Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor宋孔彬
dc.contributor.authorWei- Chen Hsuen
dc.contributor.author許瑋真zh_TW
dc.date.accessioned2021-06-07T23:49:35Z-
dc.date.copyright2014-02-26
dc.date.issued2014
dc.date.submitted2014-02-12
dc.identifier.citation1. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, 'Tomographic phase microscopy,' Nature Methods 4, 717-719 (2007).
2. K. Creath, 'Phase-measurement interferometry techniques,' in Progress in Optics, E. Wolf, ed. (Elsevier, 1988), pp. 349-393.
3. V. Lauer, 'New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope,' Journal of Microscopy 205, 165-176 (2002).
4. H. Iwai, C. Fang-Yen, G. Popescu, A. Wax, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Quantitative phase imaging using actively stabilized phase-shifting low-coherence interferometry,' Optics letters 29, 2399-2401 (2004).
5. D. Matthieu, S. Bertrand, G. Vincent, H. Olivier, and L. Vincent, 'Holographic microscopy and diffractive microtomography of transparent samples,' Measurement Science and Technology 19, 074009 (2008).
6. Z. Wang, L. Millet, M. Mir, H. Ding, S. Unarunotai, J. Rogers, M. U. Gillette, and G. Popescu, 'Spatial light interference microscopy (SLIM),' Optics Express 19, 1016-1026 (2011).
7. T. Ikeda, G. Popescu, R. R. Dasari, and M. S. Feld, 'Hilbert phase microscopy for investigating fast dynamics in transparent systems,' Optics letters 30, 1165-1167 (2005).
8. G. Popescu, T. Ikeda, C. A. Best, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Erythrocyte structure and dynamics quantified by Hilbert phase microscopy,' Journal of Biomedical Optics 10, 060503 (2005).
9. G. Popescu, T. Ikeda, K. Goda, C. A. Best-Popescu, M. Laposata, S. Manley, R. R. Dasari, K. Badizadegan, and M. S. Feld, 'Optical measurement of cell membrane tension,' Physical Review Letters 97 (2006).
10. N. Lue, G. Popescu, T. Ikeda, R. R. Dasari, K. Badizadegan, and M. S. Feld, 'Live cell refractometry using microfluidic devices,' Optics Letters 31, 2759-2761 (2006).
11. N. Lue, J. Bewersdorf, M. D. Lessard, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, 'Tissue refractometry using Hubert phase microscopy,' Optics Letters 32, 3522-3524 (2007).
12. G. Popescu, T. Ikeda, R. R. Dasari, and M. S. Feld, 'Diffraction phase microscopy for quantifying cell structure and dynamics,' Optics letters 31, 775-777 (2006).
13. N. Lue, W. Choi, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion,' Optics Express 16, 16240-16246 (2008).
14. J. W. Su, W. C. Hsu, C. Y. Chou, C. H. Chang, and K. B. Sung, 'Digital holographic microtomography for high-resolution refractive index mapping of live cells,' Journal of Biophotonics 6, 416-424 (2013).
15. Y. Cotte, F. Toy, P. Jourdain, N. Pavillon, D. Boss, P. Magistretti, P. Marquet, and C. Depeursinge, 'Marker-free phase nanoscopy,' Nature Photonics 7, 113-117 (2013).
16. C. Fang-Yen, W. Choi, Y. Sung, C. J. Holbrow, R. R. Dasari, and M. S. Feld, 'Video-rate tomographic phase microscopy,' Journal of Biomedical Optics 16, 011005 (2011).
17. Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Optical diffraction tomography for high resolution live cell imaging,' Optics Express 17, 266-277 (2009).
18. F. Charrière, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, 'Cell refractive index tomography by digital holographic microscopy,' Optics letters 31, 178-180 (2006).
19. K. Kim, H. Yoon, M. Diez-Silva, M. Dao, R. R. Dasari, and Y. Park, 'High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography,' Journal of Biomedical Optics 19, 011005 (2014).
20. W. Choi, C. C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Field-based angle-resolved light-scattering study of single live cells,' Optics letters 33, 1596-1598 (2008).
21. Y. Sung, W. Choi, N. Lue, R. R. Dasari, and Z. Yaqoob, 'Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy,' PLoS ONE 7, e49502 (2012).
22. L. G. Mesquita, U. Agero, and O. N. Mesquita, 'Defocusing microscopy: An approach for red blood cell optics,' Applied Physics Letters 88 (2006).
23. F. Difato, F. Mazzone, S. Scaglione, M. Fato, F. Beltrame, L. Kubinova, J. Janacek, P. Ramoino, G. Vicidomini, and A. Diaspro, 'Improvement in volume estimation from confocal sections after image deconvolution,' Microscopy research and technique 64, 151-155 (2004).
