Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉怡玉(Yei-Yu Yeh)
dc.contributor.authorShao-Ming Leeen
dc.contributor.author李紹銘zh_TW
dc.date.accessioned2021-06-07T23:54:21Z-
dc.date.copyright2013-11-05
dc.date.issued2013
dc.date.submitted2013-09-23
dc.identifier.citationBaylis, G., & Driver, J. (1992). Visual parsing and response competition: The effect of grouping factors. Perception & Psychophysics, 51, 145-162.
Benoni, H., & Tsal, Y. (2012). Controlling for dilution while manipulating load: Perceptual and sensory limitations are just two aspects of task difficulty. Psychonomic Bulletin & Review, 1-8.
Benoni, H., & Tsal, Y. (2012). Controlling for dilution while manipulating load: Perceptual and sensory limitations are just two aspects of task difficulty. Psychonomic Bulletin & Review, 19, 631-638.
Brisson, B., Leblanc, É., & Jolicœur, P. (2009). Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: Evidence from human electrophysiology and the psychological refractory period. Biological Psychology, 80, 218-225.
Broadbent, D. (1958). Perception and communication. New York: Academic Press.
Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97, 523-547.
Bundesen, C., Habekost, T., & Kyllingsbæk, S. (2005). A neural theory of visual attention: Bridging cognition and neurophysiology. Psychological Review, 112, 291-328.
Burra, N., & Kerzel, D. (in press). Attentional capture during visual search is attenuated by target predictability: Evidence from the N2pc, Pd, and topographic segmentation. Psychophysiology.
Chun, M. M., Golomb, J. D., & Turk-Browne, N. B. (2011). A taxonomy of external and internal attention. Annual Review of Psychology, 62, 73-101.
Coles, M. G. H., & Rugg, M. D. (1995). Event-related brain potentials: An
introduction. In M. G. H. Coles & M. D. Rugg (Eds.),Electrophysiology
of mind: Event-related brain potentials and cognition (pp. 1–26).
Oxford, English: Oxford University Press.
Corbetta, M., & Shulman, G. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature reviews Neuroscience, 3, 201-215.
Couperus, J. (2009). Implicit learning modulates selective attention at sensory levels of perceptual processing. Attention, Perception, & Psychophysics, 71, 342-351.
Couperus, J. W. (2010). Perceptual load modifies processing of unattended stimuli both in the presence and absence of attended stimuli. Neuroscience Letters, 485, 246-250.
Couperus, J. W., & Mangun, G. R. (2010). Signal enhancement and suppression during visual–spatial selective attention. Brain Research, 1359, 155-177.
Deutsch, J., & Deutsch, D. (1963). Attention: Some theoretical considerations. Psychological Review, 70, 80-90.
Desimone, R. (1998). Visual attention mediated by biased competition in extrastriate visual cortex. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 353, 1245-1255.
Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.
Donchin, E. (1981). Surprise!… Surprise? Psychophysiology, 18, 493-513.
Donchin, E., & Coles, M. G. (1988). Is the P300 component a manifestation of context updating? Behavioral and Brain Sciences, 11, 357-427.
Driver, J. (2001). A selective review of selective attention research from the past century. British Journal of Psychology, 92, 53-78.
Dowdall, J. R., Luczak, A., & Tata, M. S. (2012). Temporal variability of the N2pc during efficient and inefficient visual search. Neuropsychologia, 50, 2442-2453.
Eimer, M. (1996). The N2pc component as an indicator of attentional selectivity. Electroencephalography and Clinical Neurophysiology, 99, 225-234.
Eimer, M., & Mazza, V. (2005). Electrophysiological correlates of change detection. Psychophysiology, 42, 328-342.
Engel, F. L. (1971). Visual conspicuity, directed attention and retinal locus. Vision Research, 11, 563-575.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143-149.
Eriksen, C. W., Pan, K., & Botella, J. (1993). Attentional distribution in visual space. Psychological Research, 56, 5-13.
Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception & Psychophysics, 25, 249-263.
Fournier, L. R., Herbert, R. J., & Farris, C. (2004). Demands on attention and the role of response priming in visual discrimination of feature conjunctions. Journal of Experimental Psychology: Human Perception and Performance, 30, 836-852.
Fox, E. (1998). Perceptual grouping and visual selective attention. Perception & Psychophysics, 60, 1004-1021.
Fu, S., Zinni, M., Squire, P. N., Kumar, R., Caggiano, D. M., & Parasuraman, R. (2008). When and where perceptual load interacts with voluntary visuospatial attention: An event-related potential and dipole modeling study. NeuroImage, 39, 1345-1355.
Fu, S., Huang, Y., Luo, Y., Wang, Y., Fedota, J., Greenwood, P. M., & Parasuraman, R. (2009). Perceptual load interacts with involuntary attention at early processing stages: Event-related potential studies. NeuroImage, 48, 191-199.
Fu, S., Fedota, J., Greenwood, P. M., & Parasuraman, R. (2010a). Early interaction between perceptual load and involuntary attention: An event-related potential study. Neuroscience Letters, 468, 68-71.
Fu, S., Fedota, J. R., Greenwood, P. M., & Parasuraman, R. (2010b). Dissociation of visual C1 and P1 components as a function of attentional load: An event-related potential study. Biological Psychology, 85, 171-178.
Gilchrist, I. D., Humphreys, G. W., & Riddoch, M. J. (1996). Grouping and extinction: Evidence for low-level modulation of visual selection. Cognitive Neuropsychology, 13, 1223-1249.
Handy, T., & Mangun, G. (2000). Attention and spatial selection: Electrophysiological evidence for modulation by perceptual load. Perception & Psychophysics, 62, 175-186.
Handy, T. C., Soltani, M., & Mangun, G. R. (2001). Perceptual load and visuocortical processing: Event-related potentials reveal sensory-level selection. Psychological Science, 12, 213-218.
Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Münte, T. F., . . . Hillyard, S. A. (1994). Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature, 372, 543-546.
Hickey, C., McDonald, J. J., & Theeuwes, J. (2006). Electrophysiological evidence of the capture of visual attention. Journal of Cognitive Neuroscience, 18, 604-613.
Hickey, C., Di Lollo, V., & McDonald, J. J. (2009). Electrophysiological indices of target and distractor processing in visual search. Journal of Cognitive Neuroscience, 21, 760-775.
Hilimire, M. R., Mounts, J. R. W., Parks, N. A., & Corballis, P. M. (2009). Competitive interaction degrades target selection: An ERP study. Psychophysiology, 46, 1080-1089.
Hilimire, M. R., Mounts, J. R. W., Parks, N. A., & Corballis, P. M. (2011). Dynamics of target and distractor processing in visual search: Evidence from event-related brain potentials. Neuroscience Letters, 495, 196-200.
Hubner, R., Steinhauser, M., & Lehle, C. (2010). A dual-stage two-phase model of selective attention. Psychological Review, 117, 759-784.
Johnson, R., Jr. (1988). The amplitude of the P300 component of the event-related potential: Review and synthesis. In P.K. Ackles, J.R. Jennings, & M.G.H. Coles (Eds.), Advances in psychophysiology, volume III (pp. 69–138). Greenwich, CT: JAI Press.
Kiss, M., Grubert, A., Petersen, A., & Eimer, M. (2012). Attentional capture by salient distractors during visual search is determined by temporal task demands. Journal of Cognitive Neuroscience, 24, 749-759.
Kok, A. (1997). Event-related-potential (ERP) reflections of mental resources: A review and synthesis. Biological Psychology, 45, 19-56.
Lavie, N., & Tsal, Y. (1994). Perceptual load as a major determinant of the locus of selection in visual attention. Attention, Perception, & Psychophysics, 56, 183-197.
Lavie, N., & Cox, S. (1997). On the efficiency of visual selective attention: Efficient visual search leads to inefficient distractor rejection. Psychological Science, 8, 395-396.
Lavie, N., & Fox, E. (2000). The role of perceptual load in negative priming. Journal of Experimental Psychology: Human Perception and Performance, 26, 1038-1052.
Lavie, N., & de Fockert, J. W. (2003). Contrasting effects of sensory limits and capacity limits in visual selective attention. Perception & Psychophysics, 65, 202-212.
Lavie, N., Lin, Z., Zokaei, N., & Thoma, V. (2009). The role of perceptual load in object recognition. Journal of Experimental Psychology: Human Perception and Performance, 35, 1346-1358.
Lavie, N., & Torralbo, A. (2010). Dilution: A theoretical burden or just load? A reply to Tsal and Benoni (2010). Journal of Experimental Psychology: Human Perception and Performance, 36, 1657-1664.
Leszczyński, M., Myers, N. E., Akyürek, E. G., & Schubö, A. (2012). Recoding between two types of STM representation revealed by the dynamics of memory search. Journal of Cognitive Neuroscience, 24, 653-663.
Logan, G. D. (1996). The CODE theory of visual attention: An integration of space-based and object-based attention. Psychological Review, 103, 603-649.
Logan, G. D., & Gordon, R. D. (2001). Executive control of visual attention in dual-task situations. Psychological Review, 108, 393-434.
Luck, S. J., & Hillyard, S. A. (1994a). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31, 291-308.
Luck, S. J., & Hillyard, S. A. (1994b). Spatial filtering during visual search: Evidence from human electrophysiology. Journal of Experimental Psychology: Human Perception and Performance, 20, 1000-1014.
Luck, S. J. (1995). Multiple mechanisms of visual-spatial attention: Recent evidence from human electrophysiology. Behavioural Brain Research, 71, 113-123.
Luck, S. J., Woodman, G. F., & Vogel, E. K. (2000). Event-related potential studies of attention. Trends in Cognitive Sciences, 4, 432-440.
Mangun, G. R., Hopfinger, J. B., Kussmaul, C. L., Fletcher, E. M., & Heinze, H.-J. (1997). Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Human Brain Mapping, 5, 273-279.
Martínez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., . . . Hillyard, S. A. (1999). Involvement of striate and extrastriate visual cortical areas in spatial attention. Nature Neuroscience, 2, 364-369.
Martinovic, J., Gruber, T., Ohla, K., & Müller, M. M. (2008). Induced gamma-band activity elicited by visual representation of unattended objects. Journal of Cognitive Neuroscience, 21, 42-57.
Marciano, H., & Yeshurun, Y. (2011). The effects of perceptual load in central and peripheral regions of the visual field. Visual Cognition, 19, 367-391.
Mattler, U. (2006). Distance and ratio effects in the flanker task are due to different mechanisms. The Quarterly Journal of Experimental Psychology, 59, 1745-1763.
Mazza, V., Dallabona, M., Chelazzi, L., & Turatto, M. (2011). Cooperative and opposing effects of strategic and involuntary attention. Journal of Cognitive Neuroscience, 23, 2838-2851.
McClelland, J. L. (1979). On the time relations of mental processes: An examination of systems of processes in cascade. Psychological Review, 86, 287-330.
McDonald, J. J., Green, J. J., Jannati, A., & Di Lollo, V. (2013). On the electrophysiological evidence for the capture of visual attention. Journal of Experimental Psychology: Human Perception and Performance, 39, 849-860.
Nobre, A. C., Griffin, I. C., & Rao, A. (2007). Spatial attention can bias search in visual short-term memory. Frontiers in Human Neuroscience, 1, 4.
Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44-64.
O'Connor, D. H., Fukui, M. M., Pinsk, M. A., & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience, 5, 1203-1209.
