請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17126完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 姜昱至(Yu-Chih Chiang) | |
| dc.contributor.author | Yun-Rong Tsai | en |
| dc.contributor.author | 蔡昀蓉 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:57:29Z | - |
| dc.date.copyright | 2013-09-24 | |
| dc.date.issued | 2013 | |
| dc.date.submitted | 2013-08-19 | |
| dc.identifier.citation | Avsar A, Tuloglu N (2010). Effect of different topical fluoride applications on the surface roughness of a colored compomer. J Appl Oral Sci 18(171-177.
Beyth N, Domb AJ, Weiss EI (2007). An in vitro quantitative antibacterial analysis of amalgam and composite resins. Journal of dentistry 35(3):201-206. Brown LJ, Wall TP, Lazar V (2000). Trends in total caries experience: permanent and primary teeth. J Am Dent Assoc 131(223-231 . C.M. Chung, J.G. Kim, M.S. Kim, K.M. Kim, K.N. Kim ( 2002). Development of a new photocurable composite resin with reduced curing shrinkage. Dent Mater 18(174-178. Chen C-Y, Huang C-K, Lin S-P, Han J-L, Hsieh K-H, Lin C-P (2008). Low-shrinkage visible-light-curable urethane-modified epoxy acrylate/SiO2 composites as dental restorative materials. Composites Science and Technology 68(13):2811-2817. Clifford Sturdevant ( 2006). Art & Sience of Operative Dentistry. De Witte AMJC, De Maeyer EAP, Verbeeck RMH (2003). Surface roughening of glass ionomer cements by neutral NaF solutions. Biomaterials 24(11):1995-2000. Donlan R.M. (2002). Emerging infectious diseases. Du X, Huang X, Huang C, Wang Y, Zhang Y (2012). Epigallocatechin-3-gallate (EGCG) enhances the therapeutic activity of a dental adhesive. Journal of dentistry 40(6):485-492. Eckert R, Sullivan R, Shi W (2012). Targeted antimicrobial treatment to re-establish a healthy microbial flora for long-term protection. Adv Dent Res 24(2):94-97. El-Badrawy WA, McComb D (1998). Effect of home-use fluoride gels on resin-modified glass-ionomer cements. Oper Dent 23(2-9. Featherstone JD (2000). The science and practice of caries prevention. J Am Dent Assoc 131(887-899. Fejerskov O, Manji F, Baelum V (1990). The nature and mechanisms of dental fluorosis in man. J Dent Res 69(692-700. Ganss C, Klimek J, Starck C (2004). Quantitative analysis of the impact of the organic matrix on the fluoride effect on erosion progression in human dentine using longitudinal microradiography. Archives of oral biology 49(11):931-935. Ganss C, Schlueter N, Hardt M, von Hinckeldey J, J. K (2007). Effects of toothbrushing on eroded dentine. Eur J Oral Sci 115(390-396. Gordon NC, Wareham DW (2010). Antimicrobial activity of the green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG) against clinical isolates of Stenotrophomonas maltophilia. International journal of antimicrobial agents 36(2):129-131. Gradisar H, Pristovsek P, Plaper A, Jerala R (2007). Green tea catechins inhibit bacterial DNA gyrase by interaction with its ATP binding site. J Med Chem 50(264-271. Guo MK, Hsieh CC, Hong YC, Chen RS (1984). Effect of water fluoridation on prevalence of dental caries in Chung-Hsing New Village, Taiwan, after 9 years. Taiwan Yi Xue Hui Za Zhi 83(1035-1043. Guo Q, Zhao B, Li M, Shen S, Xin W (1996). Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304(210-222. Hamada S, Slade HD (1980). Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiological Reviews 44(331-384. Hannas AR, Pereira JC, Granjeiro JM, Tjaderhane L (2007). The role of matrix metalloproteinases in the oral environment. Acta Odontol Scand 65(1-13. Heller KE, Eklund SA, Burt BA (1997). Dental caries and dental fluorosis at varying water fluoride concentrations. J Public Health Dent 57(136-143. Hicks J, Garcia-Godoy F, Flaitz C (2004). Biological factors in dental caries enamel structure and the caries process in the dynamic process of demineralization and remineralization (part 2). . J Clin Pediatr Dent 28(119-124. Hicks MJ, Flaitz CM, Silverstone LM (1986). Fluoride uptake in vitro of sound enamel and caries-like lesions of enamel from fluoride solutions of relatively low concentration. . J Pedod 11(47-61. Hirasawa M, Takada K, Otake S (2006). Inhibition of acid production in dental plaque bacteria by green tea catechins. Caries research 40(3):265-270. Horiba N, Maekawa Y, Ito M, Matsumoto T, Nakamura H (1991). A pilot study of Japanese green tea as a medicament: antibacterial and bactericidal effects. . J Endod 17(122-124. Inneke M van der Heijden, Anna S Levin, Ewerton H De Pedri, Liang Fung, Flavia Rossi, Gisele Duboc et al. (2007). Comparison of disc diffusion, Etest and broth microdilution for testing susceptibility of carbapenem-resistant P. aeruginosa to polymyxins. Annals of Clinical Microbiology and Antimicrobials 6:8( James G.A., Korber D.R., Caldwell D.E., Costerton J.W. (1995). Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177(907-915. Jenkins GN (1999). Review of fluoride research since 1959. Arch Oral Biol 44(985-992. Kato MT, Leite AL, Hannas AR, Buzalaf MA (2010a). Gels containing MMP inhibitors prevent dental erosion in situ. J Dent Res 89(5):468-472. Kato MT, Leite AL, Hannas AR, Oliveira RC, Pereira JC, Tjaderhane L (2010b). Effect of iron on matrix metalloproteinase inhibition and on the prevention of dentine erosion. . Caries Res 44(309-316. Klont B, ten Cate JM (1991). Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. . Caries Res 25(39-45. Lodge J, Jacobson GR (1988). Starvation-induced stimulation of sugar uptake in Streptococcus mutans is due to an effect on the activities of preexisting proteins of the phosphotransferase system. Infection and Immunity 56(2594-2600. Maria del Pilar Gutierrez-Salazara, Reyes-Gasga. J (2003). Microhardness and Chemical Composition of Human Tooth. Materials Research 6(3):367-373. Melissa Thiemi KATO, Ana Carolina MAGALHAES, Daniela RIOS, Angelica Reis HANNAS, Thomas ATTIN, Marilia Afonso Rabelo BUZALAF (2009). Protective effect of green tea on dentin erosion and abrasion. J Appl Oral Sci 17(6):560-564. Mo SS, Bao W, Lai GY, Wang J, Li MY (2010). The microfloral analysis of secondary caries biofilm around Class I and Class II composite and amalgam fillings. BMC infectious diseases 10(241. Mosci F, Perito S, Bassa S CA, Marconi PF. (1990). The role of Streptococcus mutans in human caries. Minerva Stomatol 39(5):413-429. . Mosci F PS, Bassa S, Capuano A, Marconi PF. (1990 ). The role of Streptococcus mutans in human caries. Minerva Stomatol 39(413-429. Nakagawa K, Ninomiya M, Okubo T, Aoi N, Juneja LR, Kim M et al. (1999). Tea catechin supplementation increases antioxidant capacity and prevents phospholipid hydroperoxidation in plasma of humans. J Agric Food Chem 1999;47:3967-73 47(3967-3973. Ole Fejerskov, Edwina Kidd (2007). Dental Caries. P.N.R. Pereira, S. Inokoshi, J. Tagami (1990). In vitro secondary caries inhibition around fluoride releasing materials. Journal of dentistry 26(5-6):505-510. Parsek MR, Fuqua C (2004). Biofilms 2003: emerging themes and challenges in studies of surface-associated microbial life. J Bacteriol 186(14):4427-4440. Rolla G (1988). On the role of calcium fluoride in the cariostatic mechanism of fluoride. Acta Odontol Scand 46(341-5). Sato T, Miyata G (2000). The nutraceutical benefit, part iv: garlic. Nutrition 16(9):787-788. sbrucker RA EJ, Wolz E, Davidovich A, Bausch J, (2006). Safety studies on epigallocatechin gallate (EGCG) preparations. Food Chem Toxicol 44(5):636-650. Stoodley P, Sauer K, Davies DG, Costerton JW (2002). Biofilms as complex differentiated communities. Annual review of microbiology 56(187-209. Tjaderhane L, Larjava H, Sorsa T, Uitto VJ, Larmas M, Salo T (1998). The activation and function of host matrix metalloproteinases in dentin matrix breakdown in caries lesions. . J Dent Res 77(1662-1669. WHO WHO Oral Health Country/Area Profile Programme. Xu X, Zhou XD, Wu CD (2011). The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrobial agents and chemotherapy 55(3):1229-1236. Yang CS, Maliakal P, Meng X (2002). Inhibition of carcinogenesis by tea. Annu Rev Pharmacol Toxicol 42(25-54. Yip HK, To WM, Smales RJ (2004). Effects of artificial saliva and APF gel on the surface roughness of newer glass ionomer cements. . Oper Dent 29(661-668. 陳弘森 黃, 蕭思郁, 嚴雅音, 楊奕馨, 詹嘉一, 邱耀章, 蔡宗平, 陳俊志, 吳青樺, 紀乃智, 王宏欽,, 戴怡佳 洪, 林妤珊, 王乃亭, 劉秀月. (2007). 台灣地區兒童及青少年口腔狀況調查. . 國民健康局九十四與九十五年度科技研究發展計畫 . | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17126 | - |
| dc.description.abstract | 齲齒是經由反覆酸化、去礦化、再礦化最後形成窩洞;其中細菌形成細菌生物膜並造成副產物,使牙齒無機質溶解及有機質降解。兒茶素中之表沒食子兒茶酚沒食子酸(EGCG)為茶葉茶多酚裡面的主成分,具有多樣重要的生理作用如抗氧化、抗發炎、抗菌、抗酸蝕等。
光固化複合樹脂為目前主要用於齲齒窩洞填補的牙科填補材,但仍因其聚合收縮,導致填補物發生邊緣性滲漏,以及容易聚集細菌貼附而形成生物膜等特性,而難以抵抗繼發性齲齒的發生。 因此本研究目的為利用EGCG抑制主要致齲齒細菌—轉糖鏈球菌之能力,研發EGCG改質之牙科光固化複合樹脂填補材料,期能達抗菌防齲齒之功效。 本研究分三大部分進行,第一部分為基礎抗菌測定,包含轉糖鏈球菌生長曲線及EGCG之最小抑菌及殺菌濃度測定。 第二部分與台大高分子所合作開發抗菌型EGCG改質複合樹脂。針對EGCG成分作化學改質及接枝,以二異氰酸異佛爾酮(IPDI)及甲基丙烯酸-2-羥基乙酯(HEMA)反應形成先驅物,以異氰酸酯官能基(NCO)和表沒食子兒茶素沒食子酸酯上的羥基反應;以EGCG最小抑菌濃度250 μg/ml及最小殺菌濃度500 μg/ml為基準,將改質EGCG於所合成抗菌型複合樹脂之濃度分別為0 μg/ml、125 μg/ml、250 μg/ml、500 μg/ml、1500 μg/ml及3000 μg/ml。 第三部分為評估其抗菌效果與物理性質。研究結果顯示,市售不含抗菌成分之Estelite複合樹脂與不含EGCG之控制組樹脂生長細菌結果相當;改質EGCG濃度125 μg/ml、250 μg/ml之組別顯示之抗菌效果與宣稱可透過釋放氟離子達到抗菌效果之市售Beautifil樹脂相當;濃度提升到500 μg/ml以上,在電子顯微鏡及雷射共軛焦顯微鏡檢視下,轉糖鏈球菌的生長已相當稀少且活菌數量降為死菌1/2,顯示較市售產品更加優異的抗菌效果。 以紅外線光譜儀分析,顯示本實驗改質EGCG之添加濃度對複合樹脂之轉化率並無影響,且轉化率已高於市售Estelite樹脂。直徑抗拉伸強度試驗及表面微硬度測試之結果亦證實,改質EGCG之添加對這兩項性質並無影響,且數值皆達到與市售Estelite樹脂相當,證明其物理性質強度足以應用於臨床。 綜合以上結論,本研究建議以含改質EGCG 500 μg/ml為本填補材料之建議添加劑量。本研究建立一套標準化檢視牙科複合材料抗菌能力之實驗模式,而本實驗所研發之含EGCG改質之牙科光固化複合樹脂確實具有抵抗主要致齲齒細菌—轉糖鏈球菌之能力,且其物理性質及機械性質不下於市售產品之表現,故在臨床應用上對於預防繼發性齲齒發展應具有相當的潛力。 | zh_TW |
| dc.description.abstract | Dental caries was a repeat process of acidification, demineralization, remiceralization and result in cavities at the end. Bacteria formed biofilms and produced acid byproducts, to cause dissolving of inorganic mineral and degradation of organic matrix of tooth structure. The epigallocatechin gallate(EGCG) was the main component of tea polyphenols in tea leaves, and has many important physiological functions such as anti-oxidation, anti-inflammation, anti-bacterial and anti-erosion.
