Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17083
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳昭瑩(Chao-Ying Chen)
dc.contributor.authorYu-Ting Chenen
dc.contributor.author陳鈺婷zh_TW
dc.date.accessioned2021-06-07T23:55:53Z-
dc.date.copyright2013-08-25
dc.date.issued2013
dc.date.submitted2013-08-20
dc.identifier.citation1. 劉增城。1998。草莓王國大湖鄉。苗栗區農業專訊4 (12)。
2. 羅國偉。2012。草莓產業概況。桃園區農業改良場草莓專刊1–5。
3. 廖乾華。2013。草莓品種「桃園4號」。桃園區農業改良場農技報導(2)。
4. 張廣淼,蔡正賢,吳添益。2007。肥料用量對高架草莓生育及產量之影響。苗栗區農業改良場研究彙報1: 1–14。
5. Abdel-Mawgoud, A. M. R., Tantawy, A. S., El-Nemr, M. A., and Sassine, Y. N. 2010. Growth and yield responses of strawberry plants to chitosan application. Eur. J. Sci. Res. 39:161–168.
6. Amborabe, B. E., Bonmort, J., Fleurat-Lessard, P., and Roblin, G. 2008. Early events induced by chitosan on plant cells. J. Exp. Bot. 59: 2317–24.
7. Ash, C., Priest, F. G., and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli using a PCR probe test: proposal for the creation of a new genus Paenibacillus. Antonie Leeuwenhoek 64: 253–260.
8. Aziz, A., Trotel-Aziz, P., Dhuicq, L., Jeandet, P., Couderchet, M., and Vernet, G. 2006. Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96: 1188–94.
9. Barka, E. A., P. Eullaffroy, P., C. Clment, C., and Vernet, G. 2004. Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reptr. 22: 608–614.
10. Beever, R. E., Laracy, E. P., and Pak, H. A. 1989. Strains of Botrytis cinerea resistant to dicarboximide and benzimidazole fungicides in New Zealand vineyards. Plant Pathol. 38: 427–437.
11. Ben-Shalom, N., Ardi, R., Pinto, R., Aki, C., and Fallik, E. 2003. Controlling gray mould caused by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot. 22: 285–90.
12. Bertani, G. 1951. Studies on lysogenesis I. The mode of phage liberation by lysogenic Escherichia coli. J. Bacteriol. 62: 293–300.
13. Bunemann, E. K., Bossio, D. A., Smithson, P. C., Frossard, E., Oberson, A. 2004. Microbial community composition and substrate use in a highly weathered soil as affected by crop rotation and P fertilization. Soil Biol. Biochem. 36: 889–901.
14. Cakmakci, R., Erat, M., Erdoan, U., and Donmez., M. F. 2007. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J. Plant Nutr. Soil Sci. 170: 288–295.
15. Chen, L. F. and Kaye, D. 2004. Current use for old antibacterial agents: polymyxins, rifampin, and aminoglycosides. Infect. Dis. Clin. North Am. 3: 669–689
16. Chen, X., Wang, G., Xu, M., Jin, J., and Liu, X. 2010. Antifungal peptide produced by Paenibacillus polymyxa BRF-1 isolated from soybean rhizosphere. Afr. J. Microb. Res. 4: 2692–2698.
17. Coma, V., Martial-Gros, A., Garreau, S., Copinet, A., Salin, F., and Deschamps, A. 2002. Edible antimicrobial films based on chitosan matrix. J. Food Sci. 67: 1162–1169.
18. Cota, L. V., Maffia, L. A., Mizubuti, E. S. G., Macedo, P. E. F., and Antunes, R. F. 2008. Biological control of strawberry gray mold by Clonostachys rosea under field conditions. Biol. Control 46: 515–522.
19. Deng, Y., Lu, Z., Lu, F., Wang, Y., and Bie, X. M. 2011a. Study on an antimicrobial protein produced by Paenibacillus polymyxa JSa-9 isolated from soil. World J. Microbiol. Biotechnol. 27: 1803–1807.
20. Deng, Y., Lu, Z., Lu, F., Zhang, C., Wang, Y., Zhao, H., and Bie, X. 2011b. Identification of LI-F type antibiotics and di-n-butyl phthalate produced by Paenibacillus polymyxa. J. Microbiol. Meth. 85: 175–182.
21. Dennis, C. and Davis, R. P. 1979. Tolerance of Botrytis cinerea to iprodione and vinclozolin. Plant Pathol. 28: 131–133.
22. Donmez, M. F., Eskiken, A., Yildiz, H., and Ercisli, S. 2011. Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. J. Ann. Plant Sci. 21: 758–763.
23. Elad, Y. and Kapat, A. 1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105: 177–189.
24. Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., and Annapurna, K. 2010. Bacillus and Paenibacillus spp. : potential PGPR for sustainable agriculture. Plant Growth Health Prom. Bact. 18: 333–364.
25. Goy, R. C., de Britto, D., and Assis, O. B. G. 2009. A review of the antimicrobial activity of chitosan. Polimeros 19: 241–247.
26. Gu, .L, Bai, Z., Jin, B., Zhang, J., Li, W., Zhuang, G., and Zhang, H. 2010. Production of a newly isolated Paenibacillus polymyxa biocontrol agent using monosodium glutamate wastewater and potato wastewater. J. Environ. Sci. 22: 1407–12.
27. Guetsky, R., Elad, Y., Shtienberg, D., and Dinoor, A. 2002. Establishment, survival and activity of the biocontrol agents Pichia guilermondii and Bacillus mycoides applied as a mixture on strawberry plants. Sci. Tech. 12: 625–630.
28. Guetsky, R., Elad, Y., Shtienberg, D., Fischer, E., and Dinoor, A. 2002. Improving biological control by combining biocontrol agents each with several mechanisms of disease suppression. Biol. Contrl. 92: 976–985.
29. Hang, N. T. T., Oh, S., Kim, G., Hur, J., and Koh, Y. 2005. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol. J. 21: 59–63.
30. He, Z., Kisla1, D., Zhang, L., Yuan, C., Green-Church, K. B., and Yousef, A. E. 2007. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73: 168–178.
31. Helbig, J. 2001. Biological control of Botrytis cinerea Pers. ex Fr. in strawberry by Paenibacillus polymyxa (Isolate 18191). J. Phytopathol. 149: 265–273.
32. Horst, L. E., Locke, J., Krause, C. R., McMahon, R. W., Madden, L. V., and Hoitink, H. A. J. 2005. Suppression of Botrytis blight of begonia by Trichoderma hamatum 382 in peat and compost-amended potting mixes. Plant Dis. 89: 1195-1200.
33. Hughes, D. F., Jolley, V. D., and Brown, J. C. 1992. Role of potassium in iron-stress response mechanisms of strategy I and strategy II plants. J. Plant Nutr. 15: 1821–1839.
34. Huo, Z., Yang, X., Raza W., Huang, Q., Xu, Y., and Shen, Q. 2010. Investigation of factors influencing spore germination of Paenibacillus polymyxa ACCC10252 and SQR-21. Appl. Microbiol. Biotechnol. 87: 527–536.
35. Hussey, M. and Zayaitz, A. 2007. Endospore stain protocol. Am. Soc. Microbiol. (Online) http://www.microbelibrary.org/component/resource/laboratory-test/3112-endospore-stain-protocol Accessed 01 April 2013.
36. Ito, M. and Koyama. Y. 1972. Jolipeptin, a new peptide antibiotic. I. Isolation, physico-chemical and biological characteristics. J. Antibiot. 25: 305–309.
37. Jeon, Y., Park, P., and Kim, S. 2001. Antimicrobial effect of chitooligosaccharides produced by bioreactor. Carbohydr. Polym. 44: 71–76.
38. Kado, C. I. and Heskett, M. G. 1970. Selective media for Isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 60: 969–976.
39. Kajimura, Y. and Kaneda, M. 1996. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J. Antibiot. 49: 129–135.
40. Katz, E. and Demain, A. L. 1977. The peptide antibiotics in Bacillus: Chemistry, biogenesis and possible functions. Bacteriol.Rev. 41: 449–474.
41. Khan, K. S. and Joergensen, R. G. 2009. Changes in microbial biomass and P fractions in biogenic household waste compost amended with inorganic P fertilizers. Bioresource Technol. 100: 303–309.
42. Kim, H., Lee, S., Kim, C., Lim, E., Choi, K., Kong, H., Kim, D., Lee, S., and Moon, B. 2007. Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. J. Microbiol. Biotechnol. 17: 438–444.
43. Kretschmer, M., Leroch, M., Mosbach, A., Walker, A. S., Fillinger, S., Mernke, D., Schoonbeek, H. J., Pradier, J. M., Leroux, P., Waard, M. A. D., and Hahn, M. 2009. Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathog. 5: 1–13.
44. Kurusa, K. and Ohba, K. 1987. New peptide antibiotics LI-F03, F04, F05, F07, and F08, prodused by Bacillus polymyxa I. isolation and characterization. J. Antibiot. 50: 1506–1514.
45. Lal, S. and Tabacchioni, S. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49: 2–10.
46. Lamsal, K., Kim, S. W., Kim, Y. S., and Lee, Y. S. 2012. Application of rhizobacteria for plant growth promotion effect and biocontrol of anthracnose caused by Colletotrichum acutatum on pepper. Mycobiology 40: 244-251.
47. Lebuhn, M., Heulin, T., and Hartmann, A. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325–334.
48. Leong, J. 1986. Siderophores: their biochemistry, and possible role in the biocontrol of plant pathogens. Ann. Rev. Phytopathol. 24: 187–209.
49. Leroch, M., Plesken, C., Weber, R. W. S., Kauff, F., Scalliet, G., and Hahn, M. 2012. Gray mold populations in German strawberry fields are resistant to multiple fungicides and dominated by a novel clade closely related to Botrytis cinerea. Appl. Environ. Microbiol. 79: 159–167.
50. Li, G. Q., Huang, H. C., Kokko, E. G., and Acharya, S. N. 2002. Mycoparasitism of Gliocladium roseum on Botrytis cinerea ultrastructural study of mycoparasitism of Gliocladium roseum on Botrytis cinerea. Bot. Bull. Acad. Sin. 43: 211–218
51. Liu, W., Mu, W., Zhu, B., Du, Y., and Liu, F. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr. Sci. Chin. 7: 1104–1114.
52. Liu, X., Guan, Y., Yang, D., Li, Z., and Yao, K. 2001. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polymer Sci. 79: 1324–1335.
53. McNicol, R. J., Williamson, B., and Dolan, A. 1985. Infection of red raspberry styles and carpels by Botrytis cinerea and its possible role in post-harvest grey mould. Ann. Appl. Biol. 106: 49–53.
54. Morihara, K. and Tsuzuki, H. 1975. Specificity of proteinase K from Tritirachium album Limber for synthetic peptides. Agric. Biol. Chem. 39: 1489–1492.
55. Moriyama, R., Hattori, A., Miyata, S., Kudoh, S., and Makino, S. 1996. A gene (sleB) encoding a spore cortex-lytic enzyme from Bacillus subtilis and response of the enzyme to L-alanine-mediated germination. J. Bacteriol. 178: 6059–6063.
56. Munoz, Z., Moret, A., and Garces, S. 2009. Assessment of chitosan for inhibition of Colletotrichum sp. on tomatoes and grapes. Crop Prot. 28: 36–40.
57. Nakajima, N., Chihara, S., and Koyama, Y. 1972. A new antibiotic, gatavalin. I. Isolation and characterization. J. Antibiot. 25: 243–247.
58. Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64: 548–572.
59. Nielsen, P. and Sorensen, J. 1997. Multi-target and medium independent fungal antagonisms by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiol. Ecol. 22: 183–192.
60. Pichard, B., Larue, J. P., and Thouvenot, D. 1995. Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiol. Lett. 133: 215–218.
61. Postma, J., Nijhuis, E. H., and Someus, E. 2010. Selection of phosphorus solubilizing bacteria with biocontrol potential for growth in phosphorus rich animal bone charcoal. Appl. Soil Ecol. 46: 464–469.
62. Puente, M. E., Bashan, Y., Li, C. Y., and Lebsky, V. K. 2004. Microbial populations and activities in the rhizoplane of rock-weathering desert plants. Plant Biol. 6: 629–642.
63. Raafat, D., von Bargen, K., Haas, A., and Sahl, H. G. 2008. Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74: 3764–3773.
64. Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., and Steurbaut, W. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4: 1457–1465.
65. Rawlings, N. D. and Barrett, A. J. 1994. Families of serine peptidases. Meth. Enzymol. 244: 19–61.
66. Raza, W., Yang, X., Wu, H., Wang, Y., Xu, Y., and Shen, Q. 2009. Isolation and characterisation of fusaricidin-type compound-producing strain of Paenibacillus polymyxa SQR-21 active against Fusarium oxysporum f.sp. nevium. Eur. J. Plant Pathol. 125: 471–483.
67. Reglinski, T., Elmer, P. A. G., Taylor, J. T., Wood, P. N., and Hoyte S. M. 2010. Inhibition of Botrytis cinerea growth and suppression of Botrytis bunch rot in grapes using chitosan. Plant Path. 59: 882–890.
68. Riesenman, P. J. and Nicholson, W. L. 2000. Role of the spore coat layers in Bacillus subtilis spore resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl. Environ. Microbiol. 66: 620–626.
69. Rodriguez, J., Gupta, N., Smith, R. D., and Pevzner, P. A. 2008. Does trypsin cut before proline? J. Proteome Res. 7: 300–305.
70. Sebti, I., Martial-Gros, A., Carnet-Pantiez, A., Grelier, S., and Coma, V. 2005. Chitosan polymer as bioactive coating and film against Aspergillus niger contamination. J. Food Sci. 70: 100–104.
71. Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S., and van Tuinen, D. 2005. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71: 6501–6507.
72. Shoji, J., Hinoo, H., Wakisaka, Y., Koizumi, K., Mayama, M., and Matsuura, S. 1977. Isolation of two new polymyxin group antibiotics. J. Antibiot. 30: 1029–1034.
73. Singh, H. P. and Singh, T. A. 1993. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza 4: 37–43.
74. Storm, D. R., Rosenthal, K. S., and Swanson, P. E. 1977. Polymyxin and related peptide antibiotics. Annu. Rev. Biochem. 46: 723–763.
75. Sudarshan, N. R., Hoover, D. G., and Knorr, D. 1992. Antibacterial action of chitosan. Food Biotechnol. 6: 257–272.
76. Sutton, J.C., 1990. Epidemiology and management of Botrytis leaf blight of onion and gray mold of strawberry - a comparative analysis. Can. J. Plant Pathol. 12: 100–110.
77. Takahashi, T., Imaia, M., Suzukia, I., and Sawai, J., 2008. Growth inhibitory effect on bacteria of chitosan membranes regulated by the deacetylation degree. Biochem. Engin. J. 40: 485–491.
78. Timmusk, S. and Wagner, E. G. H. 1999. The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol. Plant-Microbe Interact. 12: 951–959.
79. Timmusk, S., Grantcharova, N., and Wagner, E. G. 2005. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl. Environ. Microbiol. 71: 7292–7300.
80. Toure, Y., Ongena, M., Jacques, P.,Guiro, A., and Thonart, P. 2004. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J. Appl. Microbiol. 96: 1151–1160.
81. Trotel-Aziz, P., Couderchet, M., Biagianti, S., and Aziz, A. 2008. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ. Exp. Bot. 64: 21–32.
82. Wang, Y., Shi, Y., Li, B., Shan, C., Ibrahim, M., Jabeen, A., Xie, G., and Sun, G. 2012. Phosphate solubilization of Paenibacillus polymyxa and Paenibacillus macerans from mycorrhizal and non-mycorrhizal cucumber plants. Afr. J. Microbiol. Res. 6: 4567–4573.
83. Williamson, B., Tudzynski, B., Tudzynski, P., and van Kan, J. A. L. 2007. Botrytis cinerea: the cause of grey mould disease. Mol. Plant Pathol. 8: 561–580.
84. Yam, H. C. 2007. Characterization of nitrogen fixation (nif) genes from Paenibacillus polymyxa. Masters thesis. Universiti Sains Malaysia. Malaysia.
85. Zhao, L., Yang, X., Li, X., Mu, W., and Liu, F. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa strain BMP-11. Agric. Sci. Chin. 10: 728–736.
86. Zimand, G., Elad, Y., and Chet, I. 1996. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity. Phytopathology 86: 1255–1260.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17083-
dc.description.abstract本研究探討分離自草莓植株之類芽孢桿菌菌株TP3的生物防治活性及施用方法。菌株TP3與灰黴病菌共培養於馬鈴薯葡萄糖瓊脂培養基上,可形成明顯的抑制圈,菌株TP3具有溶磷的能力,施用於草莓幼苗根圈不影響植株的生長。進行溫室及田間試驗,發現施用菌株TP3營養細胞或內孢子懸浮液於草莓植株地上部表面,對草莓灰黴病具有良好的防治效果,保護率達67.7 ~ 79.3%;此外,澆灌菌株TP3營養細胞或內孢子懸浮液於草莓植株根圈,亦可抑制草莓葉灰黴病的發病程度。含有幾丁聚醣之馬鈴薯葡萄糖培養基並不影響草莓灰黴病菌菌絲的生長,但若將濃度5×107 CFU/ml之菌株TP3營養細胞懸浮液與幾丁聚醣共同施用於草莓植株表面,可抑制灰黴病的發病程度,且在田間試驗施用菌株TP3 (2×107 CFU/ml)混合幾丁聚醣可促進草莓果實的產量。除了草莓灰黴病之外,菌株TP3營養細胞懸浮液施用於玫瑰花及百合葉上,亦可抑制灰黴病的病徵發展。菌株TP3液態培養之上清液對灰黴病菌孢子發芽具有顯著的抑制效果,進一步利用DEAE FF離子交換管柱進行層析純化及LC-MS/MS分析,自馬鈴薯葡萄糖培養液中獲得部分純化之菌株TP3外泌抗菌物質,推測其為新穎蛋白質。zh_TW
dc.description.abstractIn this research, Paenibacillus sp. TP3 screened from strawberry plants showed antagonistic activity against Btrytis cinerea in dual culture assay. Paenibacillus sp. TP3 showed phosphate-solubilizing activity and did not have negative effect on the growth of strawberry plantlet by soil drench. Pot assays and field trials by foliar spray with vegetative cell suspension of Paenibacillus sp. TP3 showed 67.7 ~ 79.3% inhibition of gray mold disease in strawberry. Furthermore, soil drench of TP3 vegetative cell or endospore suspension also suppressed gray mold disease in strawberry. Although hyphal growth of B. cinerea was not inhibited on chitosan-containing PDA medium, treatment with Paenibacillus sp. TP3 suspension of 5×107 CFU/ml combining with chitosan on strawberry plantlets suppressed gray mold development. Moreover, treatment with Paenibacillus sp. TP3 of 2×107 CFU/ml in combination with chitosan improved the fruit production of strawberry in field trials. Besides, treatment with vegetative cell suspension on rose flower and lily leaves suppressed gray mold symptoms. Since bacteria-free culture supernatant showed significant suppression on spore germination, the anti-Botrytis acting compounds were further purified by DEAE ion exchange chromatography, and performed LC-MS/MS analysis. According to the result, the anti-Botrytis substances produced by Paenibacillus sp. TP3 were presumed to be novel proteins.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:55:53Z (GMT). No. of bitstreams: 1
ntu-102-R00633014-1.pdf: 1738161 bytes, checksum: ca82ca8f1dcc44e69460aec51053379a (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents壹、摘要 1
貳、前言 3
參、前人研究 4
一、臺灣草莓產業沿革 4
二、草莓灰黴病現況 5
三、草莓灰黴病之化學及非化學防治 6
四、類芽孢桿菌(Paenibacillus)之特性 8
肆、 材料與方法 10
一、供試菌株之培養與保存 10
二、類芽孢桿菌菌株TP3之特性 11
1. 類芽孢桿菌菌株 TP3與灰黴病菌之對峙培養 11
2. 觀察內孢子形成之染色試驗 11
3. 類芽孢桿菌菌株 TP3產孢能力試驗 11
4. 類芽孢桿菌菌株 TP3溶磷能力試驗 11
5. 菌體懸浮液根部澆灌草莓植株生長試驗 12
三、草莓植株之培養條件 12
四、葉面施用之防治試驗 12
五、比較營養細胞及內孢子懸浮液於田間之防治效力(葉面施用) 13
六、菌體懸浮液根部澆灌草莓植株根部之防治試驗 14
七、類芽孢桿菌菌株TP3與幾丁聚醣共同施用之可能性 14
1. 含幾丁聚醣培養基對灰黴病菌菌絲生長速度之影響 14
2. 溫室試驗 15
3. 田間試驗 15
八、其他作物灰黴病之防治 15
1. 玫瑰切花之灰黴病防治試驗 15
2. 百合離葉之灰黴病防治試驗 16
九、抗菌物質生物活性試驗 16
1. 孢子發芽抑制試驗 16
2. 菌絲生長抑制試驗 16
十、抗菌物質特性分析 17
十一、抗菌物質分離純化 17
1. 硫酸銨蛋白質沉澱 17
2. 離子交換樹脂管柱層析純化 17
3. 抗菌活性測試 18
4. SDS-聚丙烯醯胺膠體分析 18
5. 蛋白質鑑定 19
伍、 結果 20
一、類芽孢桿菌菌株TP3之特性 20
1. 抗菌能力 20
2. 內孢子產生能力 20
3. 溶磷試驗 20
4. 菌體懸浮液根部澆灌草莓植株生長試驗 20
二、葉面施用抗病能力溫室試驗 21
三、營養細胞及內孢子懸浮液於田間之防治效力(葉面施用) 21
四、營養細胞懸浮液澆灌草莓植株根部對葉部灰黴病之防治效果 21
五、類芽孢桿菌菌株TP3與幾丁聚醣共同施用之可能性 22
1. 含幾丁聚醣培養基對灰黴病菌菌絲生長速度之影響 22
2. 田間試驗 22
六、其他作物灰黴病之生物防治試驗 23
1. 玫瑰切花之灰黴病生物防治試驗 23
2. 百合離葉之灰黴病生物防治試驗 23
七、抗菌物質分析 23
1. 抗菌物質特性分析 23
2. 抗菌物質分離純化 24
陸、討論 25
柒、參考文獻 30
捌、圖表集 41
表一、菌株TP3在不同培養基、培養天數之產孢情形 42
圖一、對峙培養形成之抑制圈 43
圖二、菌株TP3內孢子 44
圖三、PKA培養基溶磷能力測試 45
圖四、連續8周澆灌菌株TP3後草莓植株葉寬及葉數 46
圖五、草莓植株上之抗灰黴病菌試驗 48
圖六、田間試驗:植株地上部施用菌株TP3營養細胞及內孢子懸浮液之草莓花朵發病嚴重度 49
圖七、田間試驗: 菌株TP3對草莓果實灰黴病之防治試驗 51
圖八、澆灌菌液於草莓根圈對葉部灰黴病之誘導抗病效果 52
圖九、不同幾丁聚醣培養基對灰黴病菌生長之影響 53
圖十、幾丁聚醣施用於草莓植株對灰黴病之防治效果 54
圖十一、苗栗田間施用菌株TP3混合幾丁聚醣對草莓果實產量之影響 55
圖十二、苗栗田間施用菌株TP3混合幾丁聚醣對草莓果實均重之影響 56
圖十三、菌株TP3對玫瑰灰黴病之防治效果 57
圖十四、菌株TP3對百合灰黴病之防治效果 58
圖十五、培養上清液經酵素處理後對灰黴病菌菌絲生長之影響 59
圖十六、蛋白質純化流程 60
圖十七、管柱層析分液之孢子發芽生物活性分析 61
圖十八、部分純化蛋白質之SDS-PAGE條帶 62
dc.language.isozh-TW
dc.title草莓灰黴病生物防治之應用研究zh_TW
dc.titleApplied Research of Biological Control of Strawberry Gray Molden
dc.typeThesis
dc.date.schoolyear101-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳文希(Wen-Shi Wu),黃祥恩(Hsiang-En Huang),鍾嘉綾(Chia-Lin Chung)
dc.subject.keyword草莓,灰黴病,類芽孢桿菌,生物防治,幾丁聚醣,抗菌蛋白,zh_TW
dc.subject.keywordstrawberry,Botrytis cinerea,Paenibacillus,biological control,chitosan,antifungal protein,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2013-08-20
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved