Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17095
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭卜壬
dc.contributor.authorChin-Hui Chenen
dc.contributor.author陳晉暉zh_TW
dc.date.accessioned2021-06-07T23:56:17Z-
dc.date.copyright2013-08-26
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citation[1] M. S. Ahmed and A. R. Cook. Analysis of freeway traffic time-series data by using box-jenkins techniques. Transportation Research Record, (722), 1979.
[2] E. S. Gardner. Exponential smoothing: The state of the art. Journal of forecasting, 4(1):1--28, 1985.
[3] D. L. Gerlough and M. J. Huber. Traffic flow theory. Technical report, 1976.
[4] S. Ishak and C. Alecsandru. Optimizing traffic prediction performance of neural net- works under various topological, input, and traffic condition settings. Journal of trans- portation engineering, 130(4):452--465, 2004.
[5] P.S.Kalekar.Timeseriesforecastingusingholt-wintersexponentialsmoothing.Kan- wal Rekhi School of Information Technology, 4329008:1--13, 2004.
[6] T.C.Mills.Timeseriestechniquesforeconomists.CambridgeUniversityPress,1991.
[7] B. Pan, U. Demiryurek, and C. Shahabi. Utilizing real-world transportation data for accurate traffic prediction. In Data Mining (ICDM), 2012 IEEE 12th International Conference on, pages 595--604. IEEE, 2012.
[8] M.ShokouhiandK.Radinsky.Time-sensitivequeryauto-completion.InProceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, pages 601--610. ACM, 2012.
[9] B. M. Williams, P. K. Durvasula, and D. E. Brown. Urban freeway traffic flow pre- diction: application of seasonal autoregressive integrated moving average and expo- nential smoothing models. Transportation Research Record: Journal of the Trans- portation Research Board, 1644(1):132--141, 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17095-
dc.description.abstractTraditionally, researchers apply the latest data to predict the near future of Time Series Data prediction. However, we proposed a novel framework to use not only latest data but also potential accurate predicted results. And it also be able to predict much further results for enhancing the prediction. The framework adopts generic predict methods and extract specific features ac- cording to the data property. Three type of feature sets are designed to capture the Statistic, Reliability and Periodicity of the Time Series Data. Short-Term and Long-Term Prediction Enhancement algorithms are also introduced to im- prove the prediction performance. The experiments show that Short-Term En- hancement increases the accuracy of +20.04% and Long-Term Enhancement +9.59% compared to well-known baseline approaches, ARIMA and HW-ES.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:56:17Z (GMT). No. of bitstreams: 1
ntu-102-R98922059-1.pdf: 1862583 bytes, checksum: 56f5c3cd4363fb70888250f253a30c1a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
Abstract iii
1 Motivation 1
1.1 TimeSeries ................................. 1
1.2 PredictTimeSeries............................. 3
1.3 MultiplePrediction ............................. 3
2 Related Works 11
2.1 MachineLearningBased .......................... 11
2.1.1 NeuralNetwork........................... 11
2.2 RegressionBased.............................. 11
2.2.1 Autoregressive Integrated Moving Average . . . . . . . . . . . . 11
2.2.2 Holt-WintersExponentialSmoothing . . . . . . . . . . . . . . . 12
3 Framework 15
3.1 Overview .................................. 15
3.2 Short-TermEnhancement.......................... 15
3.2.1 FeatureSet ............................. 16
3.2.2 S1:StatisticFeature ........................ 16
3.2.3 S2:ReliabilityFeature ....................... 19
3.2.4 PeriodicityFeature ......................... 19
3.2.5 FeatureSetwithPeriodicity .................... 19
3.2.6 S1:StatisticFeaturewithPeriodicity . . . . . . . . . . . . . . . 21
3.2.7 S2:ReliabilityFeaturewithPeriodicity . . . . . . . . . . . . . . 21
3.3 Long-TermEnhancement.......................... 22
3.3.1 LTE-R (Long-Term Enhancement Regression) . . . . . . . . . . 22
3.3.2 LTE-NR (Long-Term Enhancement NRegression) . . . . . . . . 22
3.3.3 Comparison............................. 23
4 Experiment 25
4.1 ExperimentSetting ............................. 25
4.1.1 Dataset ............................... 25
4.1.2 Model................................ 27
4.2 STE..................................... 27
4.3 FeatureAnalysis .............................. 28
4.4 LTE-R.................................... 28
4.5 LTE-NR................................... 29
5 Conclusion 31
Bibliography 33
dc.language.isozh-TW
dc.subject預測模型zh_TW
dc.subject時序資料zh_TW
dc.subject時間序列zh_TW
dc.subjectTime Series Dataen
dc.subjectTime Series Predictionen
dc.subjectFrameworken
dc.title增進時序資料預測效能之一般化模型zh_TW
dc.titleA General Framework for Enhancing Prediction Performance on Time Series Dataen
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正偉,邱志義
dc.subject.keyword時序資料,時間序列,預測模型,zh_TW
dc.subject.keywordTime Series Data,Time Series Prediction,Framework,en
dc.relation.page33
dc.rights.note未授權
dc.date.accepted2013-08-20
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  未授權公開取用
1.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved