請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17130
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 郭彥彬 | |
dc.contributor.author | Huan-Ching Chiang | en |
dc.contributor.author | 江桓慶 | zh_TW |
dc.date.accessioned | 2021-06-07T23:57:38Z | - |
dc.date.copyright | 2013-09-24 | |
dc.date.issued | 2013 | |
dc.date.submitted | 2013-08-17 | |
dc.identifier.citation | Angelopoulos AP, Goaz PW (1972). Incidence of diphenylhydantoin gingival hyperplasia. Oral surgery, oral medicine, and oral pathology 34(6):898-906.
Baigent C, Keech A, Kearney PM, Blackwell L, Buck G, Pollicino C et al. (2005). Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493):1267-1278. Baptista IP (2002). Hereditary gingival fibromatosis: a case report. Journal of clinical periodontology 29(9):871-874. Barclay S, Thomason JM, Idle JR, Seymour RA (1992). The incidence and severity of nifedipine-induced gingival overgrowth. Journal of clinical periodontology 19(5):311-314. Black SA, Jr., Trackman PC (2008). Transforming growth factor-beta1 (TGFbeta1) stimulates connective tissue growth factor (CCN2/CTGF) expression in human gingival fibroblasts through a RhoA-independent, Rac1/Cdc42-dependent mechanism: statins with forskolin block TGFbeta1-induced CCN2/CTGF expression. The Journal of biological chemistry 283(16):10835-10847. Bogatkevich GS, Tourkina E, Silver RM, Ludwicka-Bradley A (2001). Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. The Journal of biological chemistry 276(48):45184-45192. Bolzani G, Della Coletta R, Martelli Junior H, Martelli Junior H, Graner E (2000). Cyclosporin A inhibits production and activity of matrix metalloproteinases by gingival fibroblasts. Journal of periodontal research 35(1):51-58. Burke JP, Watson RW, Murphy M, Docherty NG, Coffey JC, O'Connell PR (2009). Simvastatin impairs smad-3 phosphorylation and modulates transforming growth factor beta1-mediated activation of intestinal fibroblasts. The British journal of surgery 96(5):541-551. Chambers RC, Leoni P, Blanc-Brude OP, Wembridge DE, Laurent GJ (2000). Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. The Journal of biological chemistry 275(45):35584-35591. Chambers RC, Laurent GJ (2002). Coagulation cascade proteases and tissue fibrosis. Biochemical Society transactions 30(2):194-200. Chan CP, Chang MC, Wang YJ, Chen LI, Tsai YL, Lee JJ et al. (2008). Thrombin activates Ras-CREB/ATF-1 signaling and stimulates c-fos, c-jun, and c-myc expression in human gingival fibroblasts. Journal of periodontology 79(7):1248-1254. Chang MC, Chan CP, Wu HL, Chen RS, Lan WH, Chen YJ et al. (2001). Thrombin-stimulated growth, clustering, and collagen lattice contraction of human gingival fibroblasts is associated with its protease activity. Journal of periodontology 72(3):303-313. Chen YW, Yang WH, Wong MY, Chang HH, Yen-Ping Kuo M (2012). Curcumin inhibits thrombin-stimulated connective tissue growth factor (CTGF/CCN2) production through c-Jun NH2-terminal kinase suppression in human gingival fibroblasts. Journal of periodontology 83(12):1546-1553. Coletta RD, Almeida OP, Ferreira LR, Reynolds MA, Sauk JJ (1999). Increase in expression of Hsp47 and collagen in hereditary gingival fibromatosis is modulated by stress and terminal procollagen N-propeptides. Connective tissue research 40(4):237-249. Coletta RD, Graner E (2006). Hereditary gingival fibromatosis: a systematic review. Journal of periodontology 77(5):753-764. Coughlin SR (2000). Thrombin signalling and protease-activated receptors. Nature 407(6801):258-264. Darby I, Skalli O, Gabbiani G (1990). Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Laboratory investigation; a journal of technical methods and pathology 63(1):21-29. Dawes KE, Gray AJ, Laurent GJ (1993). Thrombin stimulates fibroblast chemotaxis and replication. European journal of cell biology 61(1):126-130. de Andrade CR, Cotrin P, Graner E, Almeida OP, Sauk JJ, Coletta RD (2001). Transforming growth factor-beta1 autocrine stimulation regulates fibroblast proliferation in hereditary gingival fibromatosis. Journal of periodontology 72(12):1726-1733. Desmouliere A, Rubbia-Brandt L, Abdiu A, Walz T, Macieira-Coelho A, Gabbiani G (1992). Alpha-smooth muscle actin is expressed in a subpopulation of cultured and cloned fibroblasts and is modulated by gamma-interferon. Experimental cell research 201(1):64-73. Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. The Journal of cell biology 122(1):103-111. Desmouliere A, Gabbiani G (1994). Modulation of fibroblastic cytoskeletal features during pathological situations: the role of extracellular matrix and cytokines. Cell motility and the cytoskeleton 29(3):195-203. Doufexi A, Mina M, Ioannidou E (2005). Gingival overgrowth in children: epidemiology, pathogenesis, and complications. A literature review. Journal of periodontology 76(1):3-10. Eddy RJ, Petro JA, Tomasek JJ (1988). Evidence for the nonmuscle nature of the 'myofibroblast' of granulation tissue and hypertropic scar. An immunofluorescence study. The American journal of pathology 130(2):252-260. Ejeil AL, Igondjo-Tchen S, Ghomrasseni S, Pellat B, Godeau G, Gogly B (2003). Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva. Journal of periodontology 74(2):188-195. Ellis JS, Seymour RA, Taylor JJ, Thomason JM (2004). Prevalence of gingival overgrowth in transplant patients immunosuppressed with tacrolimus. Journal of clinical periodontology 31(2):126-131. Fletcher JP (1966). Gingival abnormalities of genetic origin: a preliminary communication with special reference to hereditary generalized gingival fibromatosis. J Dent Res 45(3):597-612. Gabbiani G (1994). Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathology, research and practice 190(9-10):851-853. Grinnell F (1994). Fibroblasts, myofibroblasts, and wound contraction. The Journal of cell biology 124(4):401-404. Grunert S, Jechlinger M, Beug H (2003). Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nature reviews Molecular cell biology 4(8):657-665. Hakkinen L, Csiszar A (2007). Hereditary gingival fibromatosis: characteristics and novel putative pathogenic mechanisms. J Dent Res 86(1):25-34. Hart TC, Zhang Y, Gorry MC, Hart PS, Cooper M, Marazita ML et al. (2002). A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. American journal of human genetics 70(4):943-954. Hinz B (2007). Formation and function of the myofibroblast during tissue repair. The Journal of investigative dermatology 127(3):526-537. Honda E, Park AM, Yoshida K, Tabuchi M, Munakata H (2013). Myofibroblasts: biochemical and proteomic approaches to fibrosis. The Tohoku journal of experimental medicine 230(2):67-73. Horiba K, Fukuda Y (1994). Synchronous appearance of fibronectin, integrin alpha 5 beta 1, vinculin and actin in epithelial cells and fibroblasts during rat tracheal wound healing. Virchows Archiv : an international journal of pathology 425(4):425-434. Hou L, Ravenall S, Macey MG, Harriott P, Kapas S, Howells GL (1998). Protease-activated receptors and their role in IL-6 and NF-IL-6 expression in human gingival fibroblasts. Journal of periodontal research 33(4):205-211. Howell DC, Johns RH, Lasky JA, Shan B, Scotton CJ, Laurent GJ et al. (2005). Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. The American journal of pathology 166(5):1353-1365. Hu Y, Liang H, Du Y, Zhu Y, Wang X (2010). Curcumin inhibits transforming growth factor-beta activity via inhibition of Smad signaling in HK-2 cells. American journal of nephrology 31(4):332-341. Hupp WS (2001). Seizure disorders. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics 92(6):593-596. Ilgenli T, Atilla G, Baylas H (1999). Effectiveness of periodontal therapy in patients with drug-induced gingival overgrowth. Long-term results. Journal of periodontology 70(9):967-972. Kahn ML, Nakanishi-Matsui M, Shapiro MJ, Ishihara H, Coughlin SR (1999). Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. The Journal of clinical investigation 103(6):879-887. Kang HC, Nan JX, Park PH, Kim JY, Lee SH, Woo SW et al. (2002). Curcumin inhibits collagen synthesis and hepatic stellate cell activation in-vivo and in-vitro. The Journal of pharmacy and pharmacology 54(1):119-126. Kato T, Okahashi N, Kawai S, Kato T, Inaba H, Morisaki I et al. (2005). Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin. Journal of periodontology 76(6):941-950. Kelekis-Cholakis A, Wiltshire WA, Birek C (2002). Treatment and long-term follow-up of a patient with hereditary gingival fibromatosis: a case report. Journal (Canadian Dental Association) 68(5):290-294. Kim JY, Park SH, Cho KS, Kim HJ, Lee CK, Park KK et al. (2008). Mechanism of azithromycin treatment on gingival overgrowth. J Dent Res 87(11):1075-1079. Klass BR, Branford OA, Grobbelaar AO, Rolfe KJ (2010). The effect of epigallocatechin-3-gallate, a constituent of green tea, on transforming growth factor-beta1-stimulated wound contraction. Wound Repair Regen 18(1):80-88. Lama VN, Phan SH (2006). The extrapulmonary origin of fibroblasts: stem/progenitor cells and beyond. Proceedings of the American Thoracic Society 3(4):373-376. Leask A, Abraham DJ (2003). The role of connective tissue growth factor, a multifunctional matricellular protein, in fibroblast biology. Biochemistry and cell biology = Biochimie et biologie cellulaire 81(6):355-363. Li J, Qu X, Yao J, Caruana G, Ricardo SD, Yamamoto Y et al. (2010). Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 59(10):2612-2624. Liu Y (2004). Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. Journal of the American Society of Nephrology : JASN 15(1):1-12. Maheshwari RK, Singh AK, Gaddipati J, Srimal RC (2006). Multiple biological activities of curcumin: a short review. Life sciences 78(18):2081-2087. Mallat A, Gallois C, Tao J, Habib A, Maclouf J, Mavier P et al. (1998). Platelet-derived growth factor-BB and thrombin generate positive and negative signals for human hepatic stellate cell proliferation. Role of a prostaglandin/cyclic AMP pathway and cross-talk with endothelin receptors. The Journal of biological chemistry 273(42):27300-27305. Mariotti A (1999). Dental plaque-induced gingival diseases. Annals of periodontology / the American Academy of Periodontology 4(1):7-19. Martelli-Junior H, Cotrim P, Graner E, Sauk JJ, Coletta RD (2003). Effect of transforming growth factor-beta1, interleukin-6, and interferon-gamma on the expression of type I collagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis. Journal of periodontology 74(3):296-306. Martelli-Junior H, Lemos DP, Silva CO, Graner E, Coletta RD (2005). Hereditary gingival fibromatosis: report of a five-generation family using cellular proliferation analysis. Journal of periodontology 76(12):2299-2305. Masamune A, Suzuki N, Kikuta K, Satoh M, Satoh K, Shimosegawa T (2006). Curcumin blocks activation of pancreatic stellate cells. Journal of cellular biochemistry 97(5):1080-1093. Mavrogiannis M, Ellis JS, Seymour RA, Thomason JM (2006a). The efficacy of three different surgical techniques in the management of drug-induced gingival overgrowth. Journal of clinical periodontology 33(9):677-682. Mavrogiannis M, Ellis JS, Thomason JM, Seymour RA (2006b). The management of drug-induced gingival overgrowth. Journal of clinical periodontology 33(6):434-439. Michel D, Harmand MF (1990). Fibrin seal in wound healing: effect of thrombin and [Ca2+] on human skin fibroblast growth and collagen production. Journal of dermatological science 1(5):325-333. Modeer T, Dahllof G (1987). Development of phenytoin-induced gingival overgrowth in non-institutionalized epileptic children subjected to different plaque control programs. Acta odontologica Scandinavica 45(2):81-85. Montebugnoli L, Servidio D, Bernardi F (2000). The role of time in reducing gingival overgrowth in heart-transplanted patients following cyclosporin therapy. Journal of clinical periodontology 27(8):611-614. North AJ, Gimona M, Lando Z, Small JV (1994). Actin isoform compartments in chicken gizzard smooth muscle cells. J Cell Sci 107 ( Pt 3)(445-455. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J (1994). Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America 91(20):9208-9212. O'Neil TC, Figures KH (1982). The effects of chlorhexidine and mechanical methods of plaque control on the recurrence of gingival hyperplasia in young patients taking phenytoin. British dental journal 152(4):130-133. Ou XM, Wen FQ, Uhal BD, Feng YL, Huang XY, Wang T et al. (2009). Simvastatin attenuates experimental small airway remodelling in rats. Respirology (Carlton, Vic) 14(5):734-745. Park G, Yoon BS, Moon JH, Kim B, Jun EK, Oh S et al. (2008). Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. The Journal of investigative dermatology 128(10):2429-2441. Park IH, Park SJ, Cho JS, Moon YM, Moon JH, Kim TH et al. (2012). Effect of simvastatin on transforming growth factor beta-1-induced myofibroblast differentiation and collagen production in nasal polyp-derived fibroblasts. American journal of rhinology & allergy 26(1):7-11. Patel S, Mason RM, Suzuki J, Imaizumi A, Kamimura T, Zhang Z (2006). Inhibitory effect of statins on renal epithelial-to-mesenchymal transition. American journal of nephrology 26(4):381-387. Pollard TD, Cooper JA (1986). Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annual review of biochemistry 55(987-1035. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999). Myofibroblasts. I. Paracrine cells important in health and disease. The American journal of physiology 277(1 Pt 1):C1-9. Ronnov-Jessen L, van Deurs B, Celis JE, Petersen OW (1990). Smooth muscle differentiation in cultured human breast gland stromal cells. Laboratory investigation; a journal of technical methods and pathology 63(4):532-543. Ronnov-Jessen L, Celis JE, Van Deurs B, Petersen OW (1992). A fibroblast-associated antigen: characterization in fibroblasts and immunoreactivity in smooth muscle differentiated stromal cells. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 40(4):475-486. Ronnov-Jessen L, Petersen OW (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Laboratory investigation; a journal of technical methods and pathology 68(6):696-707. Ronnov-Jessen L, Petersen OW (1996). A function for filamentous alpha-smooth muscle actin: retardation of motility in fibroblasts. The Journal of cell biology 134(1):67-80. Ronnov-Jessen L, Petersen OW, Bissell MJ (1996). Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiological reviews 76(1):69-125. Santi E, Bral M (1998). Effect of treatment on cyclosporine- and nifedipine-induced gingival enlargement: clinical and histologic results. The International journal of periodontics & restorative dentistry 18(1):80-85. Sappino AP, Skalli O, Jackson B, Schurch W, Gabbiani G (1988). Smooth-muscle differentiation in stromal cells of malignant and non-malignant breast tissues. International journal of cancer Journal international du cancer 41(5):707-712. Schoenenberger CA, Steinmetz MO, Stoffler D, Mandinova A, Aebi U (1999). Structure, assembly, and dynamics of actin filaments in situ and in vitro. Microscopy research and technique 47(1):38-50. Scotton CJ, Chambers RC (2007). Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132(4):1311-1321. Seymour RA, Smith DG, Rogers SR (1987). The comparative effects of azathioprine and cyclosporin on some gingival health parameters of renal transplant patients. A longitudinal study. Journal of clinical periodontology 14(10):610-613. Shi-Wen X, Leask A, Abraham D (2008). Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine & growth factor reviews 19(2):133-144. Shultz PJ, Knauss TC, Mene P, Abboud HE (1989). Mitogenic signals for thrombin in mesangial cells: regulation of phospholipase C and PDGF genes. The American journal of physiology 257(3 Pt 2):F366-374. Stoflet ES, Schmidt LJ, Elder PK, Korf GM, Foster DN, Strauch AR et al. (1992). Activation of a muscle-specific actin gene promoter in serum-stimulated fibroblasts. Molecular biology of the cell 3(10):1073-1083. Strachan D, Burton I, Pearson GJ (2003). Is oral azithromycin effective for the treatment of cyclosporine-induced gingival hyperplasia in cardiac transplant recipients? Journal of clinical pharmacy and therapeutics 28(4):329-338. Thorp M, DeMattos A, Bennett W, Barry J, Norman D (2000). The effect of conversion from cyclosporine to tacrolimus on gingival hyperplasia, hirsutism and cholesterol. Transplantation 69(6):1218-1220. Tipoe GL, Leung TM, Liong EC, Lau TY, Fung ML, Nanji AA (2010). Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273(1-3):45-52. Tipton DA, Dabbous MK (1998). Autocrine transforming growth factor beta stimulation of extracellular matrix production by fibroblasts from fibrotic human gingiva. Journal of periodontology 69(6):609-619. Tokgoz B, Sari HI, Yildiz O, Aslan S, Sipahioglu M, Okten T et al. (2004). Effects of azithromycin on cyclosporine-induced gingival hyperplasia in renal transplant patients. Transplantation proceedings 36(9):2699-2702. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349-363. Trackman PC, Kantarci A (2004). Connective tissue metabolism and gingival overgrowth. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists 15(3):165-175. Trejo J, Connolly AJ, Coughlin SR (1996). The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. The Journal of biological chemistry 271(35):21536-21541. Urakami C, Kurosaka D, Tamada K, Kishimoto S, Tezuka Y, Nishigori H (2012). Lovastatin alters TGF-beta-induced epithelial-mesenchymal transition in porcine lens epithelial cells. Current eye research 37(6):479-485. Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991). Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057-1068. Vural F, Ozcan MA, Ozsan GH, Demirkan F, Piskin O, Ates H et al. (2004). Gingival involvement in a patient with CD56+ chronic myelomonocytic leukemia. Leukemia & lymphoma 45(2):415-418. Walker CR, Jr., Tomich CE, Hutton CE (1980). Treatment of phenytoin-induced gingival hyperplasia by electrosurgery. Journal of oral surgery (American Dental Association : 1965) 38(4):306-311. Wallace K, Burt AD, Wright MC (2008). Liver fibrosis. Biochem J 411(1):1-18. Watterson KR, Lanning DA, Diegelmann RF, Spiegel S (2007). Regulation of fibroblast functions by lysophospholipid mediators: potential roles in wound healing. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society 15(5):607-616. Yagi S, Aihara K, Ikeda Y, Sumitomo Y, Yoshida S, Ise T et al. (2008). Pitavastatin, an HMG-CoA reductase inhibitor, exerts eNOS-independent protective actions against angiotensin II induced cardiovascular remodeling and renal insufficiency. Circulation research 102(1):68-76. Yagi S, Akaike M, Aihara K, Ishikawa K, Iwase T, Ikeda Y et al. (2010). Endothelial nitric oxide synthase-independent protective action of statin against angiotensin II-induced atrial remodeling via reduced oxidant injury. Hypertension 55(4):918-923. Yang WH, Kuo MY, Liu CM, Deng YT, Chang HH, Chang JZ (2013). Curcumin Inhibits TGFbeta1-induced CCN2 via Src, JNK, and Smad3 in Gingiva. J Dent Res 92(7):629-634. Zhang K, Rekhter MD, Gordon D, Phan SH (1994). Myofibroblasts and their role in lung collagen gene expression during pulmonary fibrosis. A combined immunohistochemical and in situ hybridization study. The American journal of pathology 145(1):114-125. Zheng S, Chen A (2004). Activation of PPARgamma is required for curcumin to induce apoptosis and to inhibit the expression of extracellular matrix genes in hepatic stellate cells in vitro. The Biochemical journal 384(Pt 1):149-157. Zoja C, Corna D, Gagliardini E, Conti S, Arnaboldi L, Benigni A et al. (2010). Adding a statin to a combination of ACE inhibitor and ARB normalizes proteinuria in experimental diabetes, which translates into full renoprotection. American journal of physiology Renal physiology 299(5):F1203-1211. 林威妮 (2011). 凝血酶誘導人類牙齦纖維母細胞結締組織生長因子表現之研究 (碩士論文), 臺灣大學. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17130 | - |
dc.description.abstract | 緒論:藥物引起的牙齦過度生長常因為無法換藥而難以從根本改善,因此手術切除術成為較常使用的方法。但手術後的復發率高,除了藥物本身的影響,傷口處會有大量的凝血酶聚集,除了幫助止血,傷口癒合外,也可能在此好發牙齦腫大的族群中,造成過度的細胞間質堆積,而造成再發率居高不下。研究目的:利用人類牙齦纖維母細胞,以凝血酶誘導,觀察肌纖維母細胞纖維化的標記物α型平滑肌肌動蛋白(α-SMA)的表現,並尋找可抑制此反應的抑制劑。材料與方法:本實驗利用人類牙齦纖維母細胞,以凝血酶處理細胞,以西方墨點法檢測α-SMA,並以不同的抑制劑(PP2, EGCG, lovastatin, and curcumin)合併凝血酶處理細胞,觀察α-SMA表現量的變化。結果:凝血酶會誘導人類牙齦纖維母細胞中α-SMA的表現,且使用的Src family抑制劑PP2及天然抑制劑 (EGCG and curcumin)及降血脂藥物(lovastatin)可有效抑制凝血酶所誘導的α-SMA表現。結論:凝血酶會經由Src誘導人類牙齦纖維母細胞中α-SMA的表現,EGCG、lovastatin和curcumin可抑制其表現。 | zh_TW |
dc.description.abstract | Introduction: The best way to treat drug-induced gingival overgrowth (DIGO) is changing medication. But we often encounter the situation that we can’t change the medication. In the situation, surgical intervention by gingivectomy or flap operation is the resolution of DIGO. However, the recurrence rate is high even under intensive follow up and good oral hyginene. Beside the effect of the medication, activation of thrombin around the wound, in addition to the function of hemostasis and wound healing, may also cause overdeposition of the extracellular matrix and the high recurrance rate of DIGO.
Purpose: To observe the expression of alpha smooth muscle actin (α-SMA), marker of myofibroblast and fibrotic activity, after the treatment of thrombin in human gingival fibroblasts. Then to try to find the inhibitor to inhibit this reaction. Material and method: Using Western blotting technique for analysis of α-SMA after treatment of thrombin in human gingival fibroblasts. Then after additional pre-treatment of the inhibitors (PP2, EGCG, lovastatin and curcumin), to observe the expression of α-SMA induced by thrombin. Result: Thrombin induces the expression of α-SMA. And the Src family inhibitor(PP2), natural inhibitors (EGCG and curcumin) and drug for cholesterol-lowering (lovastatin) can inhibit the expression of α-SMA induced by thrombin. Conclusion: Thrombin induced the expression of α-SMA through Src in human gingival fibroblasts. And it can be inhibited by EGCG, lovastatin and curcumin. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:57:38Z (GMT). No. of bitstreams: 1 ntu-102-R99422030-1.pdf: 1911535 bytes, checksum: 888241ae62b8d41aad73f4130e12a2ca (MD5) Previous issue date: 2013 | en |
dc.description.tableofcontents | 誌謝................................................................. I
摘要................................................................. II ABSTRACT.......................................................III 目錄.................................................................IV 圖目錄.............................................................VII 緒論..........................................................1 第一節 牙齦過度生長(Gingival overgrowth; GO)...............................................1 1-1 藥物誘發之牙齦過度生長 (Drug-induced gingival overgrowth; DIGO)..........................................................1 1-2 遺傳性牙齦纖維瘤病 (Hereditary gingival fibromatosis; HGF) ..........................................................2 第二節 藥物誘發之牙齦過度生長的可能治病治病機轉..........................................................2 2-1 細胞外基質代謝異常..........................................................2 2-2 細胞激素平衡異常..........................................................3 第三節 遺傳性牙齦纖維瘤病(HGF)的可能致病機轉..........................................................3 第四節 牙齦過度生長的治療策略..........................................................4 4-1 治療藥物誘發之牙齦過度生長(DIGO)..........................................................4 4-2 治療遺傳性牙齦纖維瘤病..........................................................6 第五節 傷口癒合(wound healing).......................................................... 6 第六節 凝血酶(thrombin)..........................................................7 6-1 凝血酶的簡介..........................................................7 6-2 蛋白酶活化受器(protease-activated receptors; PARs)..........................................................7 6-3 凝血酶與纖維化..........................................................8 第七節 肌纖維母細胞(myofibroblast)..........................................................9 第八節 α型平滑肌肌動蛋白(α-smooth muscle actins; α-SMA)..........................................................9 8-1 α-SMA的簡介..........................................................10 8-2 α-SMA在細胞中的表現..........................................................10 8-3 α-SMA與肌纖維母細胞 ..........................................................11 第九節 兒茶素EGCG..........................................................11 第十節 Lovastatin..........................................................12 第十一節 薑黃素 ( Curcumin )..........................................................13 研究目的..........................................................14 實驗材料與方法..........................................................15 第一節 細胞株與細胞培養..........................................................15 第二節 藥物處理 ..........................................................15 2-1 凝血酶..........................................................15 2-2 Inhibitor使用資料..........................................................16 第三節 西方墨點法 (Wester blotting)..........................................................16 3-1 蛋白質萃取 ..........................................................16 3-2 蛋白質濃度測定 (Total protein analysis)..........................................................16 3-3 膠體配置與電泳分析..........................................................17 3-4 蛋白質轉漬 (Protein transfer)..........................................................17 3-5 抗體使用以及顯影..........................................................18 3-6統計分析..........................................................18 結果 ..........................................................19 一、凝血酶可以誘導牙齦纖維母細胞(GF)α-SMA的表現..........................................................19 二、Src抑制劑PP2能夠抑制凝血酶誘導之牙齦纖維母細胞中α-SMA的表現 ..........................................................19 三、Src抑制劑PP2能夠抑制凝血酶誘導之牙齦纖維母細胞中CTGF的表現..........................................................19 四、EGCG、Lovastatin和Curcumin能夠抑制凝血酶誘導之牙齦纖維母細胞中α-SMA的表現..........................................................19 討論..........................................................21 結論..........................................................23 圖表..........................................................24 圖一、凝血酶在不同濃度下誘導牙齦纖維母細胞α-SMA的表現(A)及定量(B)..........................................................24 圖二、凝血酶在不同時間點下誘導牙齦纖維母細胞α-SMA的表現(A)及定量(B)..........................................................25 圖三、Src family抑制劑(PP2)以及ET1抑制劑(PD145065)兩種抑制劑對凝血酶誘導牙齦纖維母細胞表現α-SMA的影響(A)與定量(B)。..........................................................26 圖四、Src family抑制劑(PP2)以及ET1抑制劑(PD145065)兩種抑制劑對凝血酶誘導牙齦纖維母細胞表現CTGF的影響(A)與定量(B)。..........................................................27 圖五、不同抑制劑對凝血酶誘導牙齦纖維母細胞α-SMA的影響(A)及定量(B)..........................................................28 圖六、不同濃度的EGCG對凝血酶誘導牙齦纖維母細胞α-SMA表現的影響(A)及定量(B) ..........................................................29 圖七、不同濃度的Lovastatin對凝血酶誘導牙齦纖維母細胞α-SMA表現的影響(A)及定量(B) ..........................................................30 圖八、不同濃度的Curcumin對凝血酶誘導牙齦纖維母細胞α-SMA表現的影響(A)及定量(B) ..........................................................31 參考文獻..........................................................32 | |
dc.language.iso | zh-TW | |
dc.title | 凝血酶經由經由Src誘導人類牙齦纖維母細胞表現α-SMA | zh_TW |
dc.title | Thrombin Induced Expression of α-SMA through Src in Human Gingival Fibroblast | en |
dc.type | Thesis | |
dc.date.schoolyear | 101-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周涵怡,張瑞青 | |
dc.subject.keyword | 藥物誘導之牙齦過度生長,凝血酶,α型平滑肌肌動蛋白,EGCG,lovastatin,薑黃素, | zh_TW |
dc.subject.keyword | drug-induced gingival overgrowth (DIGO),thrombin,α-SMA,EGCG,lovastatin,curcumin, | en |
dc.relation.page | 43 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2013-08-18 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
顯示於系所單位: | 臨床牙醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-102-1.pdf 目前未授權公開取用 | 1.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。