Light-cured composite resin was the main dental filling material for caries cavity restoration nowadays. But because of its polymerization shrinkage to cause marginal leakage, and easily for biofilm formation by bacteria adhesion, it still didn’t have the resistant ability to secondary caries. Therefore, this study aims to use the ability of inhibited the main cause bacteria of dental caries-Streptococcus mutans(S.mutans) of EGCG, we developed EGCG-modified light-cured composite resin dental filling material that has anti-bacterial and anti-caries effect. This study carried out in three parts—Part 1: The basic anti-bacterial test, including the growth curve of S. mutans and the minimum inhibitory concentration(MIC) and minimal bactericidal concentration(MBC) of EGCG. Part2: Development of EGCG modified dental composite resin, cooperation with the Institute of Polymer Science and Engineering of National Taiwan University. Modify EGCG by isocyanate functional group(NCO) from the oligomer of isophorone diisocyanate(IPDI) and methyl acrylate 2-hydroxyethyl methacrylate(HEMA), to chemical bond with hydroxyl group(OH) on EGCG. Base on the results of EGCG’s minimum inhibitory concentration: 250 μg/ml and the minimum bactericidal concentration: 500 μg/ml, the EGCG modified concentration for synthesising the antibaterial composite resin was decided of 0, 125, 250, 500, 1500 and 3000 μg/ml. Part 3: To assese the antibacterial effects and physical properties of the composite resin. The results show that without EGCG, our control group composite resin is similar with commercial composite resin Estelite, which grow bacteria and fromed biofilm. The antibaterial effects of our EGCG modified composite resin with the concentraion 125 g/ml and 250 μg/ml are similar with the commercial composite resin Beautifil which claimed to have antibacterial effect by flouride releaseing. When the concentration of EGCG raised to 500 μg/ml, electron microscope and laser confocal microscope showed that the number of S. mutans decrease dramatically, and the number of viable bateria was less than half of the number of dead bacteria. , more excellent than the commercial product. The results tested by Fourier transform infrared spectroscopy(FT-IR) showed that the conversion rate of composite resin was not influnced by the concentration of EGCG we added. And the conversion rate of our EGCG-modified composite resin was already higher then the commercial composite reisn Estelite. Diameter tensile strength test and surface microhardness test also confirmed that the concentration of modified EGCG had no effect on these two properties, and the values were similar or even higher than the commercial composite resin Estelite. These all showed that our EGCG-modified composie resin have good physical properties for clinical using. Based on all the findings, our study suggested adding 500 μg/ml of modified EGCG into this composite resin. We established a standardized experimental mode of testing the antibateria effect of dental composite. The EGCG modified light curing dental composite resin are indeed have the ability to avoid adhesion and accumulation of the S. mutans, the principal cause bateria of dental caries. And its physical and mechanical properties are good enough when compared to the commercial composite resin. So we believed that this novel composite resin has considerable potential of clinical applications in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:57:29Z (GMT). No. of bitstreams: 1 ntu-102-R99422016-1.pdf: 4861259 bytes, checksum: 35da79d82037a5036a6b09a189e29266 (MD5) Previous issue date: 2013 | en |
| dc.description.tableofcontents | 中文摘要............................................................................................................................i
Abstract............................................................................................................................iii 目錄..................................................................................................................................vi 圖目錄...............................................................................................................................x 表目錄............................................................................................................................xiv 第一章 緒論 1 1-1齲齒 1 1-1-1 齲齒盛行率現況 1 1-1-2 齲齒發生之機制 2 1-1-2-1齲齒發生原因 2 1-1-2-2齲齒致病機制 3 1-1-2-3 牙釉質齲齒 5 1-1-2-4 牙本質齲齒 7 1-2 細菌與齲齒的關係 8 1-2-1生物膜與牙齒/填補復型材料間的關係 9 1-2-2生物膜之定義 9 1-2-3 生物膜的形成 9 1-2-4 生物膜之結構 11 1-2-5 轉糖鏈球菌(Streptococcus mutans)特性與齲齒相關性 11 1-3抗齲齒成分之原理與應用 12 1-3-1氟化物於口腔齲齒之預防與風險 12 1-3-2 兒茶素:表沒食子兒茶酚沒食子酸(epigallocatechin gallate, EGCG) 13 1-4牙科複合樹脂系統 16 1-4-1牙科複合樹脂基本組成 16 1-4-2複合樹脂填補物與繼發性齲齒的關係 19 第二章 實驗動機與目的 22 第三章 實驗架構 24 第四章 實驗材料與方法 25 4-1第一部分 基礎抗菌測定 25 4-1-1轉糖鏈球菌之生長曲線測定 25 4-1-2.兒茶素EGCG抗菌濃度測定 26 4-1-2-1藥物擴散測試法(抑菌圈Zone of inhibition) 26 4-1-2-2 序列性稀釋抗菌濃度測定(Broth dilution test) 27 4-2第二部分 新式複合樹脂系統合成 27 4-2-1 樹脂有機基質合成 27 4-2-2 無機填料合成 28 4-2-3表沒食子兒茶素沒食子酸酯(EGCG)雙鍵改質 30 4-2-4 EGCG改質複合樹脂合成 31 4-3 第三部分 EGCG改質複合樹脂錠片測試 31 4-3-1 樹脂錠片樣本之製作 31 4-3-2 抑制生物膜生成抗菌效果測定 32 4-3-2-1 取樹脂錠上生物膜序列性稀釋滴盤菌落數計數 33 4-3-2-2 樹脂錠上生物膜以電子顯微鏡觀察 33 4-3-2-3 樹脂錠上生物膜染色以雷射共軛焦顯微鏡觀察 34 4-3-3複合樹脂之物理性質測試 35 4-3-3-1直徑抗拉伸強度分析(Diametral Tensile Strength, DTs) 35 4-3-3-2 表面硬度(Microhardness)測試 35 4-3-3-3 轉化率測試 36 第五章 實驗結果 37 5-1第一部分 基礎抗菌測試 37 5-1-1轉糖鏈球菌生長曲線 37 5-1-2.兒茶素EGCG抗菌濃度測定 37 5-1-2-1 藥物擴散測試法(抑菌圈Zone of inhibition) 37 5-1-2-2 序列性稀釋抗菌濃度滴定(Broth Dilution Test) 38 5-2 第二部分 新式複合樹脂之改質與合成 38 5-2-1樹脂有機基質合成 38 5-2-2無機填料合成 39 5-2-3表沒食子兒茶素沒食子酸酯(EGCG)雙鍵改質 40 5-3 第三部分 EGCG改質複合樹脂錠片測試 40 5-3-1樹脂錠片樣本之製作 40 5-3-2抑制生物膜生成抗菌效果測定 40 5-3-2-1 序列性稀釋滴盤數菌 40 5-3-2-2 電子顯微鏡影像 41 5-3-2-3 雷射共軛焦顯微鏡影像 42 5-3-3.複合樹脂之物理性質測試 44 5-3-3-1. 直徑抗拉強度分析(Diametral Tensile Strength, DTs) 44 5-3-3-2 表面硬度測試及分析 44 5-3-3-3轉化率測試及比較 45 第六章 討論 47 6-1. 單一標靶抗菌而非混成菌叢抗菌對重建口腔正常菌叢及抑制齲齒之探討 47 6-2 EGCG穩定度的探討及改質動機 48 6-3 EGCG基礎抗菌濃度應用至複合樹脂合成之探討 49 6-4 不同抗菌測試方式結果之比較與探討 50 6-4-1基礎抗菌測試之固態抑菌圈與液態序列性稀釋 50 6-4-2 樹脂錠片抗菌不同測試方式之共同結果探討 51 6-4-3序列性稀釋滴盤數菌與影像直接觀察之差異比較 53 6-4-4與其他學者同領域研究方式與結果之比較與探討 54 6-5EGCG改質複合樹脂應用濃度及與市售產品之比較 56 6-6物理性質探討 57 6-6-1直徑抗拉強度分析探討 57 6-6-2表面硬度探討 57 6-6-3聚合度之比較和探討 59 6-7聚合收縮率之探討 60 第七章 結論 62 參考文獻 64 圖目錄 圖 4 1 轉糖鏈球菌之生長曲線測定流程圖 70 圖 4 2 序列性稀釋最低抑菌濃度及最低殺菌濃度測試示意圖 70 圖 4 3 樹脂有機基質合成分子結構及流程圖 71 圖 4 4 樹脂無機填料合成分子結構示意圖 71 圖 4 5 EGCG分子結構改質流程示意圖 72 圖 4 6 樹脂光聚合所使用之新型手持光固化燈 72 圖 4 7 樹脂錠片樣本製作方式 73 圖 4 8 本實驗使用之臨界點乾燥機 73 圖 4 9 所使用之金屬離子覆膜機 74 圖 4 10 所使用之掃瞄式電子顯微鏡 74 圖 4 11 所使用之雷射共軛焦顯微鏡 75 圖 4 12 直徑抗拉伸強度分析實驗中所使用之拉伸試驗機 75 圖 4 13表面微硬度分析實驗所使用之微硬度計 76 圖 5 1 轉糖鏈球菌生長曲線之培養時間與菌液光密度值(OD值)的關係 77 圖 5 2 轉糖鏈球菌生長曲線之培養時間與菌落形成單位(CFU)之關係 77 圖 5 3 EGCG藥物擴散測試之實驗結果 78 圖 5 4 EGCG序列稀釋最小抑菌濃度測定之實驗結果 78 圖 5 5 EGCG序列稀釋最小殺菌濃度測定之實驗結果 79 圖 5 6樹脂有機基質合成之以紅外線光譜儀分析監測其反應結果 79 圖 5 7 S100粒徑分析結果 80 圖 5 8 S100-6粒徑分析結果 80 圖 5 9 S100-10粒徑分析結果 81 圖 5 10 S100-15粒徑分析結果 81 圖 5 11 S100-20粒徑分析結果 82 圖 5 12以FTIR紅外線光譜儀測定EGCG改質進度 82 圖 5 13 市售樹脂Estelite、Beautifil及EGCG改質濃度0、125、250、500、1500及3000 μg/ml之樹脂錠狀試片 84 圖 5 14序列性釋滴盤數菌之實驗數據結果 84 圖 5 15 電子顯微鏡檢視未含改質EGCG控制組複合樹脂表面生物膜 85 圖 5 16 電子顯微鏡檢視EGCG改質濃度125 μg/ml複合樹脂表面生物膜 85 圖 5 17電子顯微鏡檢視EGCG改質濃度250 μg/ml複合樹脂表面生物膜 86 圖 5 18電子顯微鏡檢視EGCG改質濃度500 μg/ml複合樹脂表面生物膜…...85 圖 5 19電子顯微鏡檢視EGCG改質濃度1500 μg/ml複合樹脂表面生物膜 87 圖 5 20電子顯微鏡檢視EGCG改質濃度3000 μg/ml複合樹脂表面生物膜 87 圖 5 21 各實驗組別所拍攝雷射共軛焦顯微鏡影像之綠色訊號(活菌)強度對紅色訊號(死菌)強度的比例 88 圖 5 22各實驗組別所拍攝雷射共軛焦顯微鏡影像之綠色訊號(活菌)強度以及紅色訊號(死菌)強度 88 圖 5 23不含改質EGCG控制組複合樹脂試片表面生物膜之雷射共軛焦顯微鏡平面(2D)堆疊影像 89 圖 5 24含改質EGCG濃度125μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡平面(2D)堆疊影像 89 圖 5 25含改質EGCG濃度250μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡平面(2D)堆疊影像 90 圖 5 26含改質EGCG濃度500μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡平面(2D)堆疊影像 90 圖 5 27含改質EGCG濃度1500μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡平面(2D)堆疊影像 91 圖 5 28含改質EGCG濃度3000μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡平面(2D)堆疊影像 91 圖 5 29不含改質EGCG(添加濃度EGCG 0 μg/ml)新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡立體(3D)影像截圖 92 圖 5 30 含改質EGCG 125μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡立體(3D)影像截圖 92 圖 5 31含改質EGCG 250μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡立體(3D)影像截圖 93 圖 5 32含改質EGCG 500μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡立體(3D)影像截圖 93 圖 5 33含改質EGCG 1500μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡立體(3D)影像截圖 94 圖 5 34含改質EGCG 3000μg/ml新式複合樹脂試片表面生物膜之雷射共軛焦顯微鏡立體(3D)影像截圖 94 圖 5 35 各組別之直徑抗拉強度分析實驗結果 95 圖 5 36 各組別之表面硬度(維克氏硬度)測試實驗結果 95 圖 5 37 市售Estelite複合樹脂光照固化前及固化後之FTIR測定結果 96 圖 5 38市售Beautifil複合樹脂光照固化前及固化後之FTIR測定結果 96 圖 5 39 實驗合成E-0複合樹脂光照固化前及固化後之FTIR測定結果 97 圖 5 40實驗合成E-125複合樹脂光照固化前及固化後之FTIR測定結果 97 圖 5 41實驗合成E-250複合樹脂光照固化前及固化後之FTIR測定結果 98 圖 5 42 實驗合成E-500複合樹脂光照固化前及固化後之FTIR測定結果 98 圖 5 43實驗合成E-1500複合樹脂光照固化前及固化後之FTIR測定結果 99 圖 5 44實驗合成E-3000複合樹脂光照固化前及固化後之FTIR測定結果 99 圖 6 1 Xijin Du等學者提出之轉糖鏈球菌於EGCG添加含量0、100、200、300 μg/ml的牙本質黏著劑表面的生長情形 100 圖 6 2 市售樹脂Estelite隨時間之聚合收縮形變量 101 圖 6 3市售樹脂Beautifil隨時間之聚合收縮形變量 101 圖 6 4 E-500複合樹脂隨時間之聚合收縮形變量 102 表目錄 表 4 1 Estelite之材料安全資料表,內容物及成分組成 103 表 4 2 Beautifil之材料安全資料表,顯示內容物及成分組成 103 表 5 1各組不同改質無機填料之粒徑分析結果 104 表 5 2各組別複合樹脂之轉化率計算結果 104 | |
| dc.language.iso | zh-TW | |
| dc.subject | 繼發性齲齒 | zh_TW |
| dc.subject | 表沒食子兒茶酚沒食子酸 | zh_TW |
| dc.subject | 兒茶素 | zh_TW |
| dc.subject | 複合樹脂 | zh_TW |
| dc.subject | 抗菌測試 | zh_TW |
| dc.subject | 生物膜 | zh_TW |
| dc.subject | 轉糖鏈球菌 | zh_TW |
| dc.subject | Epigallocatechin gallate(EGCG) | en |
| dc.subject | Secondary caries | en |
| dc.subject | Streptococcus mutans(S.mutans) | en |
| dc.subject | Biofilm | en |
| dc.subject | Antibaterial tests | en |
| dc.subject | Composite resin | en |
| dc.subject | Catechin | en |
| dc.title | 研發兒茶素改質之抗菌型牙科複合樹脂 | zh_TW |
| dc.title | Development of Bacteriostatic Epigallocatechin Gallate Modified Dental Composite Resin | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 101-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳敏慧(Min-Huey Chen),黃翠賢(Tsui-Hsien Huang),鄭雲謙(Yun-Chien Cheng) | |
| dc.subject.keyword | 表沒食子兒茶酚沒食子酸,兒茶素,複合樹脂,抗菌測試,生物膜,轉糖鏈球菌,繼發性齲齒, | zh_TW |
| dc.subject.keyword | Epigallocatechin gallate(EGCG),Catechin,Composite resin,Antibaterial tests,Biofilm, Streptococcus mutans(S.mutans),Secondary caries, | en |
| dc.relation.page | 104 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2013-08-19 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-102-1.pdf 未授權公開取用 | 4.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
