請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16943
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡詩偉(Shih-Wei Tsai) | |
dc.contributor.author | Ching-Ting Liu | en |
dc.contributor.author | 劉晉廷 | zh_TW |
dc.date.accessioned | 2021-06-07T23:50:32Z | - |
dc.date.copyright | 2020-09-04 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-10 | |
dc.identifier.citation | Abreu, D. C. P., Botrel, B. M. C., Bazana, M. J. F., e Rosa, P. V., Sales, P. F., Marques, M. d. S., Saczk, A. A. (2019). Development and comparative analysis of single-drop and solid-phase microextraction techniques in the residual determination of 2-phenoxyethanol in fish. Food Chemistry, 270, 487-493. doi:https://doi.org/10.1016/j.foodchem.2018.07.136 Adminstration, T. F. a. D. (2019). 化粧品衛生安全管理法. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0030013 ASEAN. (2003). ASEAN COSMETIC DIRECTIVE Retrieved from https://aseancosmetics.org/docdocs/directive.pdf Bradman, A., Gaspar, F., Castorina, R., Williams, J., Hoang, T., Jenkins, P. L., . . . Maddalena, R. (2017). Formaldehyde and acetaldehyde exposure and risk characterization in California early childhood education environments. Indoor Air, 27(1), 104-113. doi:10.1111/ina.12283 Canada, H. (2019). Cosmetic Regulations (Cosmetic Ingredient Hotlist). Retrieved from https://www.canada.ca/en/health-canada/services/consumer-product-safety/cosmetics/cosmetic-ingredient-hotlist-prohibited-restricted-ingredients/hotlist.html#tbl1 Celeiro, M., Guerra, E., Lamas, J. P., Lores, M., Garcia-Jares, C., Llompart, M. (2014). Development of a multianalyte method based on micro-matrix-solid-phase dispersion for the analysis of fragrance allergens and preservatives in personal care products. Journal of Chromatography A, 1344, 1-14. doi:https://doi.org/10.1016/j.chroma.2014.03.070 Chang, C. J., Cheng, S. F., Chang, P. T., Tsai, S. W. (2018). Indoor air quality in hairdressing salons in Taipei. Indoor Air, 28(1), 173-180. doi:10.1111/ina.12412 Chiang, H.-M., Chiu, H.-H., Lai, Y.-M., Chen, C.-Y., Chiang, H.-L. (2010). Carbonyl species characteristics during the evaporation of essential oils. Atmospheric Environment, 44(18), 2240-2247. doi:https://doi.org/10.1016/j.atmosenv.2010.02.017 Commission, E. (2020). EUR-Lex- access to EU regulation. Retrieved from https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1223 Companioni-Damas, E. Y., Santos, F. J., Galceran, M. T. (2012). Analysis of linear and cyclic methylsiloxanes in water by headspace-solid phase microextraction and gas chromatography-mass spectrometry. Talanta, 89, 63-69. doi:10.1016/j.talanta.2011.11.058 David, S. C. M. V. (2018). Derivatization Methods in GC and GC/MS. doi:10.5772/intechopen.81954 del Nogal Sánchez, M., Pérez-Pavón, J. L., Moreno Cordero, B. (2010). Determination of suspected allergens in cosmetic products by headspace-programmed temperature vaporization–fast gas chromatography–quadrupole mass spectrometry. Analytical and Bioanalytical Chemistry, 397(6), 2579-2591. doi:10.1007/s00216-010-3803-8 Divišová, R., Vítová, E., Diviš, P., Zemanová, J., Omelková, J. (2015). Validation of SPME-GC-FID Method for Determination of Fragrance Allergens in Selected Cosmetic Products. Acta Chromatographica, 27(3), 509-523. doi:10.1556/AChrom.27.2015.3.8 Du, X., Zeisel, S. H. (2013). Spectral deconvolution for gas chromatography mass spectrometry-based metabolomics: current status and future perspectives. Comput Struct Biotechnol J, 4, e201301013. doi:10.5936/csbj.201301013 