Picton, T. W. (1992). The P300 wave of the human event-related potential. Journal of Clinical Neurophysiology : Official Publication of the American Electroencephalographic Society, 9, 456-479.
Pinsk, M. A., Doniger, G. M., & Kastner, S. (2004). Push-pull mechanism of selective attention in human extrastriate cortex. Journal of Neurophysiology, 92, 622-629.
Polich, J. (2003). Theoretical overview of P3a and P3b Detection of change: Event-related potential and fMRI findings (pp. 83-98). Dordrecht, Netherlands: Kluwer Academic Publishers.
Pritchard, W. S. (1981). Psychophysiology of P300. Psychological Bulletin, 89, 506-540.
Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Attentional load modifies early activity in human primary visual cortex. Human Brain Mapping, 30, 1723-1733.
Rorden, C., Guerrini, C., Swainson, R., Lazzeri, M., & Baylis, G. C. (2008). Event related potentials reveal that increasing perceptual load leads to increased responses for target stimuli and decreased responses for irrelevant stimuli. Frontiers in Human Neuroscience, 2, 4.
Rossi, V., & Pourtois, G. (2012). State-dependent attention modulation of human primary visual cortex: A high density ERP study. NeuroImage, 60, 2365-2378.
Rovamo, J., & Virsu, V. (1979). An estimation and application of the human cortical magnification factor. Experimental Brain Research, 37, 495-510.
Ruchkin, D.S., & Sutton, S. (1978). Equivocation and P300 amplitude. In D. Otto (Ed.), Multidisciplinary perspectives in event-related brain potential research (pp. 175–177). Washington, DC: U. S. Government Printing Office
Sawaki, R., & Luck, S. J. (2010). Capture versus suppression of attention by salient singletons: Electrophysiological evidence for an automatic attend-to-me signal. Attention, Perception, & Psychophysics, 72, 1455-1470.
Sawaki, R., & Luck, S. J. (2011). Active suppression of distractors that match the contents of visual working memory. Visual Cognition, 19, 956-972.
Sawaki, R., Geng, J. J., & Luck, S. J. (2012). A common neural mechanism for preventing and terminating the allocation of attention. The Journal of Neuroscience, 32, 10725-10736.
Schwartz, S., Vuilleumier, P., Hutton, C., Maravita, A., Dolan, R. J., & Driver, J. (2005). Attentional load and sensory competition in human vision: Modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field. Cerebral Cortex, 15, 770-786.
Stigchel, S. V. d., Belopolsky, A. V., Peters, J. C., Wijnen, J. G., Meeter, M., & Theeuwes, J. (2009). The limits of top-down control of visual attention. Acta Psychologica, 132, 201-212.
Takezawa, T., & Miyatani, M. (2005). Quantitative relation between conflict and response inhibition in the flanker task. Psychological Reports, 97, 515-526.
Telling, A. L., Kumar, S., Meyer, A. S., & Humphreys, G. W. (2009). Electrophysiological evidence of semantic interference in visual search. Journal of Cognitive Neuroscience, 22, 2212-2225.
Theeuwes, J., Kramer, A., & Belopolsky, A. (2004). Attentional set interacts with perceptual load in visual search. Psychonomic Bulletin & Review, 11, 697-702.
Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97-136.
Tsal, Y., & Benoni, H. (2010a). Diluting the burden of load: Perceptual load effects are simply dilution effects. Journal of Experimental Psychology: Human Perception and Performance, 36, 1645-1656.
Tsal, Y., & Benoni, H. (2010b). Much dilution little load in Lavie and Torralbo's (2010) response: A reply. Journal of Experimental Psychology: Human Perception and Performance, 36, 1665-1668.
Van Voorhis, S., & Hillyard, S. A. (1977). Visual evoked potentials and selective attention to points in space. Perception & Psychophysics, 22, 54-62.
Verleger, R., Gasser, T., & Möcks, J. (1985). Short term changes of event related potentials during concept learning. Biological Psychology, 20, 1-16.
Verleger, R. (1988). Event-related potentials and cognition: A critique of the context updating hypothesis and an alternative interpretation of P3. Behavioral and Brain Sciences, 11, 343-356.
Verleger, R., Jaśkowski, P., & Wascher, E. (2005). Evidence for an Integrative Role of P3b in Linking Reaction to Perception. Journal of Psychophysiology, 19, 165-181.
Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24, 1656-1674.
Williams, M. A., Hilimire, M. R., Mounts, J. R. W., Parks, N. A., & Corballis, P. M. (2010). Event-Related Potentials Dissociate Effects of Salience and Space in Biased Competition for Visual Representation. PLoS ONE, 5, e12677.
Wilson, D. E., Muroi, M., & MacLeod, C. M. (2011). Dilution, not load, affects distractor processing. Journal of Experimental Psychology: Human Perception and Performance, 37, 319-335.
Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., . . . Jerabek, P. (1997). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping, 5, 280-286.
Wolfe, J. M. (1994). Guided search 2.0: A revised model of visual search. Psychonomic Bulletin & Review, 1, 202-238.
Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400, 867-869.
Woodman, G. F., & Luck, S. J. (2003). Dissociations among attention, perception, and awareness during object-substitution masking. Psychological Science, 14, 605-611.
Xu, Y., & Chun, M. M. (2009). Selecting and perceiving multiple visual objects. Trends in Cognitive Sciences, 13, 167-174.
Yeh, Y. Y., Chen, Y. H., & Yang, C. T. (2009, November). Target distractor competition influences the compatibility effect under low perceptual load. Paper presented at the 50th annual meeting of the Psychonomic Society, Boston.
Yeh, Y. Y., & Lin, S. H. (2013). Two mechanisms of distractor dilution: Visual selection in a continuous flow. Journal of Experimental Psychology: Human Perception and Performance, 39, 872-892.
Zhao, G., Liu, Q., Zhang, Y., Jiao, J., Zhang, Q., Sun, H., & Li, H. (2011). The amplitude of N2pc reflects the physical disparity between target item and distracters. Neuroscience Letters, 491, 68-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/17040-
dc.description.abstract本篇研究旨在探討刺激間的相對競爭性如何影響干擾物排除的時機,及其相關的神經活動指標。過去研究以側翼作業(flanker task)探討干擾物對目標物反應判斷的影響,比較干擾物與目標物反應不相容嘗試與相容嘗試間反應時間的差異(反應時間相容效果),以作為干擾物處理至反應決策歷程的指標。因反應時間資料僅為所有認知歷程的加總結果,本研究以事件相關電位研究進一步地回答在側翼作業脈絡中,干擾物競爭力被稀釋的確切時機。實驗一發現,當干擾物能與目標物以突顯顏色群組在一起時(稀釋情境),會引發比其它情境(高負荷量與低負荷量)下干擾物所引發的N2pc振幅較大,表示初始注意力分布會受到知覺組織的效果影響。有趣的是,干擾物在早期注意力分布時與晚期反應決策階段時的競爭力具有解離性:低負荷量情境有P300相容性效果,稀釋情境則無。根據雙機制競爭模形(Yeh & Lin, 2012)注意力再導引會提高了非目標物活化量,進而稀釋了干擾物的表徵,使其競爭性無法延續到晚期階段。由實驗二反應時間相容性的結果可知,在多重目標畫面(redundant target display)的脈絡之下,干擾物位置的不確定性在提升干擾物競爭性上扮演重要角色,但干擾物距離則否。承接實驗二的結果,實驗三A同時使用電生理與行為指標進一步地探討,在固定距離下干擾物的大小如何影響干擾物的競爭性而影響神經活動。結果顯示,在多重目標畫面的刺激脈絡之下,干擾物會於N2時窗(time window)會引發Pd成份波,表示在初始階段即對干擾物產生抑制。另外,如同實驗一,實驗三A也發現干擾物的處理在早期與晚期有解離性存在:即便干擾物大小不會調控Pd成份波的振幅,但只有當干擾物較大時,才會出現P300振幅相容性效果並產生較大的反應時間相容效果。綜合三個實驗的結果,注意力的選擇歷程一個是連續且有多個機制共同交互所完成的結果。zh_TW
dc.description.abstractThe present study aims to explore how the competitions among task-relevant and task-irrelevant stimuli affect distractor processing using the recording of event-related potentials (ERP). In most of the previous studies, distractor processing was often evaluated indirectly by reaction times to target selection. Yet, reaction time simply reflects the consequence of all intermediated processes. Therefore, we used ERP experiments to underpin the different neural mechanisms underlying distractor processes in two experimental contexts. ERPs were monitored while participants performed a flanker task. In Experiment 1, stimulus competition was manipulated through varying whether the distractor can be perceptually grouped with the task-relevant target assuming that distractor grouped with the target is a strong competitor. Participants performed three experimental conditions: low-load, high-load, and dilution conditions. Target-nontarget feature similarity was low in the low-load condition and was high in the latter two conditions. More importantly, target and distractor shared the same color to reduce target processing load in the dilution condition. The results showed that that a highly salient distractor grouped with the target in color elicited strong activation in attention allocation under the dilution condition. As a result, the amplitude of distractor-elicited N2pc was greater under dilution than under the low-load and high-load conditions. Interestingly, the strong activation did not carry over downstream in processing to produce a strong competition against the target in response decision. Distractor compatibility did not modulate P300 amplitude in the dilution and high-load conditions but manifested in the low-load condition. These results suggest that the representation of distractor was diluted between the initial attention allocation and the response selection stages under the dilution condition. In Experiment 2, redundant target display was adopted to enhance target competition and the reaction time compatibility effect revealed that the location uncertainty played a role in enhancing distractor competition while the distractor distance did not. In Experiment 3A, redundant target display was also adopted to enhance target competition while distractor competition was manipulated by varying distractor size assuming that a large distractor is a strong competitor. The results showed that the high activation of redundant targets was able to suppress distractor activation during the stage of attention allocation as reflected by a distractor-elicited Pd. Distractor size did not modulate the distractor-elicited Pd but only the large distractor produced compatibility effect on P300. This finding suggests that a large distractor produced competition against the target in response decision even though it was suppressed at an early stage. Taken together, the results from two experiments support the contention that biased competition characterizes visual selection and relative stimulus activation strength influences biased competition at different stages of information processing.en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:54:21Z (GMT). No. of bitstreams: 1
ntu-102-R99227116-1.pdf: 1526880 bytes, checksum: cf4f2fb198a67868b0fdb65d0a741b33 (MD5)
Previous issue date: 2013
en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
目次 iv
表目次 v
圖目次 vi
前言 1
實驗一 13
  方法 14
  結果 17
  討論 34
實驗二 38
  方法 38
  結果 40
  討論 42
實驗三A 43
  方法 43
  結果 45
  討論 51
實驗三B 52
  方法 52
  結果 53
  討論 59
綜合討論 60
  研究限制 65
  結論 66
參考文獻 67
dc.language.isozh-TW
dc.title刺激相對競爭性對干擾物處理的影響zh_TW
dc.titleThe Effects of Stimulus Competition on Distractor Processingen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭仕坤(Shih-kuen Cheng),郭柏呈(Bo-Cheng Kuo)
dc.subject.keyword事件相關電位,N2pc,Pd,P300,側翼作業,zh_TW
dc.subject.keywordEvent-related potentials,N2pc,Pd,P300,flanker task,en
dc.relation.page75
dc.rights.note未授權
dc.date.accepted2013-09-24
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-102-1.pdf
  目前未授權公開取用
1.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved