-B Box-Coiled-Coil Domain-Mediated Protein-Protein Interactions', J Mol Biol, 295 (2000), 1139-62. 41 Jesus Perez-Losada, and Allan Balmain, 'Stem-Cell Hierarchy in Skin Cancer', Nature Reviews Cancer, 3 (2003), 434-43. 42 C. R. A. Regenbrecht, H. Lehrach, and J. Adjaye, 'Stemming Cancer: Functional Genomics of Cancer Stem Cells in Solid Tumors', Stem Cell Reviews, 4 (2008), 319-28. 43 I. F. Robey, B. K. Baggett, N. D. Kirkpatrick, D. J. Roe, J. Dosescu, B. F. Sloane, A. I. Hashim, D. L. Morse, N. Raghunand, R. A. Gatenby, and R. J. Gillies, 'Bicarbonate Increases Tumor Ph and Inhibits Spontaneous Metastases', Cancer Res, 69 (2009), 2260-8. 44 M. Rodriguez-Paredes, and M. Esteller, 'Cancer Epigenetics Reaches Mainstream Oncology', Nat Med, 17 (2011), 330-9. 45 P. Salomoni, and P. P. Pandolfi, 'The Role of Pml in Tumor Suppression', Cell, 108 (2002), 165-70. 46 B. Schuettengruber, D. Chourrout, M. Vervoort, B. Leblanc, and G. Cavalli, 'Genome Regulation by Polycomb and Trithorax Proteins', Cell, 128 (2007), 735-45. 47 D. C. Schultz, K. Ayyanathan, D. Negorev, G. G. Maul, and F. J. Rauscher, 3rd, 'Setdb1: A Novel Kap-1-Associated Histone H3, Lysine 9-Specific Methyltransferase That Contributes to Hp1-Mediated Silencing of Euchromatic Genes by Krab Zinc-Finger Proteins', Genes Dev, 16 (2002), 919-32. 48 Y. Seki, A. Kurisaki, K. Watanabe-Susaki, Y. Nakajima, M. Nakanishi, Y. Arai, K. Shiota, H. Sugino, and M. Asashima, 'Tif1beta Regulates the Pluripotency of Embryonic Stem Cells in a Phosphorylation-Dependent Manner', Proc Natl Acad Sci U S A, 107 (2010), 10926-31. 49 M. A. Selak, S. M. Armour, E. D. MacKenzie, H. Boulahbel, D. G. Watson, K. D. Mansfield, Y. Pan, M. C. Simon, C. B. Thompson, and E. Gottlieb, 'Succinate Links Tca Cycle Dysfunction to Oncogenesis by Inhibiting Hif-Alpha Prolyl Hydroxylase', Cancer Cell, 7 (2005), 77-85. 50 G. L. Semenza, 'Targeting Hif-1 for Cancer Therapy', Nat Rev Cancer, 3 (2003), 721-32. 51 Sergey V. Shmelkov, Ryan St.Clair, David Lyden, and Shahin Rafii, 'Ac133/Cd133/Prominin-1', The International Journal of Biochemistry & Cell Biology, 37 (2005), 715-19. 52 S. K. Singh, C. Hawkins, I. D. Clarke, J. A. Squire, J. Bayani, T. Hide, R. M. Henkelman, M. D. Cusimano, and P. B. Dirks, 'Identification of Human Brain Tumour Initiating Cells', Nature, 432 (2004), 396-401. 53 Z. D. Smith, M. M. Chan, T. S. Mikkelsen, H. Gu, A. Gnirke, A. Regev, and A. Meissner, 'A Unique Regulatory Phase of DNA Methylation in the Early Mammalian Embryo', Nature, 484 (2012), 339-44. 54 K. Takahashi, and S. Yamanaka, 'Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors', Cell, 126 (2006), 663-76. 55 I. F. Tannock, and D. Rotin, 'Acid Ph in Tumors and Its Potential for Therapeutic Exploitation', Cancer Res, 49 (1989), 4373-84. 56 J. R. Thompson, and L. J. Gudas, 'Retinoic Acid Induces Parietal Endoderm but Not Primitive Endoderm and Visceral Endoderm Differentiation in F9 Teratocarcinoma Stem Cells with a Targeted Deletion of the Rex-1 (Zfp-42) Gene', Mol Cell Endocrinol, 195 (2002), 119-33. 57 L. Venturini, J. You, M. Stadler, R. Galien, V. Lallemand, M. H. Koken, M. G. Mattei, A. Ganser, P. Chambon, R. Losson, and H. de The, 'Tif1gamma, a Novel Member of the Transcriptional Intermediary Factor 1 Family', Oncogene, 18 (1999), 1209-17. 58 L. G. Wang, and J. W. Chiao, 'Prostate Cancer Chemopreventive Activity of Phenethyl Isothiocyanate through Epigenetic Regulation (Review)', Int J Oncol, 37 (2010), 533-9. 59 C. Wanka, J. P. Steinbach, and J. Rieger, 'Tp53-Induced Glycolysis and Apoptosis Regulator (Tigar) Protects Glioma Cells from Starvation-Induced Cell Death by up-Regulating Respiration and Improving Cellular Redox Homeostasis', J Biol Chem, 287 (2012), 33436-46. 60 P. S. Ward, and C. B. Thompson, 'Metabolic Reprogramming: A Cancer Hallmark Even Warburg Did Not Anticipate', Cancer Cell, 21 (2012), 297-308. 61 D. Yang, Y. Jiang, and F. C. He, '[Kap-1, a Scaffold Protein in Transcription Regulation]', Yi Chuan, 29 (2007), 131-6. 62 J. S. You, and P. A. Jones, 'Cancer Genetics and Epigenetics: Two Sides of the Same Coin?', Cancer Cell, 22 (2012), 9-20. 63 J. Yu, M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. Nie, G. A. Jonsdottir, V. Ruotti, R. Stewart, Slukvin, II, and J. A. Thomson, 'Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells', Science, 318 (2007), 1917-20. 64 J. Zhang, and L. Li, 'Stem Cell Niche: Microenvironment and Beyond', Journal of Biological Chemistry, 283 (2008), 9499-503. 65 Y. Zhang, H. H. Ng, H. Erdjument-Bromage, P. Tempst, A. Bird, and D. Reinberg, 'Analysis of the Nurd Subunits Reveals a Histone Deacetylase Core Complex and a Connection with DNA Methylation', Genes Dev, 13 (1999), 1924-35. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17152 | - |
| dc.description.abstract | 腫瘤微環境是影響腫瘤幹性(stem ness)很重要的因子,而腫瘤環境酸化,是腫瘤微環境其中一個特性。在養分缺失的壓力下,腫瘤細胞往往轉向提高醣解作用,再從中間代謝物合成生存所需物質,這現象就是瓦式效應。但是大量走醣解作用會造成乳酸和氫離子產生,因此腫瘤必須強制性利用離子通道的排除,令腫瘤環境酸化。而微環境酸化已經被證實和腫瘤幹性維持有關,此外變成有幹性的腫瘤,是藉由Epigenetic改寫過程達成。而TIF1 β是一個轉錄的輔助因子,可以和HP1的結合或是其他轉錄因子結合,招喚Epigenetic 接受者影響染色質的組成調控基因表現,再加上TIF1β本身可以進行後轉譯修飾像是磷酸化。磷酸化的TIF1β的s473位子坐落在HP1結合區域的上游序列附近,被證實磷酸化S473位子會影響TIF1β和HP1的結合,影響到細胞分化。本文藉由組織免疫染色發現在口腔癌病人組織中TIF1β-S473的磷酸表現和腫瘤酸化有關。而在短期酸化細胞實驗,也發現TIF1β-S473的磷酸表現在惡性腫瘤裡比較多。此外在長期酸化處理下,邊緣細胞(side population)比率增加以及幹性相關蛋白表現和TIF1β-S473的磷酸表現下降有相關,並藉由螢光免疫染色的數據解釋在長期酸化處理下S473磷酸化,TIF1β在染色質的位子有了變動,跑去和幹性相關基因結合而使TIF1β不易被磷酸化。這些證據都暗示TIF1β-S473的磷酸化可能在癌幹細胞的幹性維持扮演重要腳色。因此進一步的研究是結合ENCODE資料庫,並用染色質免疫沉澱法,進行次世代定序法來驗證。探討在酸化時,s473磷酸化時會和那些轉錄因子、組蛋白酵素作用以及座落在哪段 DNA上,對於腫瘤的幹性研究和治療上有很大的幫助。 | zh_TW |
| dc.description.abstract | The tumors microenvironment is the important factor for tumor stem ness. The acid stress is one of the characteristics of the tumor microenvironment. Under the pressure of the missing nutrients causes tumor to go glycolytic for growth. This phenomenon is Warburg effect .But it also product a lot of lactic acid and hydrogen ions, the tumor must be excluded by some ion channels. And then, this is reason why tumor environment is acid. Tumor microenvironment has been proven related with tumor stem-ness and the tumor becomes stem-ness tumor, which the rewriting process is by Epigenetic mechanism. Transcription intermediary factor 1(TIF1β) is a transcription intermediary factor which involved in epigenetic regulation and maintenance of pluripotency signal pathway. TIF1β can regulate chromatin remodeling and gene expression through the interaction with heterochromatin protein 1(HP1) and with other transcription factors. TIF1β also has post-translational modifications such as phosphorylation. The serine 473 residue of TIF1β seat is located upstream sequence of HP1 binding domain which has been confirmed that the phosphorylation of TIF1β-S473 form will interfere HP1 binding and finally affects cell differentiation and stem ness.
In this study, phosphorylation of TIF1β -S473 form expression is related with oral cancer patient by immunohistochemistry. Under short time acidification, the phosphorylation of TIF1β -S473 form expression has increased in malignant tumors. In addition, in the long-term acidification, the side population cells percentages have increased, but phosphorylation of TIF1β -S473 form expression is decreased. From here, immunofluorescence data explains long term acidification makes phosphorylation of TIF1β -S473 form, let TIF1β change chromatin site, interacting with stem ness-related genes and then TIF1β cans not be easy phosphorylation. These results suggest that phosphorylation of TIF1β -S473 form may play important role in regulating stem ness in cancer stem cells. Further studies can combine with ENCODE (Encyclopedia of DNA Elements) data bank to find all functional elements in the human genome. And then use chromatin immune precipitation sequencing to do next-generation sequencing .By using two methods to verify that phosphorylation of TIF1β- S473 form in acidosis and in normal microenvironment which transcription factors and histone enzymes will interact with TIF1β? And on which genomics fragment? Taken together, if we understand the mechanism of TIF1β in maintain the stem ness, it can be a great development of cancer therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:58:40Z (GMT). No. of bitstreams: 1 ntu-102-R00450011-1.pdf: 13358370 bytes, checksum: 05082589b0a762c1260082bc8a71be13 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii ABSTRACT iv CONTENTS 1 INTERODUCTION 4 1.1 Cancer stem cell hypothesis 4 1.2 Microenvironment and Cancer 5 1.3 Warburg effect and Acidosis 7 1.4 Epigenetics and Cancer 9 1.5 Transcription Intermediary Factor 1 beta (TIF1β) 11 1.6 Hypothesis 13 MATERIALS AND METHODS 15 2.1 Antibodies 15 2.2 Cells Culture 15 2.3 Acidosis Experiments and Preparation of pH medium 15 2.4 Western Blot Analysis 16 2.5 Immunohistochemistry 16 2.6 Immunofluorescence 17 2.7 Chromatin Immune-Precipitation Assays 17 2.8 Silver Stain: 19 2.9 In Gel Digestion 20 2.10 Side Population 21 2.11 Implantation of Xenograft 21 2.12 Tumor Volume Measurement 22 2.13 ENCODE data bank 22 RESULTS 24 Expression of TIF1β and its pS473 form are high in oral cancer 24 Phosphorylation of TIF1β at S473 residue increases in malignant cell lines under acid stress 24 Phosphorylation of Tif1β at S473 increases under acid stress 25 Time course percentage of Tif1β phosphorylation at S473 under acid stress 26 Acid treatment does not affect CLS1-2 cells morphology 27 Acid treatment does not induce cell apoptosis but affect the growth retardation 27 Long-term cultivation in acidic environment promotes stem-ness properties of tumors 28 Phosphorylation of TIF1β at S473 is suppressed under long-term cultivation in acidic environment 29 Phosphorylation of TIF1β at S473 expression is decreased related with stem ness under long-term cultivation in acidic environment 30 The long-term cultivation in acidic environment from human lung tumors xenografted in NOD/SCID mice have stem-ness properties 30 Phosphorylation of TIF1β at S473 increased in nucleolus upon acid stress 31 Phosphorylation of TIF1β at S473 increased in nucleolus upon acid stress 32 Check the DNA fragment sizes after sonication 33 Check the Chip-IP effectiveness under the acid stress 34 Silver stain to check the western blot bend after Chip-IP 35 Mass Spectrometry for protein identification 35 Protein partners of TIF1β involved in stem-ness pathway: Nanog, Oct4, Dex1, Rex1, and Angptl4 36 DISCUSSION 39 CONCLUSION 43 FUTURE WORK 44 REFERENCES 46 FIGRES AND LEGENDS 51 SUPPLEMENTARY DATA 77 APPENDIX 89 | |
| dc.language.iso | en | |
| dc.subject | TIF1β | zh_TW |
| dc.subject | ENCODE | zh_TW |
| dc.subject | 瓦式效應 | zh_TW |
| dc.subject | 癌幹細胞 | zh_TW |
| dc.subject | 酸化 | zh_TW |
| dc.subject | 幹性維持 | zh_TW |
| dc.subject | Warburg effect | en |
| dc.subject | ENCODE | en |
| dc.subject | Cancer stem cell | en |
| dc.subject | TIF1β | en |
| dc.subject | Stemness | en |
| dc.subject | Acid stress | en |
| dc.title | 微環境酸化對於腫瘤細胞幹性維持之影響 | zh_TW |
| dc.title | Effects of Microenvironment Acidification
on the Maintenance of Stemness in Cancer Cells | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 周涵怡(Han-Yi E. Chou) | |
| dc.contributor.oralexamcommittee | 江俊斌(Chun-Pin Chiang) | |
| dc.subject.keyword | 癌幹細胞,幹性維持,TIF1β,酸化,瓦式效應,ENCODE, | zh_TW |
| dc.subject.keyword | Cancer stem cell,TIF1β,Stemness,Warburg effect,Acid stress,ENCODE, | en |
| dc.relation.page | 94 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-17 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| 顯示於系所單位: | 口腔生物科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 13.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