EPA, U. (2020). Safer Chemical Ingredients List. Retrieved from https://www.epa.gov/saferchoice/safer-ingredients#greenhalfcircle EU, S. (2012). Opinion of the Scientific Committee on Consumer Safety on acetaldehyde. doi:10.2772/8968 European Commission, n. (2007). Impact of Ozone-initiated Terpene Chemistry on Indoor Air Quality and Human Health. Fiori, J., Naldi, M., Gotti, R. (2010). HS–SPME–GC–MS for the Quantitation and Chiral Characterization of Camphor and Menthol in Creams. Chromatographia, 72(9), 941-947. doi:10.1365/s10337-010-1735-2 Gabb Henry, A., Blake, C. (2016). An Informatics Approach to Evaluating Combined Chemical Exposures from Consumer Products: A Case Study of Asthma-Associated Chemicals and Potential Endocrine Disruptors. Environmental Health Perspectives, 124(8), 1155-1165. doi:10.1289/ehp.1510529 German Committee, G. (2018). Guide values for the concentration of specific substances in indoor air. Retrieved from https://www.umweltbundesamt.de/en/topics/health/commissions-working-groups/german-committee-on-indoor-guide-values#german-committeeon-indoor-guide-values Group, E. W. (2020). EWG's Skin Deep. Retrieved from https://www.ewg.org/skindeep/ Guo, H. (2011). Source apportionment of volatile organic compounds in Hong Kong homes. Building and Environment, 46(11), 2280-2286. doi:https://doi.org/10.1016/j.buildenv.2011.05.008 Hoang, T., Castorina, R., Gaspar, F., Maddalena, R., Jenkins, P. L., Zhang, Q., . . . Bradman, A. (2017). VOC exposures in California early childhood education environments. Indoor Air, 27(3), 609-621. doi:10.1111/ina.12340 Huang, J.-Q., Hu, C.-C., Chiu, T.-C. (2013). Determination of seven preservatives in cosmetic products by micellar electrokinetic chromatography. International journal of cosmetic science, 35(4), 346-353. doi:10.1111/ics.12040 Ibrahim, E. A., Wang, M., Radwan, M. M., Wanas, A. S., Majumdar, C. G., Avula, B., . . . ElSohly, M. A. (2019). Analysis of Terpenes in Cannabis sativa L. Using GC/MS: Method Development, Validation, and Application. Planta Med, 85(5), 431-438. doi:10.1055/a-0828-8387 Jeong, H. S., Chung, H., Song, S. H., Kim, C. I., Lee, J. G., Kim, Y. S. (2015). Validation and Determination of the Contents of Acetaldehyde and Formaldehyde in Foods. Toxicol Res, 31(3), 273-278. doi:10.5487/TR.2015.31.3.273 K. Kaseleht, T. P. a. I. N. (2011). Quantitative Analysis of Acetaldehyde in Foods Consumed by Children using SPME/GC-MS(Tof), On-fiber Derivatization and Deuterated Acetaldehyde as an Internal Standard. Agronomy Research 9. Lamas, J. P., Sanchez-Prado, L., Garcia-Jares, C., Llompart, M. (2010). Determination of fragrance allergens in indoor air by active sampling followed by ultrasound-assisted solvent extraction and gas chromatography–mass spectrometry. Journal of Chromatography A, 1217(12), 1882-1890. doi:https://doi.org/10.1016/j.chroma.2010.01.055 Lamas, J. P., Sanchez-Prado, L., Lores, M., Garcia-Jares, C., Llompart, M. (2010). Sorbent trapping solid-phase microextraction of fragrance allergens in indoor air. Journal of Chromatography A, 1217(33), 5307-5316. doi:https://doi.org/10.1016/j.chroma.2010.06.036 Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V., Bahreini, R., . . . Seinfeld, J. H. (2006). Gas-phase products and secondary aerosol yields from the ozonolysis of ten different terpenes. Journal of Geophysical Research: Atmospheres, 111(D7). doi:10.1029/2005JD006437 Lilienblum, W. (2016). Opinion of the Scientific Committee on Consumer Safety (SCCS) – Final version of the opinion on Phenoxyethanol in cosmetic products. Regulatory Toxicology and Pharmacology, 82, 156. doi:https://doi.org/10.1016/j.yrtph.2016.11.007 Merck. Selection Guide for Supelco SPME Fibers. Retrieved from https://www.sigmaaldrich.com/technical-documents/articles/analytical/selecting-spme-fibers.html Mingliang, B., Peter, J. J., Andrew, M., William, S. R. (2014). Analysis of Selected Carbonyl Compounds in Tobacco Samples by Using Pentafluorobenzylhydroxylamine Derivatization and Gas Chromatography-Mass Spectrometry. Beiträge zur Tabakforschung International/Contributions to Tobacco Research, 26(3), 86-97. doi:https://doi.org/10.2478/cttr-2014-0017 Missia, D. A., Demetriou, E., Michael, N., Tolis, E. I., Bartzis, J. G. (2010). Indoor exposure from building materials: A field study. Atmospheric Environment, 44(35), 4388-4395. doi:https://doi.org/10.1016/j.atmosenv.2010.07.049 Nematollahi, N., Doronila, A., Mornane, P. J., Duan, A., Kolev, S. D., Steinemann, A. (2018). Volatile chemical emissions from fragranced baby products. Air Qual Atmos Health, 11(7), 785-790. doi:10.1007/s11869-018-0593-1 Nematollahi, N., Kolev, S. D., Steinemann, A. (2019). Volatile chemical emissions from 134 common consumer products. Air Quality, Atmosphere Health. doi:10.1007/s11869-019-00754-0 Network, H. B. (2020). Pharos project. Retrieved from https://pharosproject.net/ Pawliszyn, Z. Z. J. (1993). Headspace Solid-Phase Microextraction. Rahman, M. M., Kim, K.-H. (2014). Potential hazard of volatile organic compounds contained in household spray products. Atmospheric Environment, 85, 266-274. doi:https://doi.org/10.1016/j.atmosenv.2013.12.001 Ramdane, D., S. Mohan, J. (2004). Quality Handling and Evaluation. Retrieved from https://books.google.com.tw/books?id=XEcOBwAAQBAJ pg=PA89 lpg=PA89 dq=SPME+fiber+cyclic+siloxane+background source=bl ots=Fms5vpyDKb sig=ACfU3U1dDFNMe9KrIgdng8AU-QQRt6cuWQ hl=zh-TW sa=X ved=2ahUKEwjExYbs45zqAhWxyosBHZVfAMoQ6AEwC3oECAsQAQ#v=onepage q=SPME%20fiber%20cyclic%20siloxane%20background f=false Safety, E. S. C. o. C. (2011). Opinion on Fragrance allergens in cosmetic products. doi:10.2773/ND- Saraji, M., Shirvani, N. (2016). Determination of residual 1,4-dioxane in surfactants and cleaning agents using headspace single-drop microextraction followed by gas chromatography-flame ionization detection. International journal of cosmetic science, 39. doi:10.1111/ics.12345 Schmarr, H. G., Sang, W., Ganss, S., Fischer, U., Kopp, B., Schulz, C., Potouridis, T. (2008). Analysis of aldehydes via headspace SPME with on-fiber derivatization to their O-(2,3,4,5,6-pentafluorobenzyl)oxime derivatives and comprehensive 2D-GC-MS. J Sep Sci, 31(19), 3458-3465. doi:10.1002/jssc.200800294 Springs, M., Wells, J. R., Morrison, G. C. (2011). Reaction rates of ozone and terpenes adsorbed to model indoor surfaces. Indoor Air, 21(4), 319-327. doi:10.1111/j.1600-0668.2010.00707.x Steinemann, A. (2015). Volatile emissions from common consumer products. Air Quality, Atmosphere Health, 8(3), 273-281. doi:10.1007/s11869-015-0327-6 Steinemann, A. (2016). Fragranced consumer products: exposures and effects from emissions. Air Qual Atmos Health, 9(8), 861-866. doi:10.1007/s11869-016-0442-z Steinemann, A., Nematollahi, N. (2020). Migraine headaches and fragranced consumer products: an international population-based study. Air Quality, Atmosphere Health, 13(4), 387-390. doi:10.1007/s11869-020-00807-9 Steinemann, A. C., MacGregor, I. C., Gordon, S. M., Gallagher, L. G., Davis, A. L., Ribeiro, D. S., Wallace, L. A. (2011). Fragranced consumer products: Chemicals emitted, ingredients unlisted. Environmental Impact Assessment Review, 31(3), 328-333. doi:https://doi.org/10.1016/j.eiar.2010.08.002 Supelco. (2018). SPME for GC Analysis. Retrieved from https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/General_Information/1/spme-gc-brochure.pdf Takeda, M., Saijo, Y., Yuasa, M., Kanazawa, A., Araki, A., Kishi, R. (2009). Relationship between sick building syndrome and indoor environmental factors in newly built Japanese dwellings. International Archives of Occupational and Environmental Health, 82(5), 583-593. doi:10.1007/s00420-009-0395-8 Trenholm, R. A., Vanderford, B. J., Drewes, J. E., Snyder, S. A. (2008). Determination of household chemicals using gas chromatography and liquid chromatography with tandem mass spectrometry. Journal of Chromatography A, 1190(1), 253-262. doi:https://doi.org/10.1016/j.chroma.2008.02.032 Uhde, E., Schulz, N. (2015). Impact of room fragrance products on indoor air quality. Atmospheric Environment, 106, 492-502. doi:https://doi.org/10.1016/j.atmosenv.2014.11.020 Umweltbundesamt, G. E. (2018). German Committee on Indoor Guide Values. Retrieved from https://www.umweltbundesamt.de/en/topics/health/commissions-working-groups/german-committee-on-indoor-guide-values#guide-values-i-and-ii US EPA, C., OH, USA. (1998). US Environmental Protection Agency: Method 556.1 Determination of Carbonyl Compounds in Drinking Water by Pentafluorobenzylhydroxylamine Derivatization and Capillary Gas Chromatography with Electron Capture Detection. Retrieved from https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=20001YCV.txt Vu, D. C., Ho, T. L., Vo, P. H., Bayati, M., Davis, A. N., Gulseven, Z., . . . Lin, C.-H. (2019). Assessment of indoor volatile organic compounds in Head Start child care facilities. Atmospheric Environment, 215. doi:10.1016/j.atmosenv.2019.116900 Wolkoff, P. (2013). Indoor air pollutants in office environments: Assessment of comfort, health, and performance. International Journal of Hygiene and Environmental Health, 216(4), 371-394. doi:https://doi.org/10.1016/j.ijheh.2012.08.001 Yang, Y., Waring, M. S. (2016). Secondary organic aerosol formation initiated by α-terpineol ozonolysis in indoor air. Indoor Air, 26(6), 939-952. doi:10.1111/ina.12271 中國國家食藥監總局. (2015). 化妝品安全技術規範. Retrieved from http://www.kosfarm.com.tw/uploads/5/5/4/6/55460033/%E5%8C%96%E5%A6%86%E5%93%81%E5%AE%89%E5%85%A8%E6%8A%80%E6%9C%AF%E8%A7%84%E8%8C%832015%E5%B9%B4%E7%89%88-china.pdf 厚生勞動省, M. (2000). 日本薬事法-Standards for Cosmetics. Retrieved from https://www.mhlw.go.jp/file/06-Seisakujouhou-11120000-Iyakushokuhinkyoku/0000032704.pdf | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16943 | - |
dc.description.abstract | 在室內環境中常被使用的各種消費產品,其所添加的香料在近年來被認為可能造成健康危害;而這類產品主要用於清潔且包羅萬象,包括:個人清潔產品、化妝品以及廚浴清潔用品等。研究指出,消費產品中的香氛物質可能導致黏膜組織刺激、氣喘以及偏頭痛等;常見的香氛物質,如α-蒎烯(α-pinene)、α-松油醇(α-terpineol)以及樟腦(Camphor)等,可能會引起皮膚刺激外,香氛物質在室內環境中與臭氧等自由基反應亦可能產生甲醛以及二次有機氣膠。由於乙醛(Acetaldehyde)、二噁烷(1,4-dioxane)以及二氯甲烷(Dichloromethane)等可能致癌物也在其他研究中被檢測出,因此消費產品也被視為潛在致癌的來源之一。此外,在室內環境中室內外濃度比值(I/O ratio)較高的物質,如:乙酸正丁酯(n-Butyl acetate)、庚醛(Heptanal)、2-苯氧乙醇(2-Phenoxyethanol)以及肉桂醛(Cinnamal)等,也被指出消費產品是可能的室內產生源。 為了瞭解上述十種潛在危害物質在產品中的分佈狀況,本研究首先建立簡易且可行的同步分析方法。研究中所取得的消費產品樣本,皆以去離子水稀釋,並加入氯化鈉及擬似標準品,再以50/30μm CAR/DVB/PDMS固相微萃取纖維進行頂空吸附;而萃取前亦先加入O-(2,3,4,5,6-五氟芐基)羥胺鹽酸鹽,並在45℃進行15分鐘衍生反應,接著纖維會在樣本頂空進行30分鐘的萃取後,注入氣相層析串聯質譜儀中進行脫附以及分析。 本研究進行了固相微萃取操作之方法優化;透過調整衍生化時間及溫度、衍生試劑添加量以及萃取時間等參數,提供可接受的靈敏度與穩定度以測定各種產品中的待測物。本研究所建立的分析方法,檢量線的R平方值皆高於0.99、分析物的相對偏差為 1.49%-14.46%、分析物最低偵測極限可到0.1 ng/mL (ppb),而回收率約在61.7%-118.6之間。 本研究分析了 111 種消費產品,其中α-松油醇、乙醛、α-蒎烯以及樟腦有較高的檢出率,分別為77.48%、63.06%、32.43%以及18.92%。各類產品中,以沖洗產品以及香水較常被檢出較高濃度的待測物;例如:α-松油醇、乙醛、α-蒎烯以及樟腦在所有產品中的平均濃度分別為96.6、7.4、91.5以及61.2 μg/g;在香水中,乙醛以及α-油醇被檢測出最高的平均濃度(分別為110.91 μg/g以及556.76 μg/g)。根據歐盟Scientific Committee on Consumer safety (SCCS)建議,2-苯氧乙醇在嬰兒相關產品的濃度應低於0.4%,然而本研究中收集到的兩樣嬰兒沐浴乳均超過限量(4915.4 μg/g和9258.8 μg/g)(本研究中2-苯氧乙醇的檢出率為16.22%)。此外,儘管乙醛在消費者產品中沒有任何濃度限制,但歐盟SCCS指出在各消費者產品中的乙醛含量達100 ppm時將具有潛在的致癌風險的;而本研究結果顯示,有三種香水以及一項浴室清潔劑中的乙醛濃度超過100 μg/g,最高濃度約為346.0 μg/g。 本研究分析不同消費產品中潛在揮發性有機物的濃度分佈狀況,而所獲結果將可用於未來之健康風險評估。另外,部份樣本中2-苯氧乙醇及乙醛的含量超過歐盟SCCS的標準,因此建議應針對嬰幼兒產品訂定濃度限制,並規範將化學物質的含量列於產品標籤上。 | zh_TW |
dc.description.abstract | Consumer products normally added with fragrance ingredients were considered as potential health concerns in indoor environments recently. Various products, such as self-cleaning products, cosmetics and household products, are frequently applied in our everyday life for purifying and beautification. However, previous studies reported that fragrance chemicals in products could be related to mucosal irritation, asthma and headache. For instance, terpenes like α-pinene, α-terpineol and camphor, may cause skin irritation. Furthermore, the presence of these compounds indoors can lead to the formation of formaldehyde and secondary organic aerosols (SOAs) by ozonolysis. Potential cancer risk is possible since the fact that studies have detected possible, including acetaldehyde, 1,4-dioxane and dichloromethane in consumer products. Compounds with high I/O ratio such as n-butyl acetate, heptanal, 2-phenoxyethanol and cinnamal were also reported existing in products. To determine the distributions of the ten compounds mentioned above in the consumer products in Taiwan, the purpose of this study was to develop a simple and sensitive analytical method for the measurements. The samples of the consumer products were first dissolved in dd-water. Sample preparation was carried out by SPME with 50/30 μm CAR/DVB/PDMS SPME fiber. Samples were all added with sodium chloride and surrogate. In-situ derivatization of acetaldehyde with O‐(2,3,4,5,6‐pentafluorobenzyl) hydroxylamine hydrochloride was also performed. Extraction in headspace of samples was set at 45℃ for 30 minutes, followed by the desorption in GC port for the analysis with gas chromatography tandem mass spectrometry (GC/MS-MS). By optimizing parameters including pre-incubation time, pre-incubation temperature, extraction time and amount of derivatization reagent, the method established in this study can be used to determine the analytes with acceptable sensitivity. The R-squared values were all above 0.990 for the calibration curves. While RSDs were 1.49%-14.46%, the method detection limit of some analytes were as low as 0.1 ng/mL, and the recoveries ranged from 61.7% to 118.6%. A total 111 consumer products were included in this study. Higher detection rate for α-terpineol, acetaldehyde, α-pinene and camphor was found with 77.48%, 63.06%, 32.43% and 18.92%, respectively. Rinse-off products and perfumes were found with more prevalent presence of the analytes. Mean concentration of α-terpineol, acetaldehyde, α-pinene and camphor in all products were 96.6, 7.4, 91.5 and 61.2 μg/g, respectively. Highest mean concentration of acetaldehyde and α-terpineol was found in perfumes (110.91 μg/g and 556.76 μg/g, respectively). For 2-phenoxyethanol, according to the advice from EU Scientific Committee on Consumer Safety (SCCS), the content in baby related products should be lower than 0.4%. In this study, two baby body washes were found with the concentration of 2-phenoxyethanol over the limitation (4915.4 μg/g 9258.8 μg/g, respectively). In addition, three perfumes and one bathroom cleaning products were found with the concentration of acetaldehyde over 100 ppm (highest: 346.0 μg/g), while it was recommended elsewhere that 100 ppm of acetaldehyde in all products may lead to potential life-time cancer risk. In conclusion, the findings demonstrated that perfumes and rinse-off products were more likely to contain the analytes discussed in this study, while the results can be applied for the assessments of health risks in the future. Nevertheless, the contents of 2-phenoxyethanol and acetaldehyde in some products were with the levels above the recommendations from EU SCCS. Hence, labelling the ingredients and the associated concentrations on the products should be enforced to protect people’s health. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:50:32Z (GMT). No. of bitstreams: 1 U0001-0908202014001100.pdf: 2085105 bytes, checksum: 8ef19043d81b686874dfadb32fb28305 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 謝辭 i 中文摘要 ii Abstract iv Contents vii List of Tables x Table of Figures xi Chapter 1. Introduction 1 1.1 Study background 1 1.2 Objectives 2 1.3 Fragrance chemicals 3 1.3.1 Indoor environments, products and usage 3 1.3.2 Toxicity and health effect 5 1.3.3 Regulation 6 1.3.4 Terpenes ozonolysis reaction 7 1.4 SPME procedures 8 1.4.1 SPME principle 9 1.4.2 SPME parameters 10 1.5 Determinations of fragrance chemicals 10 1.5.1 Extraction mode 11 1.5.2 Derivatization 11 1.5.3 Matrix effect 12 Chapter 2. Methods 13 2.1 Study flow chart 13 2.2 Chemicals and materials 14 2.3 Sample collection and preparation 14 2.4 SPME extraction 15 2.5 Instrument analysis 16 2.5.1 Quantitative analysis 16 2.5.2 Qualitative analysis 17 2.6 Method Validation 17 2.7 Matrix effect check 19 2.8 Data processing 20 Chapter 3. Results discussion 21 3.1 GC/MS-MS analysis 21 3.2 Optimization of SPME parameters 21 3.2.1 Addition of sodium chloride salt 22 3.2.2 Extraction time 22 3.2.3 Pre-incubation time 22 3.2.4 Pre-incubation temperature 23 3.2.5 Amount of derivatization reagent 23 3.3 Method validation and matrix effect check 23 3.4 Application to real samples 25 3.4.1 Quantitative analysis 25 3.4.2 Qualitative analysis 28 3.5 Limitation 30 Chapter 4. Conclusion 32 References 34 Tables 38 Figures 51 | |
dc.language.iso | zh-TW | |
dc.title | 使用固相微萃取及氣相層析質譜儀測定消費產品中的潛在揮發性有機物 | zh_TW |
dc.title | Determinations of Potential Volatile Organic Compounds in Consumer Products by Solid-Phase Microextraction Coupled with GC/MS-MS | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林嘉明(Chia-ming Lin),王文忻(Wen-hsin Wang),陳美蓮(Mei-lien Chen) | |
dc.subject.keyword | 消費產品,香料,揮發性有機物,固相微萃取,氣相層析串聯質譜儀, | zh_TW |
dc.subject.keyword | consumer products,fragrance,volatile organic compounds,Solid-phase microextraction,GC/MS-MS, | en |
dc.relation.page | 66 | |
dc.identifier.doi | 10.6342/NTU202002708 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2020-08-11 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 環境與職業健康科學研究所 | zh_TW |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0908202014001100.pdf 目前未授權公開取用 | 2.04 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。