請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16959
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 符文美 | |
dc.contributor.author | Ming-Yueh Wu | en |
dc.contributor.author | 吳明岳 | zh_TW |
dc.date.accessioned | 2021-06-07T23:50:58Z | - |
dc.date.copyright | 2014-02-25 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-01-24 | |
dc.identifier.citation | Aarvak T, Natvig JB. 2001. Cell-cell interactions in synovitis: antigen presenting cells and T cell interaction in rheumatoid arthritis. Arthritis Res 3(1):13-17.
Ackermann C, Kavanaugh A. 2007. Tumor necrosis factor as a therapeutic target of rheumatologic disease. Expert Opin Ther Targets 11(11):1369-1384. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. 2006. Inflammation and cancer: how hot is the link? Biochem Pharmacol 72(11):1605-1621. Ahrens D, Koch AE, Pope RM, Stein-Picarella M, Niedbala MJ. 1996. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum 39(9):1576-1587. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, 3rd, Birnbaum NS, Burmester GR, Bykerk VP, Cohen MD, Combe B, Costenbader KH, Dougados M, Emery P, Ferraccioli G, Hazes JM, Hobbs K, Huizinga TW, Kavanaugh A, Kay J, Kvien TK, Laing T, Mease P, Menard HA, Moreland LW, Naden RL, Pincus T, Smolen JS, Stanislawska-Biernat E, Symmons D, Tak PP, Upchurch KS, Vencovsky J, Wolfe F, Hawker G. 2010. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum 62(9):2569-2581. Amalinei C, Caruntu ID, Giusca SE, Balan RA. 2010. Matrix metalloproteinases involvement in pathologic conditions. Rom J Morphol Embryol 51(2):215-228. American College of Rheumatology Subcommittee on Rheumatoid Arthritis G. 2002. Guidelines for the management of rheumatoid arthritis: 2002 Update. Arthritis Rheum 46(2):328-346. Andersson CK, Claesson HE, Rydell-Tormanen K, Swedmark S, Hallgren A, Erjefalt JS. 2008. Mice lacking 12/15-lipoxygenase have attenuated airway allergic inflammation and remodeling. Am J Respir Cell Mol Biol 39(6):648-656. Angel J, Colard O, Chevy F, Fournier C. 1993. Interleukin-1-mediated phospholipid breakdown and arachidonic acid release in human synovial cells. Arthritis Rheum 36(2):158-167. Arend WP, Firestein GS. 2012. Pre-rheumatoid arthritis: predisposition and transition to clinical synovitis. Nat Rev Rheumatol 8(10):573-586. Asahara H, Asanuma M, Ogawa N, Nishibayashi S, Inoue H. 1995. High DNA-binding activity of transcription factor NF-kappa B in synovial membranes of patients with rheumatoid arthritis. Biochem Mol Biol Int 37(5):827-832. Autiero M, Luttun A, Tjwa M, Carmeliet P. 2003. Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1(7):1356-1370. Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, Lohoff M, Gemsa D, Donnelly T, Bucala R. 1996. An essential regulatory role for macrophage migration inhibitory factor in T-cell activation. Proc Natl Acad Sci U S A 93(15):7849-7854. Ballara S, Taylor PC, Reusch P, Marme D, Feldmann M, Maini RN, Paleolog EM. 2001. Raised serum vascular endothelial growth factor levels are associated with destructive change in inflammatory arthritis. Arthritis Rheum 44(9):2055-2064. Barbhaiya M, Bermas BL. 2013. Evaluation and management of systemic lupus erythematosus and rheumatoid arthritis during pregnancy. Clin Immunol 149(2):225-235. Bartok B, Firestein GS. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev 233(1):233-255. Ben-Av P, Crofford LJ, Wilder RL, Hla T. 1995. Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Lett 372(1):83-87. Bhattacharya A, Hamilton R, Jernigan A, Zhang Y, Sabia M, Rahman MM, Li Y, Wei R, Chaudhuri A, Van Remmen H. 2013. Genetic ablation of 12/15-lipoxygenase but not 5-lipoxygenase protects against denervation-induced muscle atrophy. Free Radic Biol Med 67C:30-40. Bidgood MJ, Jamal OS, Cunningham AM, Brooks PM, Scott KF. 2000. Type IIA secretory phospholipase A2 up-regulates cyclooxygenase-2 and amplifies cytokine-mediated prostaglandin production in human rheumatoid synoviocytes. J Immunol 165(5):2790-2797. Boissier MC, Semerano L, Challal S, Saidenberg-Kermanac'h N, Falgarone G. 2012. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. J Autoimmun 39(3):222-228. Bomalaski JS, Clark MA. 1993. Phospholipase A2 and arthritis. Arthritis Rheum 36(2):190-198. Bottomley MJ, Webb NJ, Watson CJ, Holt L, Bukhari M, Denton J, Freemont AJ, Brenchley PE. 2000. Placenta growth factor (PlGF) induces vascular endothelial growth factor (VEGF) secretion from mononuclear cells and is co-expressed with VEGF in synovial fluid. Clin Exp Immunol 119(1):182-188. Brash AR, Boeglin WE, Chang MS. 1997. Discovery of a second 15S-lipoxygenase in humans. Proc Natl Acad Sci U S A 94(12):6148-6152. Brennan F, Beech J. 2007. Update on cytokines in rheumatoid arthritis. Curr Opin Rheumatol 19(3):296-301. Brennan FM, Chantry D, Jackson A, Maini R, Feldmann M. 1989. Inhibitory effect of TNF alpha antibodies on synovial cell interleukin-1 production in rheumatoid arthritis. Lancet 2(8657):244-247. Brennan FM, Maini RN, Feldmann M. 1992. TNF alpha--a pivotal role in rheumatoid arthritis? Br J Rheumatol 31(5):293-298. Brennan FM, McInnes IB. 2008. Evidence that cytokines play a role in rheumatoid arthritis. J Clin Invest 118(11):3537-3545. Bui P, Solaimani P, Wu X, Hankinson O. 2012. 2,3,7,8-Tetrachlorodibenzo-p-dioxin treatment alters eicosanoid levels in several organs of the mouse in an aryl hydrocarbon receptor-dependent fashion. Toxicol Appl Pharmacol 259(2):143-151. Burrage PS, Mix KS, Brinckerhoff CE. 2006. Matrix metalloproteinases: role in arthritis. Front Biosci 11:529-543. Butler DM, Maini RN, Feldmann M, Brennan FM. 1995. Modulation of proinflammatory cytokine release in rheumatoid synovial membrane cell cultures. Comparison of monoclonal anti TNF-alpha antibody with the interleukin-1 receptor antagonist. Eur Cytokine Netw 6(4):225-230. Cao Y, Ji WR, Qi P, Rosin A, Cao Y. 1997. Placenta growth factor: identification and characterization of a novel isoform generated by RNA alternative splicing. Biochem Biophys Res Commun 235(3):493-498. Carmeliet P, Jain RK. 2011. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 10(6):417-427. Carmona L, Cross M, Williams B, Lassere M, March L. 2010. Rheumatoid arthritis. Best Pract Res Clin Rheumatol 24(6):733-745. Chabane N, Zayed N, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N, Fahmi H. 2009. Human articular chondrocytes express 15-lipoxygenase-1 and -2: potential role in osteoarthritis. Arthritis Res Ther 11(2):R44. Chakrabarti SK, Cole BK, Wen Y, Keller SR, Nadler JL. 2009. 12/15-lipoxygenase products induce inflammation and impair insulin signaling in 3T3-L1 adipocytes. Obesity (Silver Spring) 17(9):1657-1663. Chang X, Wei C. 2011. Glycolysis and rheumatoid arthritis. Int J Rheum Dis 14(3):217-222. Chang YH, Lin IL, Tsay GJ, Yang SC, Yang TP, Ho KT, Hsu TC, Shiau MY. 2008. Elevated circulatory MMP-2 and MMP-9 levels and activities in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Biochem 41(12):955-959. Chen B, Tsui S, Boeglin WE, Douglas RS, Brash AR, Smith TJ. 2006. Interleukin-4 induces 15-lipoxygenase-1 expression in human orbital fibroblasts from patients with Graves disease. Evidence for anatomic site-selective actions of Th2 cytokines. J Biol Chem 281(27):18296-18306. Chen S, Yang Y, Feng H, Wang H, Zhao R, Liu H. 2013. Baicalein Inhibits Interleukin-1beta-Induced Proliferation of Human Rheumatoid Arthritis Fibroblast-like Synoviocytes. Inflammation. Cheng SJ, Lee JJ, Kok SH, Chou CH, Chang HH, Chiang ML, Chen HM, Kuo MY, Chiang CP. 2010. Expression of placenta growth factor: an independent factor for prediction of progression and prognosis of oral cancer. Head Neck 32(10):1363-1369. Chetty C, Lakka SS, Bhoopathi P, Rao JS. 2010. MMP-2 alters VEGF expression via alphaVbeta3 integrin-mediated PI3K/AKT signaling in A549 lung cancer cells. Int J Cancer 127(5):1081-1095. Chi PL, Luo SF, Hsieh HL, Lee IT, Hsiao LD, Chen YL, Yang CM. 2011. Cytosolic phospholipase A2 induction and prostaglandin E2 release by interleukin-1beta via the myeloid differentiation factor 88-dependent pathway and cooperation of p300, Akt, and NF-kappaB activity in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum 63(10):2905-2917. Chimenti MS, Saraceno R, Chiricozzi A, Giunta A, Chimenti S, Perricone R. 2013. Profile of certolizumab and its potential in the treatment of psoriatic arthritis. Drug Des Devel Ther 7:339-348. Choi EM, Lee YS. 2010. Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem Toxicol 48(10):2607-2611. Choy E. 2012. Understanding the dynamics: pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology (Oxford) 51 Suppl 5:v3-11. Choy EH, Kavanaugh AF, Jones SA. 2013. The problem of choice: current biologic agents and future prospects in RA. Nat Rev Rheumatol 9(3):154-163. Clavel G, Bessis N, Boissier MC. 2003. Recent data on the role for angiogenesis in rheumatoid arthritis. Joint Bone Spine 70(5):321-326. Cockett MI, Murphy G, Birch ML, O'Connell JP, Crabbe T, Millican AT, Hart IR, Docherty AJ. 1998. Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp 63:295-313. Croft M, Benedict CA, Ware CF. 2013. Clinical targeting of the TNF and TNFR superfamilies. Nat Rev Drug Discov 12(2):147-168. Danese S, Colombel JF, Peyrin-Biroulet L, Rutgeerts P, Reinisch W. 2013. Review article: the role of anti-TNF in the management of ulcerative colitis -- past, present and future. Aliment Pharmacol Ther 37(9):855-866. Dayer JM, Beutler B, Cerami A. 1985. Cachectin/tumor necrosis factor stimulates collagenase and prostaglandin E2 production by human synovial cells and dermal fibroblasts. J Exp Med 162(6):2163-2168. De Falco S. 2012. The discovery of placenta growth factor and its biological activity. Exp Mol Med 44(1):1-9. DeBusk LM, Chen Y, Nishishita T, Chen J, Thomas JW, Lin PC. 2003. Tie2 receptor tyrosine kinase, a major mediator of tumor necrosis factor alpha-induced angiogenesis in rheumatoid arthritis. Arthritis Rheum 48(9):2461-2471. Devaraj S, Jialal I. 2005. Alpha-tocopherol decreases tumor necrosis factor-alpha mRNA and protein from activated human monocytes by inhibition of 5-lipoxygenase. Free Radic Biol Med 38(9):1212-1220. Dewerchin M, Carmeliet P. 2012. PlGF: a multitasking cytokine with disease-restricted activity. Cold Spring Harb Perspect Med 2(8). Di Giovine FS, Nuki G, Duff GW. 1988. Tumour necrosis factor in synovial exudates. Ann Rheum Dis 47(9):768-772. Dioszeghy V, Rosas M, Maskrey BH, Colmont C, Topley N, Chaitidis P, Kuhn H, Jones SA, Taylor PR, O'Donnell VB. 2008. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. J Immunol 181(9):6514-6524. DiPalma T, Tucci M, Russo G, Maglione D, Lago CT, Romano A, Saccone S, Della Valle G, De Gregorio L, Dragani TA, Viglietto G, Persico MG. 1996. The placenta growth factor gene of the mouse. Mamm Genome 7(1):6-12. Ditzel HJ. 2004. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol Med 10(1):40-45. Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler JL. 2011. Functional and pathological roles of the 12- and 15-lipoxygenases. Prog Lipid Res 50(1):115-131. Doran MF, Pond GR, Crowson CS, O'Fallon WM, Gabriel SE. 2002. Trends in incidence and mortality in rheumatoid arthritis in Rochester, Minnesota, over a forty-year period. Arthritis Rheum 46(3):625-631. Feldmann M, Brennan FM, Williams RO, Woody JN, Maini RN. 2004. The transfer of a laboratory based hypothesis to a clinically useful therapy: the development of anti-TNF therapy of rheumatoid arthritis. Best Pract Res Clin Rheumatol 18(1):59-80. Ferrara N, Gerber HP, LeCouter J. 2003. The biology of VEGF and its receptors. Nat Med 9(6):669-676. Firestein GS. 2003. Evolving concepts of rheumatoid arthritis. Nature 423(6937):356-361. Fischer C, Mazzone M, Jonckx B, Carmeliet P. 2008. FLT1 and its ligands VEGFB and PlGF: drug targets for anti-angiogenic therapy? Nat Rev Cancer 8(12):942-956. Fujii T, Yonemitsu Y, Onimaru M, Inoue M, Hasegawa M, Kuwano H, Sueishi K. 2008. VEGF function for upregulation of endogenous PlGF expression during FGF-2-mediated therapeutic angiogenesis. Atherosclerosis 200(1):51-57. Gheorghe KR, Korotkova M, Catrina AI, Backman L, af Klint E, Claesson HE, Radmark O, Jakobsson PJ. 2009. Expression of 5-lipoxygenase and 15-lipoxygenase in rheumatoid arthritis synovium and effects of intraarticular glucocorticoids. Arthritis Res Ther 11(3):R83. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, Nanes MS. 2000. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology 141(11):3956-3964. Gilman SC, Chang J, Zeigler PR, Uhl J, Mochan E. 1988. Interleukin-1 activates phospholipase A2 in human synovial cells. Arthritis Rheum 31(1):126-130. Gilston V, Jones HW, Soo CC, Coumbe A, Blades S, Kaltschmidt C, Baeuerle PA, Morris CJ, Blake DR, Winyard PG. 1997. NF-kappa B activation in human knee-joint synovial tissue during the early stage of joint inflammation. Biochem Soc Trans 25(3):518S. Goldbach-Mansky R, Lee JM, Hoxworth JM, Smith D, 2nd, Duray P, Schumacher RH, Jr., Yarboro CH, Klippel J, Kleiner D, El-Gabalawy HS. 2000. Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis. Arthritis Res 2(2):145-153. Grisar J, Aletaha D, Steiner CW, Kapral T, Steiner S, Saemann M, Schwarzinger I, Buranyi B, Steiner G, Smolen JS. 2007. Endothelial progenitor cells in active rheumatoid arthritis: effects of tumour necrosis factor and glucocorticoid therapy. Ann Rheum Dis 66(10):1284-1288. Harizi H, Corcuff JB, Gualde N. 2008. Arachidonic-acid-derived eicosanoids: roles in biology and immunopathology. Trends Mol Med 14(10):461-469. Hembry RM, Bagga MR, Reynolds JJ, Hamblen DL. 1995. Immunolocalisation studies on six matrix metalloproteinases and their inhibitors, TIMP-1 and TIMP-2, in synovia from patients with osteo- and rheumatoid arthritis. Ann Rheum Dis 54(1):25-32. Honda S, Migita K, Hirai Y, Origuchi T, Yamasaki S, Kamachi M, Shibatomi K, Fukuda T, Kita M, Hida A, Ida H, Aoyagi T, Kawakami A, Kawabe Y, Oizumi K, Eguchi K. 2001. Expression of membrane-type 1 matrix metalloproteinase in rheumatoid synovial cells. Clin Exp Immunol 126(1):131-136. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK. 1999. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400(6742):378-382. Husby G, Williams RC, Jr. 1988. Synovial localization of tumor necrosis factor in patients with rheumatoid arthritis. J Autoimmun 1(4):363-371. Ikeda M, Hosoda Y, Hirose S, Okada Y, Ikeda E. 2000. Expression of vascular endothelial growth factor isoforms and their receptors Flt-1, KDR, and neuropilin-1 in synovial tissues of rheumatoid arthritis. J Pathol 191(4):426-433. Imhof BA, Aurrand-Lions M. 2006. Angiogenesis and inflammation face off. Nat Med 12(2):171-172. Inoue H, Takamori M, Shimoyama Y, Ishibashi H, Yamamoto S, Koshihara Y. 2002. Regulation by PGE2 of the production of interleukin-6, macrophage colony stimulating factor, and vascular endothelial growth factor in human synovial fibroblasts. Br J Pharmacol 136(2):287-295. Ishikawa T, Nishigaki F, Miyata S, Hirayama Y, Minoura K, Imanishi J, Neya M, Mizutani T, Imamura Y, Ohkubo Y, Mutoh S. 2005. Prevention of progressive joint destruction in adjuvant induced arthritis in rats by a novel matrix metalloproteinase inhibitor, FR217840. Eur J Pharmacol 508(1-3):239-247. Ito A, Mukaiyama A, Itoh Y, Nagase H, Thogersen IB, Enghild JJ, Sasaguri Y, Mori Y. 1996. Degradation of interleukin 1beta by matrix metalloproteinases. J Biol Chem 271(25):14657-14660. Itoh T, Uzuki M, Shimamura T, Sawai T. 2002. [Dynamics of matrix metalloproteinase (MMP)-13 in the patients with rheumatoid arthritis]. Ryumachi 42(1):60-69. Izquierdo E, Canete JD, Celis R, Santiago B, Usategui A, Sanmarti R, Del Rey MJ, Pablos JL. 2009. Immature blood vessels in rheumatoid synovium are selectively depleted in response to anti-TNF therapy. PLoS One 4(12):e8131. Jayawickreme SP, Gray T, Nettesheim P, Eling T. 1999. Regulation of 15-lipoxygenase expression and mucus secretion by IL-4 in human bronchial epithelial cells. Am J Physiol 276(4 Pt 1):L596-603. Jeon SG, Moon HG, Kim YS, Choi JP, Shin TS, Hong SW, Tae YM, Kim SH, Zhu Z, Gho YS, Kim YK. 2009. 15-lipoxygenase metabolites play an important role in the development of a T-helper type 1 allergic inflammation induced by double-stranded RNA. Clin Exp Allergy 39(6):908-917. Ji JJ, Lin Y, Huang SS, Zhang HL, Diao YP, Li K. 2013. Quercetin: a potential natural drug for adjuvant treatment of rheumatoid arthritis. Afr J Tradit Complement Altern Med 10(3):418-421. Kammer GM, Sapolsky AI, Malemud CJ. 1985. Secretion of an articular cartilage proteoglycan-degrading enzyme activity by murine T lymphocytes in vitro. J Clin Invest 76(2):395-402. Karlson EW, Ding B, Keenan BT, Liao K, Costenbader KH, Klareskog L, Alfredsson L, Chibnik LB. 2013. Association of environmental and genetic factors and gene-environment interactions with risk of developing rheumatoid arthritis. Arthritis Care Res (Hoboken) 65(7):1147-1156. Kayama Y, Minamino T, Toko H, Sakamoto M, Shimizu I, Takahashi H, Okada S, Tateno K, Moriya J, Yokoyama M, Nojima A, Yoshimura M, Egashira K, Aburatani H, Komuro I. 2009. Cardiac 12/15 lipoxygenase-induced inflammation is involved in heart failure. J Exp Med 206(7):1565-1574. Keffer J, Probert L, Cazlaris H, Georgopoulos S, Kaslaris E, Kioussis D, Kollias G. 1991. Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J 10(13):4025-4031. Kerekes G, Soltesz P, Der H, Veres K, Szabo Z, Vegvari A, Shoenfeld Y, Szekanecz Z. 2009. Effects of biologics on vascular function and atherosclerosis associated with rheumatoid arthritis. Ann N Y Acad Sci 1173:814-821. Khaliq A, Li XF, Shams M, Sisi P, Acevedo CA, Whittle MJ, Weich H, Ahmed A. 1996. Localisation of placenta growth factor (PIGF) in human term placenta. Growth Factors 13(3-4):243-250,color plates I-II,pre bk cov. Kim C, Kim JY, Kim JH. 2008a. Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep 41(8):555-559. Kim EY, Moudgil KD. 2009. The determinants of susceptibility/resistance to adjuvant arthritis in rats. Arthritis Res Ther 11(4):239. Kim KS, Choi HM, Lee YA, Choi IA, Lee SH, Hong SJ, Yang HI, Yoo MC. 2011. Expression levels and association of gelatinases MMP-2 and MMP-9 and collagenases MMP-1 and MMP-13 with VEGF in synovial fluid of patients with arthritis. Rheumatol Int 31(4):543-547. Kim KW, Cho ML, Park MK, Yoon CH, Park SH, Lee SH, Kim HY. 2005. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther 7(1):R139-148. Kim SY, Kim TB, Moon KA, Kim TJ, Shin D, Cho YS, Moon HB, Lee KY. 2008b. Regulation of pro-inflammatory responses by lipoxygenases via intracellular reactive oxygen species in vitro and in vivo. Exp Mol Med 40(4):461-476. Kleiner DE, Stetler-Stevenson WG. 1999. Matrix metalloproteinases and metastasis. Cancer Chemother Pharmacol 43 Suppl:S42-51. Klil-Drori AJ, Ariel A. 2013. 15-Lipoxygenases in cancer: A double-edged sword? Prostaglandins Other Lipid Mediat 106:16-22. Kobayashi K, Takahashi N, Jimi E, Udagawa N, Takami M, Kotake S, Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Morinaga T, Higashio K, Martin TJ, Suda T. 2000. Tumor necrosis factor alpha stimulates osteoclast differentiation by a mechanism independent of the ODF/RANKL-RANK interaction. J Exp Med 191(2):275-286. Koch AE. 1998. Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum 41(6):951-962. Kojima F, Naraba H, Sasaki Y, Okamoto R, Koshino T, Kawai S. 2002. Coexpression of microsomal prostaglandin E synthase with cyclooxygenase-2 in human rheumatoid synovial cells. J Rheumatol 29(9):1836-1842. Kong JS, Yoo SA, Kang JH, Ko W, Jeon S, Chae CB, Cho CS, Kim WU. 2011. Suppression of neovascularization and experimental arthritis by D-form of anti-flt-1 peptide conjugated with mini-PEG(). Angiogenesis 14(4):431-442. Konttinen YT, Ainola M, Valleala H, Ma J, Ida H, Mandelin J, Kinne RW, Santavirta S, Sorsa T, Lopez-Otin C, Takagi M. 1999. Analysis of 16 different matrix metalloproteinases (MMP-1 to MMP-20) in the synovial membrane: different profiles in trauma and rheumatoid arthritis. Ann Rheum Dis 58(11):691-697. Kouklakis G, Efremidou EI, Pitiakoudis M, Liratzopoulos N, Polychronidis A. 2013. Development of primary malignant melanoma during treatment with a TNF-alpha antagonist for severe Crohn's disease: a case report and review of the hypothetical association between TNF-alpha blockers and cancer. Drug Des Devel Ther 7:195-199. Krauss T, Pauer HU, Augustin HG. 2004. Prospective analysis of placenta growth factor (PlGF) concentrations in the plasma of women with normal pregnancy and pregnancies complicated by preeclampsia. Hypertens Pregnancy 23(1):101-111. Kronke G, Katzenbeisser J, Uderhardt S, Zaiss MM, Scholtysek C, Schabbauer G, Zarbock A, Koenders MI, Axmann R, Zwerina J, Baenckler HW, van den Berg W, Voll RE, Kuhn H, Joosten LA, Schett G. 2009a. 12/15-lipoxygenase counteracts inflammation and tissue damage in arthritis. J Immunol 183(5):3383-3389. Kronke G, Uderhardt S, Katzenbeisser J, Schett G. 2009b. The 12/15-lipoxygenase pathway promotes osteoclast development and differentiation. Autoimmunity 42(4):383-385. Kuhn KA, Cozine CL, Tomooka B, Robinson WH, Holers VM. 2008. Complement receptor CR2/CR1 deficiency protects mice from collagen-induced arthritis and associates with reduced autoantibodies to type II collagen and citrullinated antigens. Mol Immunol 45(10):2808-2819. Kundumani-Sridharan V, Niu J, Wang D, Van Quyen D, Zhang Q, Singh NK, Subramani J, Karri S, Rao GN. 2010. 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression. Blood 115(10):2105-2116. Kunisch E, Jansen A, Kojima F, Loffler I, Kapoor M, Kawai S, Rubio I, Crofford LJ, Kinne RW. 2009. Prostaglandin E2 differentially modulates proinflammatory/prodestructive effects of TNF-alpha on synovial fibroblasts via specific E prostanoid receptors/cAMP. J Immunol 183(2):1328-1336. Kurihara Y, Endo H, Akahoshi T, Kondo H. 2001. Up-regulation of prostaglandin E receptor EP2 and EP4 subtypes in rat synovial tissues with adjuvant arthritis. Clin Exp Immunol 123(2):323-330. Laufer S. 2003. Role of eicosanoids in structural degradation in osteoarthritis. Curr Opin Rheumatol 15(5):623-627. Leahy KM, Koki AT, Masferrer JL. 2000. Role of cyclooxygenases in angiogenesis. Curr Med Chem 7(11):1163-1170. Lee JH, Kim GH. 2010. Evaluation of antioxidant and inhibitory activities for different subclasses flavonoids on enzymes for rheumatoid arthritis. J Food Sci 75(7):H212-217. Lee YS, Choi EM. 2010. Myricetin inhibits IL-1beta-induced inflammatory mediators in SW982 human synovial sarcoma cells. Int Immunopharmacol 10(7):812-814. Leirisalo-Repo M, Paimela L, Jaattela M, Koskimies S, Repo H. 1995. Production of TNF by monocytes of patients with early rheumatoid arthritis is increased. Scand J Rheumatol 24(6):366-371. Leszczynski P, Pawlak-Bus K. 2010. [Can two biologicals be combined to treat rheumatoid arthritis?]. Ann Acad Med Stetin 56(1):15-19; discussion 19-20. Levati L, Ruffini F, Muzi A, Umezawa K, Graziani G, D'Atri S, Lacal PM. 2011. Placenta growth factor induces melanoma resistance to temozolomide through a mechanism that involves the activation of the transcription factor NF-kappaB. Int J Oncol 38(1):241-247. Li J, Shao X, Wu L, Feng T, Jin C, Fang M, Wu N, Yao H. 2011. Honokiol: an effective inhibitor of tumor necrosis factor-alpha-induced up-regulation of inflammatory cytokine and chemokine production in human synovial fibroblasts. Acta Biochim Biophys Sin (Shanghai) 43(5):380-386. Li P, Schwarz EM. 2003. The TNF-alpha transgenic mouse model of inflammatory arthritis. Springer Semin Immunopathol 25(1):19-33. Liagre B, Vergne P, Rigaud M, Beneytout JL. 1999. Arachidonate 15-lipoxygenase of reticulocyte-type in human rheumatoid arthritis type B synoviocytes and modulation of its activity by proinflammatory cytokines. J Rheumatol 26(5):1044-1051. Loges S, Schmidt T, Carmeliet P. 2009. 'Antimyeloangiogenic' therapy for cancer by inhibiting PlGF. Clin Cancer Res 15(11):3648-3653. Lorenz HM, Kalden JR. 2002. Perspectives for TNF-alpha-targeting therapies. Arthritis Res 4 Suppl 3:S17-24. Luttun A, Tjwa M, Moons L, Wu Y, Angelillo-Scherrer A, Liao F, Nagy JA, Hooper A, Priller J, De Klerck B, Compernolle V, Daci E, Bohlen P, Dewerchin M, Herbert JM, Fava R, Matthys P, Carmeliet G, Collen D, Dvorak HF, Hicklin DJ, Carmeliet P. 2002. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8(8):831-840. Ma C, Li Y, Ma J, Liu Y, Li Q, Niu S, Shen Z, Zhang L, Pan Z, Zhu D. 2011. Key role of 15-lipoxygenase/15-hydroxyeicosatetraenoic acid in pulmonary vascular remodeling and vascular angiogenesis associated with hypoxic pulmonary hypertension. Hypertension 58(4):679-688. Maglione D, Guerriero V, Rambaldi M, Russo G, Persico MG. 1993a. Translation of the placenta growth factor mRNA is severely affected by a small open reading frame localized in the 5' untranslated region. Growth Factors 8(2):141-152. Maglione D, Guerriero V, Viglietto G, Ferraro MG, Aprelikova O, Alitalo K, Del Vecchio S, Lei KJ, Chou JY, Persico MG. 1993b. Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14. Oncogene 8(4):925-931. Mahmoud RK, El-Ansary AK, El-Eishi HH, Kamal HM, El-Saeed NH. 2005. Matrix metalloproteinases MMP-3 and MMP-1 levels in sera and synovial fluids in patients with rheumatoid arthritis and osteoarthritis. Ital J Biochem 54(3-4):248-257. Malemud CJ. 2004. Cytokines as therapeutic targets for osteoarthritis. BioDrugs 18(1):23-35. Manicourt DH, Fujimoto N, Obata K, Thonar EJ. 1995. Levels of circulating collagenase, stromelysin-1, and tissue inhibitor of matrix metalloproteinases 1 in patients with rheumatoid arthritis. Relationship to serum levels of antigenic keratan sulfate and systemic parameters of inflammation. Arthritis Rheum 38(8):1031-1039. Marrelli A, Cipriani P, Liakouli V, Carubbi F, Perricone C, Perricone R, Giacomelli R. 2011. Angiogenesis in rheumatoid arthritis: a disease specific process or a common response to chronic inflammation? Autoimmun Rev 10(10):595-598. Marrony S, Bassilana F, Seuwen K, Keller H. 2003. Bone morphogenetic protein 2 induces placental growth factor in mesenchymal stem cells. Bone 33(3):426-433. Martinsson-Niskanen T, Riisbro R, Larsson L, Winstedt L, Stenberg Y, Pakola S, Stassen JM, Glazer S. 2011. Monoclonal antibody TB-403: a first-in-human, Phase I, double-blind, dose escalation study directed against placental growth factor in healthy male subjects. Clin Ther 33(9):1142-1149. McInnes IB, Schett G. 2007. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7(6):429-442. McInnes IB, Schett G. 2011. The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205-2219. Merched AJ, Serhan CN, Chan L. 2011. Nutrigenetic disruption of inflammation-resolution homeostasis and atherogenesis. J Nutrigenet Nutrigenomics 4(1):12-24. Migita K, Eguchi K, Kawabe Y, Ichinose Y, Tsukada T, Aoyagi T, Nakamura H, Nagataki S. 1996. TNF-alpha-mediated expression of membrane-type matrix metalloproteinase in rheumatoid synovial fibroblasts. Immunology 89(4):553-557. Modi S, Soejima M, Levesque MC. 2013. The effect of targeted rheumatoid arthritis therapies on anti-citrullinated protein autoantibody levels and B cell responses. Clin Exp Immunol 173(1):8-17. Morand EF, Leech M, Weedon H, Metz C, Bucala R, Smith MD. 2002. Macrophage migration inhibitory factor in rheumatoid arthritis: clinical correlations. Rheumatology (Oxford) 41(5):558-562. Moses MA. 1997. The regulation of neovascularization of matrix metalloproteinases and their inhibitors. Stem Cells 15(3):180-189. Muller-Ladner U, Gay S. 2002. MMPs and rheumatoid synovial fibroblasts: Siamese twins in joint destruction? Ann Rheum Dis 61(11):957-959. Muller-Ladner U, Ospelt C, Gay S, Distler O, Pap T. 2007. Cells of the synovium in rheumatoid arthritis. Synovial fibroblasts. Arthritis Res Ther 9(6):223. Murphy G, Nagase H. 2008. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol 4(3):128-135. Navarro E, Esteve M, Olive A, Klaassen J, Cabre E, Tena X, Fernandez-Banares F, Pastor C, Gassull MA. 2000. Abnormal fatty acid pattern in rheumatoid arthritis. A rationale for treatment with marine and botanical lipids. J Rheumatol 27(2):298-303. Neumann E, Lefevre S, Zimmermann B, Gay S, Muller-Ladner U. 2010. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol Med 16(10):458-468. Nie D, Krishnamoorthy S, Jin R, Tang K, Chen Y, Qiao Y, Zacharek A, Guo Y, Milanini J, Pages G, Honn KV. 2006. Mechanisms regulating tumor angiogenesis by 12-lipoxygenase in prostate cancer cells. J Biol Chem 281(27):18601-18609. Nochi H, Tomura H, Tobo M, Tanaka N, Sato K, Shinozaki T, Kobayashi T, Takagishi K, Ohta H, Okajima F, Tamoto K. 2008. Stimulatory role of lysophosphatidic acid in cyclooxygenase-2 induction by synovial fluid of patients with rheumatoid arthritis in fibroblast-like synovial cells. J Immunol 181(7):5111-5119. Noss EH, Brenner MB. 2008. The role and therapeutic implications of fibroblast-like synoviocytes in inflammation and cartilage erosion in rheumatoid arthritis. Immunol Rev 223:252-270. O'Flaherty JT, Wooten RE, Samuel MP, Thomas MJ, Levine EA, Case LD, Akman SA, Edwards IJ. 2013. Fatty acid metabolites in rapidly proliferating breast cancer. PLoS One 8(5):e63076. Ohno-Matsui K, Uetama T, Yoshida T, Hayano M, Itoh T, Morita I, Mochizuki M. 2003. Reduced retinal angiogenesis in MMP-2-deficient mice. Invest Ophthalmol Vis Sci 44(12):5370-5375. Okada Y, Takeuchi N, Tomita K, Nakanishi I, Nagase H. 1989. Immunolocalization of matrix metalloproteinase 3 (stromelysin) in rheumatoid synovioblasts (B cells): correlation with rheumatoid arthritis. Ann Rheum Dis 48(8):645-653. Pakozdi A, Amin MA, Haas CS, Martinez RJ, Haines GK, 3rd, Santos LL, Morand EF, David JR, Koch AE. 2006. Macrophage migration inhibitory factor: a mediator of matrix metalloproteinase-2 production in rheumatoid arthritis. Arthritis Res Ther 8(4):R132. Palmantier R, Surette ME, Sanchez A, Braquet P, Borgeat P. 1994. Priming for the synthesis of 5-lipoxygenase products in human blood ex vivo by human granulocyte-macrophage colony-stimulating factor and tumor necrosis factor-alpha. Lab Invest 70(5):696-704. Pap T, Shigeyama Y, Kuchen S, Fernihough JK, Simmen B, Gay RE, Billingham M, Gay S. 2000. Differential expression pattern of membrane-type matrix metalloproteinases in rheumatoid arthritis. Arthritis Rheum 43(6):1226-1232. Pattison DJ, Symmons DP, Lunt M, Welch A, Luben R, Bingham SA, Khaw KT, Day | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16959 | - |
dc.description.abstract | 類二十碳脂酸是花生四烯酸經由多種酵素代謝而來的,在發炎反應中扮演著重要的角色。在這些酵素當中,第15型脂肪氧化酶(15-LOX)在很多種疾病中都佔有重要角色。除了脂肪氧化酶之外,花生四烯酸也可以被環氧化酶(COX)代謝而產生一些具生理活性的類二十碳脂酸。雖然COX的下游產物(例如前列腺素E2)已經是廣為人知的發炎性刺激物,脂肪氧化脢的產物在關節炎當中的角色則還不那麼明確。本研究主要是想探討15型脂肪氧化酶對於第二型基質金屬蛋白酶(MMP-2)的表現以及在發炎性關節炎中扮演的角色為何。我們發現給予15-LOX的下游產物:15-(S)-羥基二十碳四烯酸(15-(S)-HETE)時,可以刺激源自於病人的類風濕性關節炎滑膜纖維母細胞(RASF)表現MMP-2的信使核糖核酸以及蛋白質。而15-(S)-HETE的刺激作用可以經由給予LY294002 (PI3K 抑制劑) 以及 PDTC (NF-κB 抑制劑)而將其抑制。同時,給予15-(S)-HETE時可以增加AKT的磷酸化、p65在細胞核內的轉移、以及IκBα的分解。作為關節炎中主要的致炎性細胞激素,TNF-α 和IL-1β也可以刺激RASF產生MMP-2,而其作用也可經由給予15-LOX的抑制劑以及將15-LOX基因減弱而抑制;同時,這兩種細胞激素也可以刺激RASF產生15-LOX。此外,糖皮質激素可以抑制經15-(S)-HETE所誘導產生的MMP-2,而非類固醇消炎止痛藥則沒有此作用。相較於野生型的小鼠,在15-LOX基因剔除的小鼠當中,輔助劑所誘導產生的關節炎及增加的MMP-2都有減少的現象。這些結果顯示15-LOX在關節炎的病程中扮演著重要的角色,而且可能參與TNF-α 以及 IL-1β所誘導的發炎現象。因此,15-LOX在治療發炎性關節炎當中,或許可作為一個發展藥物的好標的。
胎盤生長因子(PLGF)是血管內皮生長因子(VEGF)成員之一,其在正常生理狀態的作用遠不如其在病理狀態時的作用為多。在類風濕性關節炎的病人身上,其滑膜液中PLGF的表現量會增加。動物實驗當中,當PLGF被抑制後,關節炎的病程也同時會被抑制。在本實驗中我們主要是探討15-LOX在RASF細胞調控PLGF的作用。在本實驗中,我們發現15LOX的下游產物,15-(S)-HETE可以增加PLGF的產生量;而PLGF在類風濕性關節炎的發展中又佔有重要的角色。15-(S)-HETE以時間依賴性及劑量依賴性的方式在人類的RASF增加PLGF的表現,而其作用包含經過PI3K-Akt,以及NF-kB的訊息傳遞路徑。此外,15-(S)-HETE也可以刺激COX-2的產生,而此作用也參與在15-(S)-HETE誘導增加PLGF產生的作用當中,此一作用也經由給予COX-2的小髮夾信使核糖核酸以及其抑制劑的作用而確認。此外,我們發現給予COX-2的主要下游產物:前列腺素E2之後,可以增加PLGF的產生;而EP1、EP2、EP3、EP4這幾個受體刺激劑也可以刺激PLGF產生。在動物實驗當中,我們發現在15-LOX基因剔除的小鼠,給予輔助劑所誘導發炎而產生的PLGF和COX-2都被抑制了。這些結果顯示15-LOX下游產物會刺激PLGF表現,這作用可能有參與關節炎的發展過程。 在類風濕性關節炎的發展過程中,TNF-α是極其重要的細胞激素之一,在花生四烯酸的代謝過程中也有所參與。在動物實驗中,我們將TNF-α局部注射到野生型或15-LOX基因剔除型的小鼠腳掌中,以探討脂肪氧化酶在TNF-α所造成的發炎現象中所扮演的角色。實驗結果顯示TNF-α所造成的發炎現象會因為15-LOX基因剔除而被抑制。此外,TNF-α所造成的腳掌腫脹現象也會因為給予5-LOX的抑制劑而受抑制。這些結果顯示了TNF-α所造成的發炎中,15-LOX及5-LOX均可能參與其中,在類風濕性關節炎中,脂肪氧化脢或許可作為新穎的治療標的。 | zh_TW |
dc.description.abstract | The eicosanoids produced from arachidonic acids (AA) play the pivotal roles in inflammatory arthritis, which are metabolized by a variety of enzymes. Of these, 15-Lipoxygenase (15-LOX) is involved in many pathological processes. In addition to LOX, AA could also be metabolized by cyclooxygenase (COX) to produce the bioactive eicosanoids. Although the downstream products of COX including prostaglandin E2 are well-known inflammatory stimulators, the role of LOX products in inflammatory arthritis is still unclear. The aim of this study is to examine the role of 15-LOX in the matrix metalloproteinase (MMP) expression and inflammatory arthritis. Here we found that treatment of 15-LOX downstream product, 15-(S)-HETE (15-S-hydroxyeicosatetraenoic acid), increased the mRNA and protein levels of MMP-2 in rheumatoid arthritis synovial fibroblast (RASF) derived from rheumatoid arthritis patients. The enhancement effect of 15-(S)-HETE was antagonized by the addition of LY294002 (PI3K inhibitor) and PDTC (NF-κB inhibitor). Treatment of 15-(S)-HETE increased the phosphorylation of AKT, nuclear translocation of p65 and the breakdown of IκBα. TNF-α and IL-1β are the key cytokines involved in arthritis and also increase the activity of MMP-2 in RASF, which was antagonized by pretreatment with 15-LOX inhibitor PD146176 or knockdown of 15-LOX. It was also found that these two cytokines increased the expression of 15-LOX in RASF. Treatment of glucocorticoid but not NSAIDs inhibited 15-(S)-HETE-induced expression of MMP-2. In comparison with wild-type mice, adjuvant-induced arthritis and MMP-2 expression in synovial fibroblasts were markedly inhibited in 15-LOX knockout (KO) mice. These results indicate that 15-LOX plays an important role in the disease progression of arthritis and may be involved in the inflammatory action induced by TNF-α and IL-1β. 15-LOX is thus a good target for developing drugs in the treatment of inflammatory arthritis.
PLGF (placenta growth factor) is a member of vascular endothelial growth factor (VEGF) family, which is redundant in physiological state but is more important in pathological condition. PLGF is increased in RA synovial fluid, and deficiency of PLGF suppresses the progression of arthritis in animal model. In this study, we examined the role of 15-LOX in the regulation of PLGF in RASF. Here we found that 15-(S)-HETE can enhance the expression of PLGF, which is recently considered to play an important role in rheumatoid arthritis. 15-(S)-HETE increased the expression of PLGF in RASF in a time-dependent and concentration-dependent manner. PI3K-Akt and NF-κB signaling pathways were involved in the potentiation effects of 15-(S)-HETE. In addition, COX-2 was up-regulated by the treatment of 15-(S)-HETE and the increase of COX-2 expression participated in 15-(S)-HETE-induced PLGF expression, which was confirmed by COX-2 shRNA or pharmacological COX-2 inhibitor. Moreover, it was found that treatment of prostaglandin E2 (PGE2), which was the main down-stream metabolite of COX-2, increased the expression of PLGF. EP1, EP2, EP3 and EP4 agonists could up-regulate PLGF as well. In animal studies, we found that the adjuvant-induced expression of PLGF and COX-2 was inhibited in 15-LOX knockout mice. These results indicate that PLGF up-regulation by 15-LOX downstream product may be involved in inflammatory arthritis. TNF-α is one of the most important cytokines in RA pathology. To investigate the involvement of lipoxygenase pathways in TNF-α-induced inflammation in animal model, TNF-α was injected intraplantarly in wild-type or 15-LOX knockout mice. The results showed that TNF-α-induced inflammation was reduced in 15-LOX knockout mice. In addition, TNF-α-induced paw edema was also inhibited by 5-LOX inhibitors. Our results implicate novel mechanism in TNF-α-induced inflammation and suggest new therapeutic strategies targeting LOX for the treatment of rheumatoid arthritis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:50:58Z (GMT). No. of bitstreams: 1 ntu-103-D94443008-1.pdf: 5876297 bytes, checksum: bb1d75fb74ce5cc07418c7e5132a0168 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Abbreviations ………………………………………1
Abstract in Chinese ………………………………7 Abstract in English ………………………………13 Chapter 1. Introduction …………………………19 1.1. The pathology of Rheumatoid arthritis...21 1.2. Role of 15-LOX in inflammation and arthritis...33 1.3. Role of MMPs in inflammatory arthritis...38 1.4. Role of PLGF in inflammatory arthritis...44 Chapter 2.Materials and Methods …………………49 Chapter 3.Involvement of 15-LOX in inflammatory arthritis ...59 Chapter 4. Enhancement of PLGF production by 15-(S)-HETE via PI3K-Akt, NF-κB and COX-2 pathways in rheumatoid arthritis synovial fibroblast ……………89 Chapter 5. 15-lipoxygenase is involved in TNF-alpha-induced inflammation in paw swelling ……………………119 Chapter 6. Conclusion and perspective……………131 Reference…………………………………141 Publications……………………………163 Figure Contents Chapter 1 Fig 1-1-1. Summary of the cause of rheumatoid arthritis……………………26 Fig 1-1-2. The rheumatoid joint……………………28 Fig 1-1-3. RASFs in RA synovitis……………………30 Fig 1-1-4. Cytokine targets in RA…………………32 Fig 1-2-1 Metabolism of arachidonic acid………36 Fig 1-2-2. The balance in physiology and pathology of 15-LOX…………37 Fig 1-3-1. Cellular sources of destructive metalloproteinases in articular joints of RA…………42 Fig 1-4-1. Molecular mechanisms of PLGF…………47 Chapter 3 Fig. 3-1 Upregulation of MMP-2 expression by 15-(S)-HETE in human synovial fibroblasts………………72 Fig. 3-2 PI3K and NF-kB pathways are involved in 15-(S)-HETE-induced MMP-2 upregulation …………………74 Fig. 3-3 Activation of AKT and NF-kB by 15-(S)-HETE in human synovial fibroblasts ………………………………76 Fig. 3-4 Nuclear translocation of NF-kB p65 subunit is enhanced by 15-(S)-HETE in RASF ……………………78 Fig. 3-5 15-LOX is involved in TNF-alpha- or IL-1beta-induced upregulation of MMP-2 expression in human synovial fibroblasts ………80 Fig. 3-6 Inhibition of 15-(S)-HETE-induced upregulation of MMP-2 by glucocorticoid in human synovial fibroblasts ……82 Fig. 3-7 Inhibition of arthritis induction in 15-LOX knockout mice ……84 Fig. 3-8 Inhibition of inflammatory arthritis-induced joint destruction and leucocytes infiltration in 15-LOX knockout mice ……86 Chapter 4 Fig. 4-1 Upregulation of PLGF expression by 15-(S)-HETE in human synovial fibroblasts through PI3K and NF-κB pathways ………102 Fig. 4-2 COX-2 is involved in 15-(S)-HETE-induced PLGF expression ...104 Fig. 4-3 PI3K-Akt and NF-κB paths are involved in 15-(S)-HETE-induced COX-2 up-regulation and PGE2 and EP agonists enhance the expression of PLGF in synovial fibroblasts...106 Fig. 4-4 ERK and p38-MAPK inhibitors exert no significant effect on 15-(S)-HETE-induced COX-2 up-regulation ………108 Fig. 4-5 Inhibition of FCA-induced PLGF expression in 15-LOX knockout mice ……………………………………………110 Fig. 4-6 Inhibition of FCA-induced COX-2 expression in 15-LOX knockout mice ……………………………………………112 Fig. 4-7 Up-regulation of PLGF protein level by 13-HODE in human synovial fibroblasts ………………………………………114 Fig. 4-8 Schematic diagram to show the up-regulation of PLGF by 15-LOX activation in synovial fibroblasts ………………116 Chapter 5 Fig.5-1. Attenuation of TNF-α-induced local paw edema in 15-LOX knockout mice …………………………………126 Fig.5-2. Antagonism by 5-LOX inhibitors on TNF-α-induced paw edema in mice ………………………………………………128 Chapter 6 Fig. 6-1 Molecular taxonomy tree of inflammatory cytokines in disease...137 Fig. 6-2 FDA approved TNF inhibitors………………138 Fig. 6-3 Schematic representation of 15-LOX-mediated effects in the synovial finroblasts ………………………139 | |
dc.language.iso | en | |
dc.title | 15型脂氧酶在發炎性關節炎中調控MMP-2及PLGF之探討 | zh_TW |
dc.title | Studies of 15-lipoxygenase in the regulation of MMP-2 and PLGF in the inflammatory arthritis | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-1 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 楊榮森 | |
dc.contributor.oralexamcommittee | 林琬琬,劉宏輝,劉興華,楊春茂 | |
dc.subject.keyword | 類風濕性關節炎,脂肪氧化?,基質金屬蛋白?,胎盤生長因子, | zh_TW |
dc.subject.keyword | rheumatoid arthritis,lipoxygenase,metalloproteinase,placenta growth factor, | en |
dc.relation.page | 165 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-01-24 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 藥理學研究所 | zh_TW |
顯示於系所單位: | 藥理學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 5.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。