Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17107
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor姚宗珍
dc.contributor.authorMeng-Huan Tsaien
dc.contributor.author蔡孟桓zh_TW
dc.date.accessioned2021-06-07T23:56:45Z-
dc.date.copyright2013-09-24
dc.date.issued2013
dc.date.submitted2013-08-19
dc.identifier.citationn, G., Y. Chen, J. Hou, C. Liu, C. Chen, J. Zhuang, and W. Meng, Effects of simvastatin on relapse and remodeling of periodontal tissues after tooth movement in rats. American Journal of Orthodontics and Dentofacial Orthopedics, 2010. 138(5): p. 550.e1-550.e7.
31. Takano, M., M. Yamaguchi, R. Nakajima, S. Fujita, T. Kojima, and K. Kasai, Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthodontics & Craniofacial Research, 2009. 12(4): p. 282-288.
32. Marx, R.E., Y. Sawatari, M. Fortin, and V. Broumand, Bisphosphonate-Induced Exposed Bone (Osteonecrosis/Osteopetrosis) of the Jaws: Risk Factors, Recognition, Prevention, and Treatment. Journal of Oral and Maxillofacial Surgery, 2005. 63(11): p. 1567-1575.
33. Omar, M. and J. Wilson, FDA adverse event reports on statin-associated rhabdomyolysis. The Annals of Pharmacotherapy, 2002. 36(2): p. 288-295.
34. Kim, S.-J., J.-H. Paek, K.-H. Park, S.-G. Kang, and Y.-G. Park, Laser-aided circumferential supracrestal fiberotomy and low-level laser therapy effects on relapse of rotated teeth in beagles.[Erratum appears in Angle Orthod. 2011 Jul;81(4):738]. Angle Orthodontist, 2010. 80(2): p. 385-90.
35. Lee, J.-W., K.-H. Park, J.-H. Chung, and S.-J. Kim, Effects of laser-aided circumferential supracrestal fiberotomy on root surfaces. The Angle Orthodontist, 2011.
36. Kim, S.-J., Y.-G. Kang, J.-H. Park, E.-C. Kim, and Y.-G. Park, Effects of low-intensity laser therapy on periodontal tissue remodeling during relapse and retention of orthodontically moved teeth. Lasers in Medical Science, 2013. 28(1): p. 325-333.
37. Fulop, A.M., S. Dhimmer, J.R. Deluca, D.D. Johanson, R.V. Lenz, K.B. Patel, P.C. Douris, and C.S. Enwemeka, A Meta-analysis of the Efficacy of Laser Phototherapy on Pain Relief. The Clinical Journal of Pain, 2010. 26(8): p. 729-736 10.1097/AJP.0b013e3181f09713.
38. Bjordal, J., R. Lopes-Martins, J. Joensen, C. Couppe, A. Ljunggren, A. Stergioulas, and M. Johnson, A systematic review with procedural assessments and meta-analysis of Low Level Laser Therapy in lateral elbow tendinopathy (tennis elbow). BMC Musculoskeletal Disorders, 2008. 9(1): p. 75.
39. Jenkins, P.A. and J.D. Carroll, How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomedicine and Laser Surgery, 2011. 29(12): p. 785-7.
40. Smith, K.C., The photobiological basis of low level laser radiation therapy. Laser Therapy, 1991. 3(1): p. 19-24.
41. Kato, M., K. Shinzawa, and S. Yoshikawa, Cytochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem. Photobiophys, 1981. 2: p. 263-269.
42. Karu, T., L. Pyatibrat, and G. Kalendo, Irradiation with He Ne laser increases ATP level in cells cultivated in vitro. Journal of Photochemistry and photobiology B: Biology, 1995. 27(3): p. 219-223.
43. Karu, T.I. and S.F. Kolyakov, Exact action spectra for cellular responses relevant to phototherapy. Photomedicine and Laser Surgery, 2005. 23(4): p. 355-61.
44. Chaudhry, H., M. Lynch, K. Schomacker, R. Birngruber, K. Gregory, and I. Kochevar, RELAXATION OF VASCULAR SMOOTH MUSCLE INDUCED BY LOW-POWER LASER RADIATION. Photochemistry and Photobiology, 1993. 58(5): p. 661-669.
45. Antunes, F., A. Boveris, and E. Cadenas, On the mechanism and biology of cytochrome oxidase inhibition by nitric oxide. Proceedings of the National Academy of Sciences of the United States of America, 2004. 101(48): p. 16774-16779.
46. Borutaite, V., A. Budriunaite, and G.C. Brown, Reversal of nitric oxide-, peroxynitrite-and S-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochimica et Biophysica Acta-Bioenergetics, 2000. 1459(2): p. 405-412.
47. Mester, E., B. Szende, and P. Gartner, [The effect of laser beams on the growth of hair in mice]. Radiobiol Radiother (Berl), 1968. 9(5): p. 621-6.
48. Mester, E., A.F. Mester, and A. Mester, The biomedical effects of laser application. Lasers in Surgery and Medicine, 1985. 5(1): p. 31-39.
49. Genot, M.-T. and J. Klastersky, Low-level laser for prevention and therapy of oral mucositis induced by chemotherapy or radiotherapy. Current Opinion in Oncology, 2005. 17(3): p. 236-240.
50. Bjordal, J., R.-J. Bensadoun, J. Tuner, L. Frigo, K. Gjerde, and R. Lopes-Martins, A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Supportive Care in Cancer, 2011. 19(8): p. 1069-1077.
51. Corona, S.A.M., T.N.d. Nascimento, A.B.E. Catirse, R.F.Z. Lizarelli, W. Dinelli, and R.G. Palma-Dibb, Clinical evaluation of low-level laser therapy and fluoride varnish for treating cervical dentinal hypersensitivity. Journal of Oral Rehabilitation, 2003. 30(12): p. 1183-1189.
52. Scoletta, M., Effect of low-level laser irradiation on bisphosphonate-induced osteonecrosis of the jaws: preliminary results of a prospective study. Photomedicine and Laser Surgery, 2010. 28(2): p. 179.
53. Barushka, O., T. Yaakobi, and U. Oron, Effect of low-energy laser (He Ne) irradiation on the process of bone repair in the rat tibia. Bone, 1995. 16(1): p. 47-55.
54. Yaakobi, T., L. Maltz, and U. Oron, Promotion of Bone Repair in the Cortical Bone of the Tibia in Rats by Low Energy Laser (He-Ne) Irradiation. Calcified Tissue International, 1996. 59(4): p. 297-300.
55. Merli, L.A., M.T. Santos, W.J. Genovese, and F. Faloppa, Effect of low-intensity laser irradiation on the process of bone repair. Photomedicine and Laser Surgery, 2005. 23(2): p. 212-5.
56. Bibikova, A., V. Belkin, and U. Oron, Enhancement of angiogenesis in regenerating gastrocnemius muscle of the toad (Bufo viridis) by low-energy laser irradiation. Anatomy and Embryology, 1994. 190(6): p. 597-602.
57. Stein, A., D. Benayahu, L. Maltz, and U. Oron, Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomedicine and Laser Surgery, 2005. 23(2): p. 161-6.
58. Bouvet-Gerbettaz, S., E. Merigo, J.-P. Rocca, G.F. Carle, and N. Rochet, Effects of low-level laser therapy on proliferation and differentiation of murine bone marrow cells into osteoblasts and osteoclasts. Lasers in Surgery and Medicine, 2009. 41(4): p. 291-297.
59. Aihara, N., M. Yamaguchi, and K. Kasai, Low-energy irradiation stimulates formation of osteoclast-like cells via RANK expression in vitro. Lasers in Medical Science, 2006. 21(1): p. 24-33.
60. Ozawa, Y., N. Shimizu, G. Kariya, and Y. Abiko, Low-Energy Laser Irradiation Stimulates Bone Nodule Formation at Early Stages of Cell Culture in Rat Calvarial Cells. Bone, 1998. 22(4): p. 347-354.
61. Saito, S. and N. Shimizu, Stimulatory effects of low-power laser irradiation on bone regeneration in midpalatal suture during expansion in the rat. American Journal of Orthodontics and Dentofacial Orthopedics, 1997. 111(5): p. 525-532.
62. Cepera, F., F.C. Torres, M.A. Scanavini, L.R. Paranhos, L. Capelozza Filho, M.A. Cardoso, D.C.R. Siqueira, and D.F. Siqueira, Effect of a low-level laser on bone regeneration after rapid maxillary expansion. American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics, 2012. 141(4): p. 444-450.
63. Kawasaki, K. and N. Shimizu, Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers in Surgery & Medicine, 2000. 26(3): p. 282-91.
64. Fujita, S., M. Yamaguchi, T. Utsunomiya, H. Yamamoto, and K. Kasai, Low-energy laser stimulates tooth movement velocity via expression of RANK and RANKL. Orthodontics & Craniofacial Research, 2008. 11(3): p. 143-55.
65. Yoshida, T., M. Yamaguchi, T. Utsunomiya, M. Kato, Y. Arai, T. Kaneda, H. Yamamoto, and K. Kasai, Low-energy laser irradiation accelerates the velocity of tooth movement via stimulation of the alveolar bone remodeling.[Erratum appears in Orthod Craniofac Res. 2010 Feb;13(1):68]. Orthodontics & Craniofacial Research, 2009. 12(4): p. 289-98.
66. Yamaguchi, M., M. Hayashi, S. Fujita, T. Yoshida, T. Utsunomiya, H. Yamamoto, and K. Kasai, Low-energy laser irradiation facilitates the velocity of tooth movement and the expressions of matrix metalloproteinase-9, cathepsin K, and alpha(v) beta(3) integrin in rats. European Journal of Orthodontics, 2010. 32(2): p. 131-9.
67. Marquezan, M., A.M. Bolognese, and M.T.d.S. Araujo, Effects of two low-intensity laser therapy protocols on experimental tooth movement. Photomedicine and Laser Surgery, 2010. 28(6): p. 757-62.
68. Habib, F.A.L., S.K.C. Gama, L.M.P. Ramalho, M.C.T. Cangussu, F.P. Santos Neto, J.A. Lacerda, T.M. Araujo, and A.L.B. Pinheiro, Laser-induced alveolar bone changes during orthodontic movement: a histological study on rodents. Photomedicine and Laser Surgery, 2010. 28(6): p. 823-30.
69. Gama, S.K.C., F.A.L. Habib, J.S.d.C. Monteiro, G.M. Paraguassu, T.M. Araujo, M.C.T. Cangussu, and A.L.B. Pinheiro, Tooth movement after infrared laser phototherapy: clinical study in rodents. Photomedicine and Laser Surgery, 2010. 28 Suppl 2: p. S79-83.
70. Cruz, D.R., E.K. Kohara, M.S. Ribeiro, and N.U. Wetter, Effects of low-intensity laser therapy on the orthodontic movement velocity of human teeth: A preliminary study. Lasers in Surgery and Medicine, 2004. 35(2): p. 117-120.
71. Youssef, M., S. Ashkar, E. Hamade, N. Gutknecht, F. Lampert, and M. Mir, The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers in Medical Science, 2008. 23(1): p. 27-33.
72. Limpanichkul, W., K. Godfrey, N. Srisuk, and C. Rattanayatikul, Effects of low-level laser therapy on the rate of orthodontic tooth movement. Orthodontics & Craniofacial Research, 2006. 9(1): p. 38-43.
73. Sousa, M.V.d.S., M.A. Scanavini, E.K. Sannomiya, L.G. Velasco, and F. Angelieri, Influence of low-level laser on the speed of orthodontic movement. Photomedicine and Laser Surgery, 2011. 29(3): p. 191-6.
74. Doshi-Mehta, G. and W.A. Bhad-Patil, Efficacy of low-intensity laser therapy in reducing treatment time and orthodontic pain: A clinical investigation. American Journal of Orthodontics and Dentofacial Orthopedics, 2012. 141(3): p. 289-297.
75. Li-Fang Hsu, C.-C.Y., The effect of low level laser therapy on orthodontic tooth movement in a rat model. in press, 2011.
76. REITAN, K. and E. KVAM, Comparative behavior of human and animal tissue during experimental tooth movement. The Angle Orthodontist, 1971. 41(1): p. 1-14.
77. Ren, Y., J.C. Maltha, and A.M. Kuijpers-Jagtman, The rat as a model for orthodontic tooth movement—a critical review and a proposed solution. The European Journal of Orthodontics, 2004. 26(5): p. 483-490.
78. Ren, Y., J.C. Maltha, M.A. Van ’t Hof, and A.M. Kuijpers-Jagtman, Age Effect on Orthodontic Tooth Movement in Rats. Journal of Dental Research, 2003. 82(1): p. 38-42.
79. Waldo, C.M. and J.M. Rothblatt, Histologic response to tooth movement in the laboratory rat Procedure and preliminary observations. Journal of dental research, 1954. 33(4): p. 481-486.
80. Anderson, R.R. and J.A. Parrish, The optics of human skin. Journal of Investigative Dermatology, 1981. 77(1): p. 13-19.
81. Asimov, M.M., R.M. Asimov, and A.N. Rubinov, Spectrum of the effect of laser radiation on hemoglobin of the blood vessels of skin. Journal of Applied Spectroscopy, 1998. 65(6): p. 919-922.
82. Retamoso, L.B., T.D.M.A. da Cunha, L.A.H. Knop, R.L. Shintcovsk, and O.M. Tanaka, Organization and quantification of the collagen fibers in bone formation during orthodontic tooth movement. Micron, 2009. 40(8): p. 827-830.
83. Goulart, C.S., P.R.A. Nouer, L. Mouramartins, I.U. Garbin, and R. de Fatima Zanirato Lizarelli, Photoradiation and orthodontic movement: experimental study with canines. Photomedicine and Laser Surgery, 2006. 24(2): p. 192-6.
84. Lopes, N.N.F., H. Plapler, M.C. Chavantes, R.V. Lalla, E.M. Yoshimura, and M.T.S. Alves, Cyclooxygenase-2 and vascular endothelial growth factor expression in 5-fluorouracil-induced oral mucositis in hamsters: evaluation of two low-intensity laser protocols. Supportive care in cancer, 2009. 17(11): p. 1409-1415.
85. Bashkatov, A., E. Genina, V. Kochubey, and V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. Journal of Physics D: Applied Physics, 2005. 38(15): p. 2543.
86. Esnouf, A., P.A. Wright, J.C. Moore, and S. Ahmed, Depth of penetration of an 850nm wavelength low level laser in human skin. Acupuncture & electro-therapeutics research, 2007. 32(1-2): p. 81-86.
87. Bossy, J., J. Chevalier, P. Sambuc, and R. Quatrefages, In vitro survey of low energy laser beam penetration in compact bone. Acupuncture & electro-therapeutics research, 1985. 10(1-2): p. 35.
88. Maegawa, Y., T. Itoh, T. Hosokawa, K. Yaegashi, and M. Nishi, Effects of near-infrared low-level laser irradiation on microcirculation. Lasers in Surgery and Medicine, 2000. 27(5): p. 427-437.
89. Verna, C., M. Dalstra, and B. Melsen, The rate and the type of orthodontic tooth movement is influenced by bone turnover in a rat model. The European Journal of Orthodontics, 2000. 22(4): p. 343-352.
90. Altan, B., O. Sokucu, M. Ozkut, and S. Inan, Metrical and histological investigation of the effects of low-level laser therapy on orthodontic tooth movement. Lasers in Medical Science, 2012. 27(1): p. 131-140.
91. Kohno, T., Y. Matsumoto, Z. Kanno, H. Warita, and K. Soma, Experimental tooth movement under light orthodontic forces: rates of tooth movement and changes of the periodontium. Journal of Orthodontics, 2002. 29(2): p. 129-136.
92. Wang, L., W. Lee, D.-l. Lei, Y.-p. Liu, D.-D. Yamashita, and S.L.K. Yen, Tisssue responses in corticotomy- and osteotomy-assisted tooth movements in rats: Histology and immunostaining. American Journal of Orthodontics and Dentofacial Orthopedics, 2009. 136(6): p. 770.e1-770.e11.
93. Kazem Shakouri, S., J. Soleimanpour, Y. Salekzamani, and M. Oskuie, Effect of low-level laser therapy on the fracture healing process. Lasers in Medical Science, 2010. 25(1): p. 73-77.
94. Kim, Y.D., S.S. Kim, D.S. Hwang, G.C. Kim, S.H. Shin, U.K. Kim, J.R. Kim, and I.K. Chung, Effect of low level laser treatment after installation of dental titanium implant-immunohistochemical study of vascular endothelial growth factor: an experimental study in rats. Laser Physics Letters, 2007. 4(9): p. 681-685.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17107-
dc.description.abstract矯正療程過長常是患者決定是否接受治療的考量因素之一,而治療效率的提高除了運用適當的力學設計將力量有效率地傳導至牙齒上,以避免力學副作用產生於錨定上,牙齒移動速度的生理限制更是重要因子。低能量雷射已有臨床實驗証實可加速牙齒移動速度,使用特殊參數設定,提供一個無明顯副作用的非侵入性療法。另外矯正完成後穩定度的維持也是重要課題,矯正後牙周組織的回彈常是矯正復發原因之一,若能加速牙周組織重塑,應可減少矯正復發率。本實驗以大鼠模型測試波長970 nm,500 mW之脈衝波對矯正牙齒移動(n=28)及矯正復發(n=30)的影響。根據不同能量設定及照射時間,實驗中所採用之低能量雷射在間隔三天的照射下可有效加速牙齒移動且移動量與照射劑量成正比。實驗初期密集照射則無法呈現加速效果。從顯微斷層掃瞄及組織磨片皆可觀察到受力臼齒牙根間及周圍有骨吸收現象,而螢光標定也顯示雷射照射後有較高的骨質重塑。本實驗同時建立大鼠矯正復發模型,從結果發現在牙齒移動後的固定期間照射低能量雷射可加速受力臼齒牙根間處之骨生成,使得復發率降低。
在本實驗中少數樣本之雷射照射處有異常骨增生現象,從組織磨片及HE染色片可觀察到樣本於實驗晚期在該處有大量的骨質堆積。此現象是否為低能量雷射可能的副作用還有待後續實驗証實。另外以高劑量設定下照射未受力側之齒槽骨,可見骨表面產生不規則狀,而同一側牙根間之骨組織也有較強的螢光標定,可見低能量雷射可加速基礎骨代謝, 然而詳細作用機制仍不明。
zh_TW
dc.description.abstractTreatment duration is one of the major determinants for patients seeking orthodontic treatment. To avoid long treatment time, orthodontists have to design sound mechanics meeting the anchorage demands and delivering appropriate force system to the tooth and its supporting tissues. However, the more crucial factors related to the treatment efficiency may lie in the individual biological response which is still largely unknown, to the force system which orthodontists regularly delivered. Low level laser with specific power setting has been shown as a non-invasive adjunctive treatment without obvious side effect for facilitating orthodontic tooth movement (OTM) in some clinical studies.
Relapse after orthodontic treatment is also an important issue, rebound of compressed gingival tissue can cause unwanted tooth movement. Therefore, long-term retention is recommended which causes patient’s extra effort for compliance. Low level laser has been approved to facilitate collagen remodeling, and this possibly can further reduce the relapse rate. In the first part of this study, 28 rats were divided into four groups by different irradiation protocols to determine the effect of 970 nm low level laser with 500 mW power setting in pulsed mode on OTM. After 15-day experiment, the amount of tooth movement was significantly increased in 3 day-interval irradiation groups in a dose dependent manner. Early intense irradiation could not facilitate orthodontic tooth movement. From μCT, ground sections, and HE staining sections all show regional demineralization around the moving tooth and in furcation area when low level laser delivered.
In the second part of this study, 30 rats was divided into four groups with different treatment protocol (according to the different duration of fixation period) to determine the effect of the same laser setting on relapse. The relapse rate was reduced on the third day after removing appliance. The ground sections show more bone formation during fixation period in laser group which indicated stimulated bone synthesis rate.
We found buccal bone bulging on laser site in 3 samples, which may indicate the potential side effect of 970 nm laser with high energy setting (500 mW, 120s/session, pulsed mode), which needs to be confirmed by further research. With the same setting, the laser was applied to non-treated alveolar process on rat mandible, some surface irregularity was found from μCT image and decalcified sections, and ground sections also show areas of increasing bone labeling. Though it was not a consistent finding, it still warrants further investigation.
The results of this study revealed that 970 nm low level laser with 500 mW output and pulsed mode can increase the speed of OTM and reduced the relapse rate.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:56:45Z (GMT). No. of bitstreams: 1
ntu-102-R99422010-1.pdf: 12341489 bytes, checksum: 1c1bd8698be1f0a697a56c9ae1f1d30b (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES ix
LIST OF TABLES xiii
Chapter 1 Introduction 1
1.1 前言 1
1.2 牙齒移動的生理背景 1
1.3 矯正復發(relapse)的原因 3
1.4 加速矯正移動的方法 4
1.5 預防矯正復發的方法 5
1.6 雷射的工作原理及特性 6
1.6.1 工作原理及特性 6
1.6.2 雷射參數 9
1.7 低能量雷射之作用原理及應用 10
1.7.1 作用原理 10
1.7.2 低能量雷射之應用 11
1.7.3 低能量雷射於牙齒移動之動物模型文獻回顧 13
1.7.4 低能量雷射於牙齒移動之人體實驗文獻回顧 15
1.8 結語 16
Chapter 2 Material and Method 17
2.1 動物及口內裝置 17
2.2 彈簧力量測定 18
2.3 雷射穿透力實驗 19
2.4 動物實驗雷射照射參數設定及照射時間點 20
2.4.1 矯正牙齒移動速度實驗 20
2.4.2 固持力實驗 21
2.5 矯正彈簧固定方式(Fig. 12) 23
2.6 印模及模型測量 24
2.7 Bone Marker 24
2.8 未脫鈣樣本之樹脂包埋、切片、載片及觀察 25
2.8.1 包埋 25
2.8.2 切片 26
2.8.3 載片 26
2.8.4 螢光顯微鏡觀察 26
2.9 H&E stain 29
2.10 Toluidine blue stain 29
2.11 顯微斷層掃描(μCT) 30
2.11.1 A. 拍攝時間點及參數設定 30
2.11.2 B. 重組影像之定位及測量 30
2.11.3 C. 3D 影像之重組 33
Chapter 3 Results 34
3.1 彈簧力量測定 34
3.2 雷射穿透力實驗 34
3.3 矯正牙齒移動速度實驗 35
3.3.1 石膏模型測量 36
3.3.2 顯微斷層影像測量 40
3.3.3 不同測量法之相關性 41
3.3.4 μCT之3D重組影像 42
3.3.5 根叉處至齒槽骨間距 43
3.3.6 樹脂包埋組織磨片 44
3.3.7 Toluidine blue stain 49
3.3.8 H&E stain 50
3.4 固持力實驗 Protocol I 52
3.4.1 石膏模型測量 53
3.4.2 顯微斷層影像測量 56
3.4.3 不同測量法之相關性 59
3.5 固持力實驗 Protocol II 60
3.5.1 石膏模型量測 60
3.5.2 顯微斷層影像量測 64
3.5.3 不同測量法之相關性 69
3.6 固持力實驗整體分析 70
3.7 固持力實驗之樹脂包埋磨片 71
3.7.1 Relapse protocol I (Fig. 57) 71
3.7.2 Relapse protocol II (Fig. 58) 71
3.8 局部骨增生 75
3.9 僅照射雷射之樣本 78
Chapter 4 Discussion 82
4.1 大鼠實驗模型之探討 82
4.2 雷射波長及劑量選擇 83
4.3 雷射穿透力 84
4.4 移動距離測量 85
4.5 Bone Marker Labeling 86
4.6 Regional Deminerization 87
4.7 低能量雷射對矯正復發率之影響 88
4.8 局部骨質增生 90
4.9 僅照射雷射時骨組織的反應 90
Chapter 5 Conclusion 92
Reference 93
Appendix I 矯正牙齒移動速度實驗石膏模型測量值 EXP I (mm) 100
Appendix II 矯正牙齒移動速度實驗石膏模型測量值 EXP II (mm) 103
Appendix III 矯正牙齒移動速度實驗μCT測量值 (μm) 105
Appendix IV Relapse protocol I 石膏模型測量值 (mm) 106
Appendix V Relapse protocol I μCT測量值 (μm) 108
Appendix VI Relapse protocol II 石膏模型測量值 (mm) 109
Appendix VII Relapse protocol II μCT測量值 (μm) 114
Appendix VIII 矯正牙齒移動速度實驗石膏模型測量值之事後檢定 115
Appendix IX 僅照射雷射之下顎螢光面積比例。 118
dc.language.isozh-TW
dc.title以大鼠動物測試低能量雷射治療矯正牙齒移動及固持之效用zh_TW
dc.titleInfluence of low level laser on orthodontic tooth movement and relapse rate in ratsen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林思洸,王至弘
dc.subject.keyword低能量雷射,矯正牙齒移動,矯正復發,大鼠動物模型,zh_TW
dc.subject.keywordlow-level-laser therapy,orthodontic tooth movement,orthodontic relapse,rat animal model,en
dc.relation.page118
dc.rights.note未授權
dc.date.accepted2013-08-19
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
12.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved