請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16954完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳文中(Wen-Jong Wu) | |
| dc.contributor.author | Yu-Chun Kuo | en |
| dc.contributor.author | 郭昱均 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:50:50Z | - |
| dc.date.copyright | 2021-02-19 | |
| dc.date.issued | 2021 | |
| dc.date.submitted | 2021-02-05 | |
| dc.identifier.citation | [1] I. Kanno, 'Piezoelectric MEMS: Ferroelectric thin films for MEMS applications,' Japanese Journal of Applied Physics, vol. 57, no. 4, p. 040101, 2018. [2] P. Muralt, R. G. Polcawich, and S. Trolier-McKinstry, 'Piezoelectric thin films for sensors, actuators, and energy harvesting,' MRS bulletin, vol. 34, no. 9, pp. 658-664, 2009. [3] S. Priya, J. Ryu, C. S. Park, J. Oliver, J. J. Choi, and D. S. Park, 'Piezoelectric and magnetoelectric thick films for fabricating power sources in wireless sensor nodes,' Sensors, vol. 9, no. 8, pp. 6362-6384, 2009. [4] G. Yi, Z. Wu, and M. Sayer, 'Preparation of Pb (Zr, Ti) O3 thin films by sol gel processing: Electrical, optical, and electro‐optic properties,' Journal of Applied Physics, vol. 64, no. 5, pp. 2717-2724, 1988. [5] D. Barrow, T. Petroff, R. Tandon, and M. Sayer, 'Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process,' Journal of Applied Physics, vol. 81, no. 2, pp. 876-881, 1997. [6] P. Luginbuhl et al., 'Piezoelectric cantilever beams actuated by PZT sol-gel thin film,' Sensors and Actuators A: Physical, vol. 54, no. 1-3, pp. 530-535, 1996. [7] T. Kanda, M. K. Kurosawa, H. Yasui, and T. Higuchi, 'Performance of hydrothermal PZT film on high intensity operation,' Sensors and Actuators A: physical, vol. 89, no. 1-2, pp. 16-21, 2001. [8] J. Akedo, 'Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers,' Journal of the American Ceramic Society, vol. 89, no. 6, pp. 1834-1839, 2006. [9] J. J. Choi, B. D. Hahn, J. Ryu, W. H. Yoon, B. K. Lee, and D. S. Park, 'Preparation and characterization of piezoelectric ceramic–polymer composite thick films by aerosol deposition for sensor application,' Sensors and Actuators A: Physical, vol. 153, no. 1, pp. 89-95, 2009. [10] Y. Jeon, J. Chung, and K. No, 'Fabrication of PZT thick films on silicon substrates for piezoelectric actuator,' Journal of electroceramics, vol. 4, no. 1, pp. 195-199, 2000. [11] V. Walter, P. Delobelle, P. Le Moal, E. Joseph, and M. Collet, 'A piezo-mechanical characterization of PZT thick films screen-printed on alumina substrate,' Sensors and Actuators A: Physical, vol. 96, no. 2-3, pp. 157-166, 2002. [12] A. Khan, Z. Abas, H. S. Kim, and I. K. Oh, 'Piezoelectric thin films: an integrated review of transducers and energy harvesting,' Smart Materials and Structures, vol. 25, no. 5, p. 053002, 2016. [13] J. Akedo, M. Ichiki, K. Kikuchi, and R. Maeda, 'Jet molding system for realization of three-dimensional micro-structures,' Sensors and Actuators A: Physical, vol. 69, no. 1, pp. 106-112, 1998. [14] B. S. Lee, S. C. Lin, W. J. Wu, X. Y. Wang, P. Z. Chang, and C. K. Lee, 'Piezoelectric MEMS generators fabricated with an aerosol deposition PZT thin film,' Journal of Micromechanics and Microengineering, vol. 19, no. 6, p. 065014, 2009. [15] S. C. Lin and W. J. Wu, 'Piezoelectric micro energy harvesters based on stainless-steel substrates,' Smart Materials and Structures, vol. 22, no. 4, p. 045016, 2013. [16] T. K. Lin, 'Performance improvement of PZT micro piezoelectric energy harvester fabricated by Aerosol deposition method,' Master's Thesis, Department of Engineering Sciences and Ocean Engineering, National Taiwan University, 2017. [17] Y. H. Yang, 'The Development of Piezoelectric Micromachined Ultrasound Transducer on Stainless-steel Substrate,' Master's Thesis, Department of Engineering Sciences and Ocean Engineering, National Taiwan University, 2019. [18] X. W. Gong, C. T. Chen, W. J. Wu, and W. H. Liao, 'A high sensitivity piezoelectric MEMS accelerometer based on aerosol deposition method,' in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019, 2019, vol. 10970: International Society for Optics and Photonics, p. 1097026. [19] H. B. Fang et al., 'Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting,' Microelectronics Journal, vol. 37, no. 11, pp. 1280-1284, 2006. [20] D. Shen et al., 'Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting,' Sensors and actuators A: physical, vol. 154, no. 1, pp. 103-108, 2009. [21] E. E. Aktakka, R. L. Peterson, and K. Najafi, 'A CMOS-compatible piezoelectric vibration energy scavenger based on the integration of bulk PZT films on silicon,' in 2010 International Electron Devices Meeting, 2010: IEEE, pp. 31.5. 1-31.5. 4. [22] M. Hara, T. Yokoyama, T. Nishihara, M. Ueda, and H. Kuwano, 'Highly piezoelectric MgZr co-doped aluminum nitride-based vibrational energy harvesters,' IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 62, no. 11, pp. 2005-2008, 2015. [23] G. Tang et al., 'A piezoelectric micro generator worked at low frequency and high acceleration based on PZT and phosphor bronze bonding,' Scientific reports, vol. 6, p. 38798, 2016. [24] J. Curie and P. Curie, 'Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées,' Bulletin de Minéralogie, pp. 90-93, 1880. [25] L. Jin, F. Li, and S. Zhang, 'Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures,' Journal of the American Ceramic Society, vol. 97, no. 1, pp. 1-27, 2014. [26] T. Hehn and Y. Manoli, 'Cmos circuits for piezoelectric energy harvesters,' Springer Series in Advanced Microelectronics, vol. 38, p. 22, 2015. [27] E. Sawaguchi, 'Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3,' Journal of the physical society of Japan, vol. 8, no. 5, pp. 615-629, 1953. [28] B. Leclerc, Process optimization for sol-gel PZT films. Queen's University, 1999. [29] M. M. Waite, S. Shah, and D. Glocker, 'Sputtering Sources,' SVC Bulletin, No. Spring, vol. 2010, pp. 42-50, 2010. [30] D. Nakahira, T. Kanda, K. Suzumori, M. Kabuto, Y. Michihiro, and M. Ueno, 'Hydrothermal deposition of the PZT film and applications of piezoelectric actuators,' in 2012 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), 2012: IEEE, pp. 501-506. [31] W. J. Hyun, E. B. Secor, M. C. Hersam, C. D. Frisbie, and L. F. Francis, 'High‐resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics,' Advanced Materials, vol. 27, no. 1, pp. 109-115, 2015. [32] J. Akedo, 'Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices,' Journal of Thermal Spray Technology, vol. 17, no. 2, pp. 181-198, 2008. [33] S. C. Lin and W. J. Wu, 'Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method,' Journal of Micromechanics and Microengineering, vol. 23, no. 12, p. 125028, 2013. [34] D. Kunii and O. Levenspiel, Fluidization engineering. Butterworth-Heinemann, 1991. [35] D. Geldart, 'Types of gas fluidization,' Powder technology, vol. 7, no. 5, pp. 285-292, 1973. [36] 郭修伯、黃安婗, '你是風兒我是沙──流體化床,' 科學發展月刊, 513期, pp. 10-15, 2015. [37] X. Y. Wang, 'Study on the Low-Temperature PZT Thick Film Microfabrication Process Using Aerosol Deposition Method,' Doctoral dissertation, Institute of applied mechanics College of engineering National Taiwan University, 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16954 | - |
| dc.description.abstract | 氣膠沉積法因為具有相對鍍率高、沉積出的厚膜品質高和對製程環境要求低等特性,因此相當適合應用於沉積壓電厚膜和壓電元件製程中。在本研究中,我們以含有螺旋桿送粉設備的氣膠產生系統為基礎開發不同於以往的氣膠沉積製程設備,利用螺旋桿送粉設備將壓電粉末輸送進系統中進而讓壓電粉末和載體空氣混合形成氣膠,讓製程設備更適合未來將氣膠沉積製程設備往自動化發展。以本研究開發之氣膠沉積製程設備並在通入載體空氣流率5000 SCCM的情況下,重複噴塗30次可以沉積出膜厚約1.71 μm的壓電厚膜;將壓電厚膜經過520℃高溫退火處理3小時後進行鐵電分析得知本研究製備的壓電厚膜之殘餘極化量約為19.52 μC/cm2,此鐵電分析結果證實本研究製備之壓電厚膜具有相當程度的鐵電特性,細部實驗設計與研究成果將於本論文中說明。 | zh_TW |
| dc.description.abstract | The aerosol deposition (AD) method has the characteristics of high-speed deposition rate, low process environment restriction and the high ability to deposit high quality thick film in comparison with conventional thin-film/thick-film method or thermal spray coating technology. In this study, a new AD apparatus including an aerosol generator with screw feeder has been developed. The AD apparatus developed in this study has higher potential to be automatic in the future than previous apparatus. With the current AD apparatus set as 5000 SCCM carrier gas flow rate, 1.71 um of PZT thick film can be successfully deposited on a stainless steel substrate by PZT aerosol spraying repeatedly for 30 times. The PZT thick film after the annealing process is also confirmed to have ferroelectric property by ferroelectric hysteresis measurement and analysis. The experimental result also shows that the current AD apparatus has the feasibility to fabricate PZT thick film. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:50:50Z (GMT). No. of bitstreams: 1 U0001-0502202101021500.pdf: 3775332 bytes, checksum: c180f7f38c617bfcd77f0ee97bea8d8d (MD5) Previous issue date: 2021 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 ix 第 一 章 緒論 1 1.1 研究背景 1 1.2 研究目標 4 1.3 論文架構 4 第 二 章 壓電簡介 5 2.1 壓電起源 5 2.2 晶體結構和壓電效應的關係 5 2.3 介電晶體可能有的特性 6 2.3.1 介電性 6 2.3.2 壓電性 7 2.3.3 焦電性 8 2.3.4 鐵電性 8 2.3.5 電致伸縮效應 10 2.4 壓電材料 11 2.4.1 壓電材料的種類 11 2.4.2 壓電材料的選用──鋯鈦酸鉛(PZT) 12 2.5 壓電厚/薄膜製程 13 2.5.1 溶膠凝膠法 14 2.5.2 濺鍍法 14 2.5.3 水熱合成法 15 2.5.4 網版/鋼版印刷法 16 2.5.5 氣膠沉積法 17 2.5.6 壓電厚/薄膜製程比較 17 第 三 章 實驗設計與研究方法 19 3.1 本研究團隊原始氣膠沉積製程設備簡介 19 3.1.1 原始製程設備 19 3.1.2 粉瓶的運作原理分析──流體化床 21 3.2 實驗架設 26 3.2.1 氣膠產生系統 28 3.2.2 沉積腔體 30 3.3 氣膠產生系統模擬分析 31 3.4 製程流程 33 3.5 壓電膜品質鑑定 37 3.5.1 掃描式電子顯微鏡 37 3.5.2 雷射掃描共軛焦顯微鏡 37 3.5.3 探針式表面分析儀 38 3.5.4 鐵電分析儀 39 第 四 章 結果與討論 40 4.1 壓電膜分析 40 4.1.1 表面分析 40 4.1.2 鐵電特性分析 44 4.2 氣膠沉積製程設備設計探討 45 第 五 章 結論與未來展望 47 5.1 結論 47 5.2 未來展望 47 參考文獻 48 | |
| dc.language.iso | zh-TW | |
| dc.subject | 壓電厚膜 | zh_TW |
| dc.subject | 氣膠沉積法 | zh_TW |
| dc.subject | 鋯鈦酸鉛 | zh_TW |
| dc.subject | 氣膠產生系統 | zh_TW |
| dc.subject | 螺旋桿輸送系統 | zh_TW |
| dc.subject | aerosol generator | en |
| dc.subject | screw feeder | en |
| dc.subject | aerosol deposition method | en |
| dc.subject | piezoelectric thick film | en |
| dc.subject | lead zirconate titanate | en |
| dc.subject | PZT | en |
| dc.title | 高效率壓電厚膜氣膠沉積製程設備之開發 | zh_TW |
| dc.title | Development of High Efficiency Aerosol Deposition Apparatus for Piezoelectric Ceramic Thick Film | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李世光(Chih-Kung Lee),楊馥菱(Fu-Ling Yang),林順區(Shun-Chiu Lin) | |
| dc.subject.keyword | 氣膠沉積法,壓電厚膜,鋯鈦酸鉛,氣膠產生系統,螺旋桿輸送系統, | zh_TW |
| dc.subject.keyword | aerosol deposition method,piezoelectric thick film,lead zirconate titanate,PZT,aerosol generator,screw feeder, | en |
| dc.relation.page | 50 | |
| dc.identifier.doi | 10.6342/NTU202100557 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2021-02-08 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-0502202101021500.pdf 未授權公開取用 | 3.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
