Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17109
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平
dc.contributor.authorKuang-Sheng Chungen
dc.contributor.author鍾光聖zh_TW
dc.date.accessioned2021-06-07T23:56:51Z-
dc.date.copyright2013-08-20
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citation[1] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz, 'Composite medium with simultaneously negative permeability and permittivity,' Physical Review Letters 84, 4184–7 (2000).
[2] W. A. Tisdale, K. J. Williams, B. A. Timp, D. J. Norris, E. S. Aydil, X.-Y. Zhu, “Hot-electron transfer from semiconductor nanocrystals,” Science 328, 1543 (2010).
[3] N. Fang, H. Lee, C. Sun, X. Zhang, “Sub–diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).
[4] T. M. Razykov, C. S. Ferekides, D. Morel, E. Stefanakos, H. S. Ullal, H. M. Upadhyaya, “Photovoltaic manufacturing: Present status, future prospects, and research needs,” Solar Energy 85, 1580–1608 (2011).
[5] B. O'Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature 353, 737 (1991).
[6] K. Tanabe, 'A review of ultrahigh efficiency III-V semiconductor compound solar cells: multijunction tandem, lower dimensional, photonic up/down conversion and plasmonic nanometallic structures,' Energies 2, 504–530 (2009).
[7] H. Atwater, A. Polman, 'Plasmonics for improved photovoltaic devices'. Nature materials 9, 205-13 (2010).
[8] U. Fano, 'The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),' Journal of the Optical Society of America 31, 213-222 (1941).
[9] R. H. Ritchie, 'Plasma losses by fast electrons in thin films,' Physical Review 106, 874-881 (1957).
[10] E. A. Stern, and R. A. Ferrell, 'Surface plasma oscillations of a degenerate electron gas,' Physical Review 120, 130-136 (1960).
[11] H. Kuwata, H. Tamaru, K. Esumi, and K. Miyano, 'Resonant light scattering from metal nanoparticles: Practical analysis beyond Rayleigh approximation,' Applied Physics Letters 83, 4625-4627 (2003).
[12] H.-A. Chen, H.-Y. Lin, and H.-N. Lin, 'Localized surface plasmon resonance in lithographically fabricated single gold nanowires,' Journal of Physical Chemistry C 114, 10359-10364 (2010).
[13] W. A. Murray, and W. L. Barnes, 'Plasmonic materials,' Advanced Materials 19, 3771-3782 (2007).
[14] L. Kristjan, 'Optical amplification of surface plasmon polaritons: review,' Journal of Nanophotonics 6, 061801 (2012).
[15] K. A. Willets and R. P. Van Duyne, 'Localized surface plasmon resonance spectroscopy and sensing,' Annual Review of Physical Chemistry 58, 267-297
[16] Thermal Fluids Central, 'Surface plasmon (or phonon) polaritons,' 2013, https://www.thermalfluidscentral.org/encyclopedia/index.php/Surface_plasmon_(or_phonon)_polaritons.
[17] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, 'Transmission resonances on metallic gratings with very narrow slits,' Physical Review Letters 83, 2845-2848 (1999).
[18] C. Bohren and D. Huffman, 'Absorption and scattering of light by small particles,' Wiley, New York, (1983).
[19] A. Fujishima, and K. Honda, 'Electrochemical photolysis of water at a semiconductor electrode,' Nature 238, 37 (1972).
[20] D. Bahnemann, 'Photocatalytic water treatment: solar energy applications,' Solar Energy 77, 445-459 (2004).
[21] S. Chakrabarti, and B. K. Dutta, 'Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst,' Journal of Hazardous Materials 112, 269-278 (2004).
[22] C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, ' Environmental photochemistry: Is iron oxide (hematite) an active photocatalyst? A comparative study: α-Fe2O3, ZnO, TiO2,' Journal of Photochemistry and Photobiology a-Chemistry 48, 161-169 (1989).
[23] C. H. Wu, 'Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems,' Chemosphere 57, 601-608 (2004).
[24] B. Neppolian, H. C. Choi, S. Sakthivel, B. Arabindoo, and V. Murugesan, 'Solar/UV-induced photocatalytic degradation of three commercial textile dyes,' Journal of Hazardous Materials 89, 303-317 (2002).
[25] L. S. Zhang, W. Z. Wang, J. O. Yang, Z. G. Chen, W. Q. Zhang, L. Zhou, and S. W. Liu, 'Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst,' Applied Catalysis a-General 308, 105-110 (2006).
[26] D. Jing, and L. Guo, 'A novel method for the preparation of a highly stable and active CdS photocatalyst with a special surface nanostructure,' Journal of Physical Chemistry B 110, 11139-11145 (2006).
[27] F. A. Frame, E. C. Carroll, D. S. Larsen, M. Sarahan, N. D. Browning, and F. E. Osterloh, 'First demonstration of CdSe as a photocatalyst for hydrogen evolution from water under UV and visible light,' Chemical Communications 44, 2206-2208 (2008).
[28] K. Hashimoto, H. Irie and A. Fujishima, 'TiO2 photocatalysis: a historical overview and future prospects,' Japanese Journal of Applied Physics 44, 8269-8285 (2005).
[29] W. Hou and S. B. Cronin, 'A review of surface plasmon resonance-enhanced photocatalysis,' Advanced Funtional Materials 23, 1612-1619 (2013).
[30] S. C. Warren and E. Thimsen, 'Plasmonic solar water splitting,' Energy & Environmental Science 5, 5133-5146 (2012).
[31] A. Tcherniak, J. W. Ha, S. Dominguez-Medina, L. S. Slaughter and S. Link, 'Probing a century old prediction one plasmonic particle at a time,' Nano Letter 10, 1398-1404 (2010).
[32] C. M. Aikens, L. R. Madison and G. C. Schatz, 'Raman spectroscopy: The effect of field gradient on SERS, ' Nature Photonics 7, 508-510 (2013)
[33] M. Sivis, M. Duwe, B. Abel and C. Ropers, 'Extreme-ultraviolet light generation in plasmonic nanostructures,' Nature Physics 9, 304-309 (2013).
[34] I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, 'Plasmon enhanced solar-to-fuel energy conversion,' Nano Letter 11, 3440-3446 (2011).
[35] P. Christopher, H. Xin, A. Marimuthu1 and S. Linic1, 'Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures,' Nature Materials 11, 1044-1050 (2012).
[36] X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, ' Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,' Journal of the American Chemical Society 128, 2115-2120 (2006).
[37] M. W. Knight, H. Sobhani, P. Nordlander, N. J. Halas, 'Photodetection with active optical antennas,' Science 332, 702-704 (2011).
[38] S. Mubeen, J. Lee, N. Singh, S. Kramer, G. D. Stucky and M. Moskovits, 'An autonomous photosynthetic device in which all charge carriers derive from surface plasmons,' Nature Nanotechnology 8, 247-251 (2013).
[39] X. Zhang, Y. L. Chen, R.-S. Liu, and D. P. Tsai, 'Plasmonic photocatalysis,' Reports on Progress in Physics 76, 046401 (2013).
[40] C. G. Silva, R. Juare, T. Marino, R. Molinari, and H. Garcia, 'Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water, ' Journal of the American Chemical Society 133, 595–602 (2011)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17109-
dc.description.abstract本研究擬探討在金屬結構尺度小於入射電磁波波長時,所展現出的表面電漿共振(surface plasmon resonance, SPR)特性於光觸媒材料上的應用。表面電漿(surface plasmon)是金屬內自由電子受電磁波激發後的集體震盪,若與光子耦合沿金屬表面傳播即形成表面電漿極化子(surface plasmon-polaritons, SPPs),若為金屬奈米粒子則形成侷域化表面電漿共振(localized surface plasmon resonance, LSPR)。因表面電漿共振時具有將入射光轉為奈米尺度下集中電磁場的性質,在應用上被部份光伏材料(photovoltaics materials)研究學者視為增益效率的方法之一。本論文以此概念為出發,使用二氧化鈦(Titanium dioxide)為光伏材料,結合銀粒子�隔層�金膜的多層膜結構與大面積金屬奈米溝軌,並量測其光觸媒效益作為驗證,分別探討近年來爭議不斷的奈米結構增強光伏效率的說法,與提出耦合增益光觸媒表現的新結構。zh_TW
dc.description.abstractThis essay is based on the phenomenon about surface plasmon resonance (SPR), which happens to free electron in nanostructured metal when irradiated EM wave, and its application in enhancing photocatalysis material, Titanium dioxide. Surface plasmon is the behavior of collective electron oscillation at the metal/dielectric interface, and if surface plasmon couple with incident photon, it becomes surface plasmon polaritons (SPPs) and would propagate along the surface; the other case is localized surface plasmon resonance (LSPR), which usually excited by light in metallic nanoparticles, and both of SPPs and LSPR would have novel properties such as turning the incident light into near field intensive EM wave. Thus, surface plasmon is regarded as one of the new approaches to enhance photovoltaics materials by some scholars. Starting from this point, here we combine Titanium dioxide and nanostructured metal, Ag nanoparticles/spacer/Au thin film, and self-developed method to fabricate large grating Au film, to test the idea of plasmonic photovoltaics devices. By measuring the photocatalysis performance, the controversial idea and debates about the mechanism is much more clarified, and a new structure to enhance photovoltaics material by the coupling of surface plasmon is proposed in this essay, separately.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:56:51Z (GMT). No. of bitstreams: 1
ntu-102-R00222011-1.pdf: 2769038 bytes, checksum: 71b1dc84bdcee6fd96987f69fe11ad57 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 iv
ABSTRACT iv
目錄 v
圖目錄 vii
表目錄 ix
第一章 緒論 1
第二章 表面電漿光伏材料與裝置簡介 3
2.1 表面電漿共振增強吸收 3
2.1.1 侷域性表面電漿共振 4
2.1.2 表面電漿極化子. 5
2.2 半導體光觸媒簡介 9
2.3 表面電漿與光觸媒交互作用機制 12
第三章 實驗架構與研究方法 17
3.1 前言 17
3.2 模擬計算方法 17
3.2.1 有限元素分析法 17
3.2.2 數值模擬計算模型. 18
3.3 樣品製備:四靶濺鍍系統 19
3.4 原子力顯微鏡 22
3.5 共焦拉曼顯微儀 23
3.6 光水解反應系統 25
第四章 實驗結果與分析 26
4.1 前言 26
4.2 表面電漿隔層耦合結構 26
4.2.1 結構設計與製作 26
4.2.2 反射光譜與模擬分析 27
4.2.3 拉曼訊號量測 29
4.2.4 水解反應光電流結果與討論 31
4.3 奈米光柵結構 32
4.3.1 結構設計與製作 32
4.3.2 光譜與模擬分析 34
4.3.3 光降解結果與討論 37
第五章 結論與展望 38
參考文獻 40
dc.language.isozh-TW
dc.title以金屬奈米結構增益表面電漿光觸媒於水解反應之研究zh_TW
dc.titleMetallic Nanostructure for Plasmon-Enhanced Photocatalytic Water Splittingen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee任貽均,王智明,江海邦
dc.subject.keyword表面電漿共振,光伏材料,奈米金屬粒子,奈米結構,光觸媒,二氧化鈦,zh_TW
dc.subject.keywordsurface plasmon resonance,photovoltaics materials,metallic nanoparticles,nanostructure,photocatalysis,Titanium dioxide,en
dc.relation.page44
dc.rights.note未授權
dc.date.accepted2013-08-19
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
2.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved