請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17142
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 盧彥文 | |
dc.contributor.author | Kan-Chien Li | en |
dc.contributor.author | 李侃謙 | zh_TW |
dc.date.accessioned | 2021-06-07T23:58:11Z | - |
dc.date.copyright | 2013-09-25 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-17 | |
dc.identifier.citation | Bortolin, S., M. Black, H. Modi, I. Boszko, D. Kobler, D. Fieldhouse, E. Lopes, J. M. Lacroix, R. Grimwood, P. Wells, R. Janeczko and R. Zastawny. 2004. Analytical validation of the tag-it high-throughput microsphere-based universal array genotyping platform: Application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms. Clinical Chemistry 50:2028-2036.
Brookes, A. J. 1999. The essence of SNPs. Gene 234:177-186. Chang, P. 2010. Using High-Throughput Single Nucleotide Polymorphism Genotyping to Reveal Litter Size-Related Molecular Markers in Landrace Sows. National Taiwan University. Master dissertation: Chen, Y.-H. 2008. The identification of litter size related single nucleotide polymorphisms from differentially regulated genes of early embryo in Landrace sows. National Taiwan University. Master dissertation: Chin, C. D., T. Laksanasopin, Y. K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J. Wang, H. Moore, R. Rouse and G. Umviligihozo. 2011. Microfluidics-based diagnostics of infectious diseases in the developing world. Nature medicine 17:1015-1019. Chung, T. D. and H. C. Kim. 2007. Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28:4511-4520. Crews, N., C. T. Wittwer, J. Montgomery, R. Pryor and B. Gale. 2009. Spatial DNA Melting Analysis for Genotyping and Variant Scanning. Analytical Chemistry 81:2053-2058. Deng, T., G. M. Whitesides, M. Radhakrishnan, G. Zabow and M. Prentiss. 2001. Manipulation of magnetic microbeads in suspension using micromagnetic systems fabricated with soft lithography. Applied physics letters 78:1775-1777. Eddings, M. A., M. A. Johnson and B. K. Gale. 2008. Determining the optimal PDMS-PDMS bonding technique for microfluidic devices. J. Micromech. Microeng. 18:067001. Griffiths, A. D. and D. S. Tawfik. 2006. Miniaturising the laboratory in emulsion droplets. Trends in biotechnology 24:395-402. Gundry, C. N., J. G. Vandersteen, G. H. Reed, R. J. Pryor, J. Chen and C. T. Wittwer. 2003. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes. Clinical Chemistry 49:396-406. Howell, W. M., M. Jobs, U. Gyllensten and A. J. Brookes. 1999. Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms. Nature biotechnology 17:87-88. Huh, D., W. Gu, Y. Kamotani, J. B. Grotberg and S. Takayama. 2005. Microfluidics for flow cytometric analysis of cells and particles. Physiological measurement 26:R73. Jones, S., G. Evans and K. Galvin. 1999. Bubble nucleation from gas cavities—a review. Advances in colloid and interface science 80:27-50. Juodkazis, S., N. Mukai, R. Wakaki, A. Yamaguchi, S. Matsuo and H. Misawa. 2000. Reversible phase transitions in polymer gels induced by radiation forces. Nature 408:178-181. Kao, P.-C. 2012. Single Nucleotide Polymorphism Detection Using DASH Technology in Bead-Based Microfluidics. National Taiwan University. Master dissertation: Kim, S. and A. Misra. 2007. SNP genotyping: technologies and biomedical applications. Annu. Rev. Biomed. Eng. 9:289-320. Kumaresan, P., C. J. Yang, S. A. Cronier, R. G. Blazej and R. A. Mathies. 2008. High-throughput single copy DNA amplification and cell analysis in engineered nanoliter droplets. Analytical chemistry 80:3522-3529. Lavin, M. F. and Y. Shiloh. 1997. The genetic defect in ataxia-telangiectasia. Annual review of immunology 15:177-202. McClain, M. A., C. T. Culbertson, S. C. Jacobson and J. M. Ramsey. 2001. Flow cytometry of Escherichia coli on microfluidic devices. Analytical Chemistry 73:5334-5338. Millican, D. S. and I. M. Bird. 1997. A general method for single-stranded DNA probe generation. Anal. Biochem. 249:114-117. Nakayama, T., Y. Kurosawa, S. Furui, K. Kerman, M. Kobayashi, S. R. Rao, Y. Yonezawa, K. Nakano, A. Hino and S. Yamamura. 2006. Circumventing air bubbles in microfluidic systems and quantitative continuous-flow PCR applications. Analytical and bioanalytical chemistry 386:1327-1333. Ng, J. K.-K. and W.-T. Liu. 2006. Miniaturized platforms for the detection of single-nucleotide polymorphisms. Analytical and bioanalytical chemistry 386:427-434. Pierce, K. E., J. A. Sanchez, J. E. Rice and L. J. Wangh. 2005. Linear-After-The-Exponential (LATE)-PCR: Primer design criteria for high yields of specific singlestranded DNA and improved real-time detection. Proc. Natl. Acad. Sci. U. S. A. 102:8609-8614. Quake, S. 2002. A nanoliter rotary device for polymerase chain reaction. Electrophoresis 23:1531-1536. Roda, A., M. Mirasoli, L. S. Dolci, A. Buragina, F. Bonvicini, P. Simoni and M. Guardigli. 2011. Portable device based on chemiluminescence lensless imaging for personalized diagnostics through multiplex bioanalysis. Analytical Chemistry 83:3178-3185. Rogatcheva, M. B., K. L. Fritz, L. A. Rund, C. B. Pollock, J. E. Beever, C. M. Counter and L. B. Schook. 2007. Characterization of the porcine ATM gene: Towards the generation of a novel non-murine animal model for Ataxia-Telangiectasia. Gene 405:27-35. Russom, A., A. Ahmadian, H. Andersson, P. Nilsson and G. Stemme. 2003. Single‐nucleotide polymorphism analysis by allele‐specific extension of fluorescently labeled nucleotides in a microfluidic flow‐through device. Electrophoresis 24:158-161. Savitzky, A. and M. J. Golay. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry 36:1627-1639. Schork, N. J., D. Fallin and J. S. Lanchbury. 2000. Single nucleotide polymorphisms and the future of genetic epidemiology. Clin. Genet. 58:250-264. Shen, H. B., H. Q. Zhou, Y. B. Wang, Z. N. Yang and C. Wang. 2005. Asymmetric PCR using the primers anchored on the surface of magnetic nanoparticles. Bulletin of the Chemical Society of Japan 78:1649-1653. Sun, K., A. Yamaguchi, Y. Ishida, S. Matsuo and H. Misawa. 2002. A heater-integrated transparent microchannel chip for continuous-flow PCR. Sensors and Actuators B: Chemical 84:283-289. Tüdős, A. J., G. A. Besselink and R. B. Schasfoort. 2001. Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip 1:83-95. Takatsu, K., T. Yokomaku, S. Kurata and T. Kanagawa. 2004. A FRET-based analysis of SNPs without fluorescent probes. Nucleic Acids Research 32:e156. Thompson, J. A., X. G. Du, J. M. Grogan, M. G. Schrlau and H. H. Bau. 2010. Polymeric microbead arrays for microfluidic applications. J. Micromech. Microeng. 20: Tong, A. K., Z. Li, G. S. Jones, J. J. Russo and J. Ju. 2001. Combinatorial fluorescence energy transfer tags for multiplex biological assays. Nat Biotech 19:756-759. Wang, D. G., J.-B. Fan, C.-J. Siao, A. Berno, P. Young, R. Sapolsky, G. Ghandour, N. Perkins, E. Winchester and J. Spencer. 1998. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077-1082. Wen-Hsiung Li, L. A. S. 1991. Low nucleotide diversity in man. Whitesides, G. M. 2006. The origins and the future of microfluidics. Nature 442:368-373. Wittwer, C. T., G. H. Reed, C. N. Gundry, J. G. Vandersteen and R. J. Pryor. 2003. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical chemistry 49:853-860. Zhang, C. and D. Xing. 2007. Miniaturized PCR chips for nucleic acid amplification and analysis: latest advances and future trends. Nucleic Acids Research 35:4223-4237. Zhang, H., T. Xu, C.-W. Li and M. Yang. 2010. A microfluidic device with microbead array for sensitive virus detection and genotyping using quantum dots as fluorescence labels. Biosensors and Bioelectronics 25:2402-2407. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17142 | - |
dc.description.abstract | 單核苷酸多型性 (Single Nucleotide Polymorphism, SNP)為去氧核醣核酸(DNA)的序列中發生一個鹼基對的變異。這類的變異若發生在編碼區則有可能引起蛋白質氨基酸編碼改變進而影響原本正常功能的表現。檢測這類的基因變異,去氧核醣核酸熔解曲線(DNA熔解曲線)的檢測方式是一個非常經濟且有效的手段。近年來,許多研究將微流體平台大量應用於熔解曲線的分析,主因於其技術不但可以大幅減少使用試劑,並且能微小化檢測平台,成為重點照護的檢測裝置。目前以微流體檢測DNA熔解曲線研究中,為了避免檢體在前處理及檢測時交叉污染,只能以單次檢測單項、固定同一檢體於個別區域等方式進行低通量的檢測。為了改善這些限制,本研究以毛細血管擴張性運動失調突變基因(ataxia-telangiectasia mutated, ATM) 為例,將個別檢體固定於不同群體的微珠上,並且循序注入內建微溫度場的微流道中進行基因檢測,成功由藍瑞斯母豬取得之基因體DNA完成位點ATM-A的基因分型。 | zh_TW |
dc.description.abstract | Deoxyribonucleic acid (DNA) melting analysis is a powerful tool in genotyping and mutation scanning. The recent development in microfluidics further promotes melting analysis within a miniaturized device, which not only can reduce the reagent cost but also provide the possibility to perform point-of-care molecular diagnosis. The DNA melting analysis in microfluidic devices usually resorts to solid or liquid phase on sample preparations, in which either DNA immobilization on channel surfaces is required or only single analysis is allowed. To address these limitations, a bead-based melting analysis in continuous flow configuration is proposed. Our device is tested on detecting single nucleotide polymorphisms (SNPs) - one of the most important DNA sequence variations for human, animals and other species. The samples with ataxia telangiectasia-mutated (ATM) genes from Landrace sows, which play important roles in total number of piglets born, number born alive and average birth weight due to its differential expression between the morula and blastocyst stages, were chosen as our SNP genotyping candidates. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:58:11Z (GMT). No. of bitstreams: 1 ntu-102-R00631034-1.pdf: 3360746 bytes, checksum: 479d1c2bb1b73176fa14274271e8cdd5 (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii List of Figures vii List of Tables xii Chapter 1 Introduction 1 1.1 Single Nucleotide Polymorphism and Ataxia-Telangiectasia Mutate 1 1.2 Microfluidic Technology 2 1.3 Overall Structure of Thesis 3 Chapter 2 Literature Review 4 2.1 Single Nucleotide Polymorphism detection Strategies 5 2.2 Melting Curve Analysis for Genotyping 9 2.3 Bead-Based Microfluidics Device 12 2.4 Integrated Temperature Control System with Microfluidic Device 14 Chapter 3 Materials and Methods 16 3.1 ATM Gene Preparation 17 3.1.1 Symmetric Polymerase Chain Reaction 18 3.1.2 Asymmetric Polymerase Chain Reaction 20 3.2 Device Fabrication 22 3.2.1 Fabrication for Microchannel 22 3.2.2 Fabrication for ITO Heater and Thermometers 25 3.3 Chip Design 27 3.3.1 Microchannel Design 27 3.3.2 Heater and Thermometer Design 29 3.3.3 Temperature measurement 30 3.3.4 Temperature Control Method 31 3.4 Bead-based Melting Strategies 32 3.4.1 Melting Protocol 34 3.5 Data Acquisition on Fluorescent Images 38 3.5.1 Melting Curve Analysis 39 3.6 Genotyping Validation 40 Chapter 4 Results and Discussion 41 4.1 Temperature Calibration 42 4.2 Temperature Control System 45 4.3 Microbead Manipulation Experiment 48 4.4 Melting Curve Analysis 51 4.4.1 Melting curve analysis by NTU SNP detection system 51 4.4.2 Melting Curve Analysis by Rotor-Gene Q System 53 4.4.3 Comparisons of the bead-based SNP Detection System and Rotor-Gene Q System 55 4.4.4 Relationship between Heating Rate and Melting Temperature 59 Chapter 5 Conclusions 63 5.1 Conclusions 63 5.2 Future Prospects 64 Appendix I 66 Appendix II 69 Appendix III 71 Appendix IV 74 Reference 76 | |
dc.language.iso | en | |
dc.title | 利用微珠與微流道溫度梯度場分析熔解曲線進行單核苷酸多態性檢測 | zh_TW |
dc.title | Bead-based Melting Analysis in Temperature-gradient Microchannel for Single Nucleotide Polymorphism Detection | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 丁詩同,王倫,林恩仲,范士岡 | |
dc.subject.keyword | 微珠,微流道,單核?酸多型性,氧核醣核酸熔解曲線分析,毛細血管擴張性運動失調突變基因, | zh_TW |
dc.subject.keyword | microfluidics,single nucleotide polymorphisms,ataxia telangiectasia-mutated,bead-based melting analysis, | en |
dc.relation.page | 68 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 3.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。