24. B. Rappaz, A. Barbul, Y. Emery, R. Korenstein, C. Depeursinge, P. J. Magistretti, and P. Marquet, 'Comparative study of human erythrocytes by digital holographic microscopy, confocal microscopy, and impedance volume analyzer,' Cytometry Part A 73A, 895-903 (2008).
25. Y. Jang, J. Jang, and Y. K. Park, 'Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells,' Optics Express 20, 9673-9681 (2012).
26. R. D. Schaller, J. C. Johnson, and R. J. Saykally, 'Nonlinear chemical imaging microscopy: Near-field third harmonic generation imaging of human red blood cells,' Analytical Chemistry 72, 5361-5364 (2000).
27. H. M. Dang, G. Omura, T. Umano, M. Yamagiwa, S. Kajiyama, Y. Ozeki, K. Itoh, and K. Fukui, 'Label-free imaging by stimulated parametric emission microscopy reveals a difference in hemoglobin distribution between live and fixed erythrocytes,' Journal of Biomedical Optics 14, 040506 (2009).
28. S. Lu, W. Min, S. Chong, G. R. Holtom, and X. S. Xie, 'Label-free imaging of heme proteins with two-photon excited photothermal lens microscopy,' Applied Physics Letters 96, 113701 (2010).
29. W. Zheng, D. Li, Y. Zeng, Y. Luo, and J. Y. Qu, 'Two-photon excited hemoglobin fluorescence,' Biomedical Optics Express 2, 71-79 (2011).
30. M. Friebel, and M. Meinke, 'Model function to calculate the refractive index of native hemoglobin in the wavelength range of 250-1100 nm dependent on concentration,' Applied Optics 45, 2838-2842 (2006).
31. O. Zhernovaya, O. Sydoruk, V. Tuchin, and A. Douplik, 'The refractive index of human hemoglobin in the visible range,' Physics in Medicine and Biology 56, 4013-4021 (2011).
32. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, 'Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,' Optics letters 34, 3668-3670 (2009).
33. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, 'Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,' Opt Lett 34, 3668-3670 (2009).
34. H. Schreiber, and J. H. Bruning, 'Phase Shifting Interferometry,' in Optical shop testing, D. Malacara, ed. (John Wiley & Sons, 2007).
35. B. Kemper, D. Carl, J. Schnekenburger, I. Bredebusch, M. Schafer, W. Domschke, and G. von Bally, 'Investigation of living pancreas tumor cells by digital holographic microscopy,' Journal of Biomedical Optics 11, 034005-034008 (2006).
36. H. Ding, and G. Popescu, 'Instantaneous spatial light interference microscopy,' Optics Express 18, 1569-1575 (2010).
37. P. J. d. Groot, 'Vibration in phase-shifting interferometry,' Journal of the Optical Society of America A 12, 354-365 (1995).
38. T. Yamauchi, H. Iwai, M. Miwa, and Y. Yamashita, 'Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology,' Optics Express 16, 12227-12238 (2008).
39. Z. Wang, and B. Han, 'Advanced iterative algorithm for phase extraction of randomly phase-shifted interferograms,' Optics letters 29, 1671-1673 (2004).
40. D. C. Ghiglia, and M. D. Pritt, Two-dimensional phase unwrapping: theory, algorithms, and software (Wiley, 1998).
41. A. C. Kak, and M. Slaney, 'Principles of Computerized Tomographic Imaging,' (1999).
42. E. Wolf, 'Three-dimensional structure determination of semi-transparent objects from holographic data,' Optics Communications 1, 153-156 (1969).
43. A. J. Devaney, 'Inverse-scattering theory within the Rytov approximation,' Optics letters 6, 374-376 (1981).
44. R. Barer, 'Refractometry and interferometry of living cells,' Journal of the Optical Society of America A 47, 545-556 (1957).
45. M. Friebel, and M. Meinke, 'Determination of the complex refractive index of highly concentrated hemoglobin solutions using transmittance and reflectance measurements,' Journal of Biomedical Optics 10 (2005).
46. M. Daimon, and A. Masumura, 'Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,' Applied Optics 46, 3811-3820 (2007).
47. H. Lodish, A. Berk, C. A. Kaiser, M. Krieger, M. P. Scott, A. Bretscher, H. Ploegh, and P. Matsudaira, Molecular Cell Biology (WH Freeman, 2004).
48. Z. Wang, D. L. Marks, P. S. Carney, L. J. Millet, M. U. Gillette, A. Mihi, P. V. Braun, Z. Shen, S. G. Prasanth, and G. Popescu, 'Spatial light interference tomography (SLIT),' Optics express 19, 19907-19918 (2011).
49. N. Lue, W. Choi, G. Popescu, Z. Yaqoob, K. Badizadegan, R. R. Dasari, and M. S. Feld, 'Live cell refractometry using hilbert phase microscopy and confocal reflectance microscopy,' Journal of Physical Chemistry A 113, 13327-13330 (2009).
50. T. C. Evans, and D. Jehle, 'The red blood cell distribution width,' The Journal of emergency medicine 9 Suppl 1, 71-74 (1991).
51. http://www.nlm.nih.gov/medlineplus/ency/article/003648.htm.
52. P. L. Altman, and D. D. Katz, Blood and other body fluids (Federation of American Societies for Experimental Biology, 1961).
53. B. Bhaduri, H. Pham, M. Mir, and G. Popescu, 'Diffraction phase microscopy with white light,' Optics letters 37, 1094-1096 (2012).
54. G. Danaei, M. M. Finucane, Y. Lu, G. M. Singh, M. J. Cowan, C. J. Paciorek, J. K. Lin, F. Farzadfar, Y.-H. Khang, G. A. Stevens, M. Rao, M. K. Ali, L. M. Riley, C. A. Robinson, and M. Ezzati, 'National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2•7 million participants,' The Lancet 378, 31-40.
55. B. H. R. Wolffenbuttel, D. Giordano, H. W. Founds, and R. Bucala, 'Long-term assessment of glucose control by haemoglobin-AGE measurement,' The Lancet 347, 513-515 (1996).
56. J. Lee, M. J. Cuddihy, and N. A. Kotov, 'Three-dimensional cell culture matrices: state of the art,' Tissue engineering. Part B, Reviews 14, 61-86 (2008).
57. E. J. Suuronen, H. Sheardown, K. D. Newman, C. R. McLaughlin, and M. Griffith, 'Building in vitro models of organs,' International review of cytology 244, 137-173 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16912-
dc.description.abstract細胞之型態與細胞內的結構於可見光範圍下幾近透明,為了增加視野下對於細胞結構之分辨力,通常會採用螢光物質進行標定,但是利用螢光標定技術應用於細胞內,可能會影響細胞內生理特性。本論文的內容主要是發展三維折射率顯微術,利用演算法重建細胞三維折射率的分佈,即為重建細胞三維的結構,並應用於細胞內生物分子定性與定量的觀察。
首先,我們建構的三維折射率顯微術系統是以馬赫-曾特爾干涉為基礎建立之架構,光源採用波長為405 nm之雷射,並以分光鏡進行樣本及參考光源之分光,而再將兩光束結合,於影像偵測器處形成干涉影像。參考光源之光路上放置壓電相位移動器,用以調整與樣本光源之間的相位偏移量,並使用遞迴式相位演算法計算二維相位影像。此外,樣本光源之光路上放置一組光學掃描振鏡,用來調變光照射於樣本上之角度,藉由不同入射光之角度取得樣本之投影干涉影像,而進一步得到不同入射角度時,樣本的二維相位資訊,再藉由三維重建演算法得到樣本的三維折射率分布的資訊。利用所建立的三維折射率顯微術,首先用於量測癌細胞株與正常細胞株其細胞內折射率的分布,並分析兩者之間的差異性。由於在此系統中為了要達到抗震的效果,我們所使用的遞迴式相位演算法需要多張干涉影像才能得到一張相位影像,擷取相位影像所需要的時間限制了此系統在觀察生物上的應用。
因此,為了要縮短相位影像擷取的時間,但仍可以保有抵抗環境震動的能力,我們進一步開發共光路三維折射率顯微術系統。此共光路三維折射率顯微術系統架構,是將收集的光訊號利用光柵分光,而再利用透鏡將兩光束結合,並於影像偵測器處擷取單張高頻干涉影像,並使用希爾伯轉換演算法計算其二維相位影像。此外,我們將原本的405 nm雷射光源置換成532 nm,以減少對活細胞的傷害。我們成功的利用共光路三維折射率顯微系統重建出子宮頸癌細胞的三維折射率的分布。
另外,我們再加入一組473 nm之雷射光源,形成雙波長的共光路三維相位顯微術系統,因此我們可以獲得同一樣本在不同波長之下的折射率分布,對於具有光色散特性的分子而言,此系統可以用來定量此類分子的濃度變化。由於紅血球中富含血色素,我們利用血色素具有色散的特性,造成不同波長之下折射率的改變,我們藉由雙波長的共光路三維相位顯微術量測紅血球的折射率分布,進而得到紅血球細胞內的三維血色素濃度分布。
zh_TW
dc.description.abstractThis dissertation mainly describes the construction, development and applications of three-dimensional (3D) refractive index (RI) microscopy.
Quantification of 3D RI with sub-cellular resolution was first achieved by a tomographic phase microscope (TPM) based on a Mach-Zehnder configuration. A simple piezoelectric actuator was used to generate phase shifts between sample and reference beams of the proposed TPM system. Two-dimensional phase images under a set of illumination angles were recorded for reconstruction of 3D RI tomograms based on optical diffraction tomography (ODT). 3D RI tomograms of various cell lines were quantified for demonstrating the feasibility of the TPM system on biological applications. However, the proposed TPM system based on phase shifting interferometry required multi-shot interferograms to obtain one phase image, resulting in limited spread and extension of bio-applications.
For speeding up acquisition efficiency of one RI tomogram and enhancing resistance of vibration, another common-path tomographic phase microscopy (cTPM) was developed as a novel technique for measuring 3D RI distribution. A diffraction grating was utilized to generate a reference beam that traversed a blank region of the sample in a common-path off-axis interferometry setup. In the cTPM system, 3D RI tomogram was reconstructed from single-shot phase images at multiple illumination angles implemented with ODT algorithm. The cTPM system inherently displayed high ability in resisting environmental vibration, leading to stable extraction of more accurate phase information than the TPM based on a Mach-Zehnder configuration. Besides, the cTPM system reduced the acquisition time of one RI tomogram due to the feature of single-shot phase imaging. The cTPM system was practically performed on mapping 3D RI distribution of HeLa cells.
In order to show extensive potentiality in bio-applications, the cTPM system was equipped with two light sources, a 473 nm diode laser and a 532 nm diode-pumped solid-state laser. The two-wavelength cTPM system became a powerful tool for stain-free visualization of 3D hemoglobin concentrations in single red blood cells (RBCs). In addition, cellular volume and morphology of individual RBCs could be also obtained in the two-wavelength cTPM system. This technique showed promising capabilities of charactering RBCs in blood specimens from patients with various blood deficiencies.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:49:35Z (GMT). No. of bitstreams: 1
ntu-103-D97945009-1.pdf: 2258982 bytes, checksum: 82b312cd3c571612efcd9882c3c84e19 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontentsChapter 1: Introduction.................................................................................1
1.1 Motivation...............................................................................................1
1.2 Research objective and dissertation overview.......................................2
Chapter 2: Background................................................................................3
2.1 Two-dimensional quantitative phase microscopy (QPM)………………..3
2.2 Three-dimensional refractive index microscopy……………………........8
2.3 Volume, morphology, and hemoglobin content of single RBCs determined by optical microscopy............12
Chapter 3: Theory.......................................................................................15
3.1 Theoretical principle of phase extraction..............................................15
3.2 Algorithms for three-dimensional refractive index reconstructions.......23
3.3 Optical dispersion of hemoglobin ........................................................28
Chapter 4: TPM based on a Mach-Zehnder configuration………………...29
4.1 Optical system design..........................................................................29
4.2 Tests of system performance...............................................................32
4.3 RI characterizations of normal and abnormal cell lines.......................34
Chapter 5: TPM based on a common-path configuration..........................40
5.1 Optical system design.........................................................................42
5.2 Tests of system performance...............................................................46
Chapter 6: Quantifications of 3D hemoglobin distribution in RBCs…........52
6.1 Experimental procedures.....................................................................53
6.2 Quantifications of 3D hemoglobin distribution in RBCs.......................55
Chapter 7: Discussion and conclusion......................................................59
Chapter 8: Future work.............................................................................62
References................................................................................................64
Appendix: Lists of abbreviations................................................................69
dc.language.isoen
dc.subject共光路zh_TW
dc.subject三維影像zh_TW
dc.subject折射率zh_TW
dc.subject干涉儀zh_TW
dc.subject量化血色素zh_TW
dc.subjectquantification of hemoglobin concentrationsen
dc.subjectThree-dimensional imagingen
dc.subjectrefractive indexen
dc.subjectinterferometryen
dc.subjectcommon pathen
dc.title發展三維折射率顯微術應用於細胞定量觀察與分析zh_TW
dc.titleDevelopment of three-dimension refractive index microscopy for characterization and quantification of cellsen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree博士
dc.contributor.oralexamcommittee李超煌,郭柏齡,郭文娟,林致廷
dc.subject.keyword三維影像,折射率,干涉儀,共光路,量化血色素,zh_TW
dc.subject.keywordThree-dimensional imaging,refractive index,interferometry,common path,quantification of hemoglobin concentrations,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2014-02-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved