Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16902
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳明杰
dc.contributor.authorShao-Chia Chuen
dc.contributor.author朱紹嘉zh_TW
dc.date.accessioned2021-06-07T23:49:19Z-
dc.date.copyright2014-02-26
dc.date.issued2014
dc.date.submitted2014-02-13
dc.identifier.citation1. 同延安、王全九(1998)土壤-植物-大氣連續體系中水運移理論及方法。陜西科技出版社,西安。
2. 李偉莉、金昌杰、王安志、裴鐵璠、關德新(2007)土壤大孔隙流研究進展。應用生態學報 18(4):888-894。
3. 林俐玲、蘇煒哲、蔡義誌(2008)不同土地利用下土壤飽和水力傳導度與粗孔隙之探討。水土保持學報 40 (2):195-204。
4. 倪余文、區自清、應佩峰(2001)土壤優先水流及溶質優先遷移的研究。應用生態學報 12(1):103-107。
5. 倪勝火(2006)成功大學土壤力學實驗手冊。國立成功大學土木工程學系。
6. 洪志遠(2007)蓮華池集水區不飽和土壤的水力特性。國立台灣大學森林環境暨資源學系碩士論文。
7. 陳明杰(1993)蓮華池地區不同林相土壤孔隙分布特性之研究。中華林學季刊26(2):63-77。
8. 陳明杰、黃襦慧(2006)張力滲透計應用於蓮華池五號集水區土壤水力傳導度測定分析。中華林學季刊 39(2):207-220。
9. 陳明杰、陳家民、高庭芳、洪志遠(2006)福山林地土壤飽和水力傳導度特性以及其推估公式。中華林學季刊 39(2):173-188。
10. 陳明杰、洪志遠(2007)蓮華池四號集水區土壤物理性質與水力傳導度的特性。臺大實驗林研究報告21(4):293-306。
11. 陳明杰、洪志遠(2009)應用張力滲透計於林地土壤孔隙水通量之探討。中華林學季刊42(4):541-555
12. 陳克強(2009)土壤礫石含量及分布對飽和水力傳導度之影響。中興大學水土保持學系所學位論文。
13. 陳信雄 (1998) 集水區經營學特論。國立臺灣大學森林學系防砂工程研究室。
14. 陳信雄(2006)森林水文學。國立編譯館,153頁。
15. 陳建泰、徐國錦(2012)利用連續落水頭入滲推估不同深度之土壤水力傳導係數之研究。農業工程學報58(2):1-12。
16. 國家教育研究院名詞曁辭書資訊網。http:// terms.naer.edu.tw/detail/1316016/
17. 陸象豫、唐凱軍、古秀宇、黃惠雪(2000)林業試驗所各林區氣候狀況。台灣林業科學15(3):429-440。
18. 黃正良、廖學誠、陳明杰、金恆鑣、陸象豫(2002)蓮華池試驗林森林水文研究之回顧分析。台大實驗林研究報告16(2):95-114
19. 黃正良、廖學誠、金恆鑣、孫正春(2003)蓮華池人工林及天然林集水區土壤水力傳導度之比較(一) - Guelph滲透計法。中華林學季刊 36(2):187-198。
20. 黃誌川(1999)未飽和層土壤水分移動行為之分析。國立台灣大學地理學研究所碩士論文。
21. 黃曉芬(1999)土壤飽和導水度之空間推估及其應用於溶質移動之模擬。國立台灣大學農業化學研究所碩士論文。
22. 黃國禎、江介倫、邱宏彬、黃彥凱、黃瀞瑩(2009)老埤台地不同植生下土壤理化性質之研究。作物、環境與生物資訊6(1):51-60。
23. 葛錦昭、楊炳炎、林淵霖、楊楚淇、漆陞忠(1978)臺灣森林集水區經營試驗初步報告。林業試驗所試驗報告第304號,50頁。
24. 經濟部水利署地下水觀測網。http://pc183.hy.ntu.edu.tw/qw-learning01.php
25. 蔡彥邦(2013)蓮華池林地土壤水力傳導度不同測定方法之比較。臺灣大學森林環境暨資源學系碩士論文。
26. 蔣先覺、張家銘、洪富文、王明光(1993)蓮華池地區林地紅棕土壤中之氧化鐵。中國農業化學會誌31:793-802。
27. 竹下敬司(1985)森林土壤と水源かん養機能。森林立地 5(2):19-26。
28. Alaoui, A., and Goetz, B. (2008) Dye tracer and infiltration experiments to investigate macropore flow. Geoderma, 144(1): 279-286.
29. Allaire, S. E., Roulier, S., and Cessna, A. J. (2009) Quantifying preferential flow in soils: A review of different techniques. Journal of Hydrology, 378(1): 179-204.
30. Anderson, A. E., Weiler, M., Alila, Y., and Hudson, R. O. (2008) Dye staining and excavation of a lateral preferential flow network. Hydrology and Earth System Sciences Discussions, 5(2): 1043-1065.
31. Anderson, M. G., and Burt, T. B. (1990) Process studies in hillslope hydrology. (Vol. 539). Chichester: Wiley.
32. Ankeny, M. D., Ahmed, M., Kaspar, T. C., and Horton, R. (1991) Simple field method for determining unsaturated hydraulic conductivity. Soil Science Society of America Journal, 55(2): 467-470.
33. Bachmair, S., and Weiler, M. (2011) New dimensions of hillslope hydrology. Forest hydrology and biogeochemistry (pp. 455-481). Springer Netherlands.
34. Beven, K., and Germann, P. (1982) Macropores and water flow in soil. Water Resource Research, 18: 1311-1325.
35. Bodhinayake, W., and Si, B. C. (2004) Near‐saturated surface soil hydraulic properties under different land uses in the St Denis National Wildlife Area, Saskatchewan, Canada. Hydrological processes, 18(15): 2835-2850.
36. Bodhinayake, W., Si, B. C., and Xiao, C. (2004) New method for determining water-conducting macro-and mesoporosity from tension infiltrometer. Soil Science Society of America Journal, 68(3): 760-769.
37. Bouma, J. (1982) Measuring the hydraulic conductivity of soil horizons with continuous macropores. Soil Science Society of America Journal, 46(2): 438-441.
38. Bouma, J., Jongerius, A., and Schoonderbeek, D. (1979) Calculation of saturated hydraulic conductivity of some pedal clay soils using micromorphometric data. Soil Science Society of America Journal, 43(2): 261-264.
39. Bouma, J., and Wosten, J. H. M. (1979) Flow patterns during extended saturated flow in two, undisturbed swelling clay soils with different macrostructures. Soil Science Society of America Journal, 43(1): 16-22.
40. Brooks, R. H., and Corey, A. T. (1966) Properties of porous media affecting fluid flow. Journal of Irrigation and Drainage Engineering, 504: 6.
41. Bruckler, B. C., Ball, and Renault P., (1989) Laboratory estimation of gas diffusion coefficient and effective porosity in soils. Soil Science, 147: 1-10.
42. Buttle, J. M. and McDonald, D. J. (2000) Soil macroporosity and infiltration characteristics of a forest podzol. Hydrological Processes, 14: 831-848.
43. Cameira, M. R., Fernando, R. M., and Pereira, L. S. (2003) Soil macropore dynamics affected by tillage and irrigation for a silty loam alluvial soil in southern Portugal. Soil and Tillage Research, 70(2): 131-140.
44. Capowiez, Y., Monestiez, P., and Belzunces, L. (2001) Burrow systems made by Aporrectodea nocturna and Allolobophora chlorotica in artificial cores: morphological differences and effects of interspecific interactions. Applied Soil Ecology, 16(2): 109-120.
45. Chertkov, V. Y., and Ravina, I. (1999) Tortuosity of crack networks in swelling clay soils. Soil Science Society of America Journal, 63(6): 1523-1530.
46. Clothier, B. E., and Scotter, D. R. (1982) Constant-flux infiltration from a hemispherical cavity. Soil Science of America Journal, 46: 696-700.
47. Clothier, B. E., and Smettem, K. R. J. (1990) Combining laboratory and field measurements to define the hydraulic properties of soil. Soil Science Society of America Journal, 54(2): 299-304.
48. Dunn, G. H. and Phillips, R. E. (1991a) Macroporosity of a well-drained soil under no-till and conventional tillage. Soil Science Society of America Journal, 55: 817-823.
49. Edwards, W. M., Norton, L. D., and Redmond, C. E. (1988) Characterizing macropores that affect infiltration into nontilled soil. Soil Science Society of America Journal, 52(2): 483-487.
50. Ehlers, W. (1975) Observations on earthworm channels and infiltration on tilled and untilled loess soil. Soil Science, 119(3): 242-249.
51. Gardner, W. R. (1958) Some steady-state solutions of the unsaturated moisture flow equation with application to evaporation from a water table. Soil science, 85(4): 228-232.
52. Gardner, W. R. (1965) Dynamic aspects of soil-water availability to plants. Annual review of plant physiology, 16(1): 323-342.
53. Ghodrati, M., and Jury, W. A. (1990) A field study using dyes to characterize preferential flow of water. Soil Science Society of America Journal, 54(6): 1558-1563.
54. Gomez, J. A., Vanderlinden, K., and Nearing, M. A. (2005) Spatial variability of surface roughness and hydraulic conductivity after disk tillage: implications for runoff variability. Journal of hydrology, 311(1): 143-156.
55. Hakansson, I., and Lipiec, J. (2000) A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil and Tillage Research, 53(2): 71-85.
56. Hillel, D. (1998) Environmental soil physics: fundamentals, applications, and environmental considerations. Academic press.
57. Horn, R., Taubner, H., Wuttke, M., and Baumgartl, T. (1994) Soil physical properties related to soil structure. Soil and Tillage Research, 30(2): 187-216.
58. Jarvis, N. J. (2007) A review of non‐equilibrium water flow and solute transport in soil macropores: Principles, controlling factors and consequences for water quality. European Journal of Soil Science, 58(3): 523-546.
59. Jarvis, N., Lindahl, A., Messing, I., Stenemo, F., Hollis, J., Reichenberger, S., and Dubus, I. G. (2007) Algorithm to completely parameterise MACRO from basic soil property data. Report DL21 of the FP6 EU-funded FOOTPRINT project.
60. Jegou, D., Schrader, S., Diestel, H., and Cluzeau, D. (2001) Morphological, physical and biochemical characteristics of burrow walls formed by earthworms. Applied Soil Ecology, 17(2): 165-174.
61. Lawes, J. B., Gilbert, J. H., and Warington, R. (1882) On the amount and composition of the rain and drainage-waters collected at Rothamsted.
62. Mailloux, B. J., Fuller, M. E., Onstott, T. C., Hall, J., Dong, H., DeFlaun, M. F., Streger, S. H., Rothmel, R. K., Green, M., Swift, D. J. P., and Radke, J. (2003) The role of physical, chemical, and microbial heterogeneity on the field-scale transport and attachment of bacteria. Water Resources Research, 39(6): 1142.
63. Messing, I., and Jarvis, N. J. (1990) Seasonal variation in field‐saturated hydraulic conductivity in two swelling clay soils in Sweden. Journal of Soil Science, 41(2): 229-237.
64. Messing, I., and Jarvis, N. J. (1993) Temporal variation in the hydraulic conductivity of a tilled clay soil as measured by tension infiltrometers. Journal of soil science, 44(1): 11-24.
65. Mooney, S. J., and Morris, C. (2008) A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography. Catena, 73(2): 204-211.
66. Perret, J., Prasher, S. O., Kantzas, A., Hamilton, K., and Langford, C. (2000) Preferential solute flow in intact soil columns measured by SPECT scanning. Soil Science Society of America Journal, 64(2): 469-477.
67. Philip, J. R., (1985) Approximate analysis of the borehole permeameter in unsaturated soil. Water Resource Research, 21: 1025-1033.
68. Pitkanen, J., and Nuutinen, V. (1997) Distribution and abundance of burrows formed by Lumbricus terrestris L. and Aporrectodea caliginosa Sav. in the soil profile. Soil Biology and Biochemistry, 29(3): 463-467.
69. Ragab, R., and Cooper, J. D. (1993) Variability of unsaturated zone water transport parameter: implications for hydrological modeling. 1. In situ measurements. Journal of Hydrology, 148: 109-131.
70. Reynolds, W. D., and Elrick, D. E. (1985) In situ measurement of field-saturated hydraulic conductivity, sorptivity, and the α-parameter using the Guelph Permeameter. Soil Science, 140: 293-302.
71. Reynolds, W. D., and Elrick, D. E. (1991) Determination of hydraulic conductivity using a tension infiltrometer. Soil Science Society of America Journal, 55(3): 633-639.
72. Scotter, D. R., Clothier, B. E., and Harper E. R. (1982) Measuring saturated hydraulic conductivity and sorptivity using twin ring. Australian Journal of Soil Research, 20: 295-304.
73. Talsma, T. (1987) Re-evaluation of the well permeameter as a field method for measuring hydraulic conductivity. Australian Journal of Soil Research, 25: 361-368.
74. Tension Infiltrometer Operating Instructions (2008) SOILMOISTURE EQUIPMENT CORP.
75. Timlin, D. J., Ahuja, L. R., and Ankeny, M. D. (1994) Comparison of three field methods to characterize apparent macropore conductivity. Soil Science Society of America Journal, 58(2): 278-284.
76. Tippkotter, R. (1983) Morphology, spatial arrangement and origin of macropores in some hapludalfs, West Germany. Geoderma, 29(4): 355-371.
77. Tsuboyama, Y., Sidle, R. C., Noguchi, S., and Hosoda, I. (1994) Flow and solute transport through the soil matrix and macropores of a hillslope segment. Water Resources Research, 30(4): 879-890.
78. Uchida, T., Asano, Y., Mizuyama, T., and McDonnell, J. J. (2004) Role of upslope soil pore pressure on lateral subsurface storm flow dynamics. Water Resources Research, 40(12).
79. Uchida, T., Kosugi, K. I., and Mizuyama, T. (2001) Effects of pipeflow on hydrological process and its relation to landslide: a review of pipeflow studies in forested headwater catchments. Hydrological Processes, 15(11): 2151-2174.
80. Uchida, T., McDonnell, J. J., and Asano, Y. (2006) Functional intercomparison of hillslopes and small catchments by examining water source, flow path and mean residence time. Journal of hydrology, 327(3): 627-642.
81. Van Genuchten, M. T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44(5): 892-898.
82. Weiler, M., and Naef, F. (2003) An experimental tracer study of the role of macropores in infiltration in grassland soils. Hydrological Processes, 17(2): 477-493.
83. Weiler, M., and McDonnell, J. (2004) Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology. Journal of Hydrology, 285(1): 3-18.
84. White, I. and Sully, M. J., (1987) Macroscopic and microscopic capillary length and time scales from field infiltration. Water Resource Research, 23: 1514-1522.
85. Wilson, G. V. and Luxmoore, R. J. (1988) Infiltration, macroporosity, and mesoporosity distribution on two forest watersheds. Soil Science Society of America Journal, 52: 329-335.
86. Wooding, R. A. (1968) Steady infiltration from a shallow circular pond. Water resources research, 4(6): 1259-1273.
87. Yeh, Y. J., Lee, C. H., and Chen, S. T. (2000) A tracer method to determine hydraulic conductivity and effective porosity of saturated clays under low gradients. Ground Water, 38(4): 522-529.
88. Zehe, E., and Fluhler, H. (2001) Preferential transport of isoproturon at a plot scale and a field scale tile-drained site. Journal of Hydrology, 247(1): 100-115.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16902-
dc.description.abstract為了探討不同植被下土壤的水力傳導度、孔隙水通量及導水孔隙率的差異,本論文研究地點位於南投縣魚池鄉林業試驗所蓮華池研究中心轄區,選擇台灣杉人工林(台灣杉林)、檳榔園與香蕉園三種植被,使用張力滲透計對表層與深度20 cm土壤進行現地滲透試驗,測定不同壓力水頭下的水力傳導度,並計算不同壓力水頭區間之土壤孔隙水通量與導水孔隙率。同時,採取不擾動土樣進行室內實驗,測定孔隙率等物理性質,供分析土壤物理性質與水力特性的關係。土壤孔隙率試驗結果,三種植被之不擾動土樣的總孔隙率,以及使用加壓排水法測定之大孔隙率(壓力水頭>–3 cm)、中孔隙率(壓力水頭–3 cm ~ –100 cm)、小孔隙率(壓力水頭–100 cm ~ –500 cm),皆以台灣杉林為最高。經變異數分析,三種植被之土壤總孔隙率、大孔隙率、中孔隙率、及小孔隙率皆呈現顯著差異。滲透試驗結果,三種植被之表層土壤平均飽和水力傳導度皆高於深度20 cm,且台灣杉林的平均飽和水力傳導度為最高。在壓力水頭>–10 cm時,三種植被之表層水力傳導度皆大於深度20 cm;壓力水頭為–10 cm時,表層與深度20 cm的水力傳導度幾乎相同;而壓力水頭<–10 cm時,則深度20 cm的水力傳導度高於表層之水力傳導度。
土壤孔隙水通量與導水孔隙率分別表示在不同壓力水頭區間的水通量及實際參與水分傳導之孔隙比率。孔隙水通量計算結果,台灣杉林、檳榔園及香蕉園表層土壤分別有70.30%、82.45%及80.70%的水流經壓力水頭>–3 cm之大孔隙,深度20 cm則分別有63.84%、72.16%及68.58%。其次,使用Watson and Luxmoore(1986)(WL 方法)以及Bodhinayake et al.(2004)(BSX 方法)兩種方法計算相當於壓力水頭–0.6 ~ –3 cm的導水大孔隙率,WL方法計算結果,台灣杉林、檳榔園、香蕉園表層的導水大孔隙率分別為0.056%、0.023%、0.027%,深度20 cm分別為0.031%、0.006%、0.007%;BSX方法之表層的導水大孔隙率則分別為0.019%、0.006%、0.007%,深度20 cm分別為0.010%、0.002%、0.002%。三種植被土壤之大孔隙水通量及導水孔隙率皆以表層大於深度20 cm。以BSX法計算之導水大孔隙率約為加壓排水法所測得之大孔隙率的1%左右,顯示實際參與水分傳導的大孔隙僅屬少部份,其餘不連續的大孔隙對水分傳導並無直接影響。
zh_TW
dc.description.abstractThe purpose of this research was to investigate soil hydraulic conductivity, soil pores water flux, and water-conducting porosity under conditions of different vegetation types. Related experiments were executed on three vegetation types, Taiwania plantation, Areca palm plantation, and banana plantation, and both soil surface and depth of 20 cm, which were located beside on the Medicinal Botanical Garden of Lienhuachih Research Center, Nantou. Tension infiltrometer was used to measure soil hydraulic conductivity under different water pressure head in situ. Meanwhile, pore water flux ratio and water-conducting porosity were calculated on the basis of specified water pressure head range. Besides, undisturbed soil samples were extracted for physical properties analysis including porosity and et al., that the data also was used to probe the relationship to soil hydraulic properties. From the soil porosity analysis, Taiwania plantation had higest total porosity, and macroporosity (pressure head >−3 cm H2O), mesoporosity (pressure head range −3 to −100 cm H2O), and miniporosity (pressure head range −100 to −500 cm H2O) measured by Ceramic Plate Extractor in three vegetation types. Those mean were significant difference between vegetation types by ANOVA. Secondly, from the tension infiltration test, the estimated saturated hydraulic conductivity of soil surface was higher than soil depth of 20 cm in each three vegetation types. The estimated unsaturated hydraulic conductivity of soil surface was higher than soil depth of 20 cm under the conditions of pressure head > –10 cm H2O, but lower under the conditions of pressure head < –10 cm H2O.
The pore water flux and water-conducting porosity are ways to express the water flux ratio under specificed water pressure head range and the porosity that really participate conducting water. The water flux ratio of macropores (pressure head > –3 cm H2O) of soil surface in Taiwania plantation, Areca palm plantation, and banana plantation were 70.30%, 82.45%, and 80.70% respectively, and soil depth of 20 cm were 63.84%, 72.16%, and 68.58% respectively. Besides, there were two approach, Watson and Luxmoore (1986) (WL approach) and Bodhinayake et al. (2004) (BSX approach), were used to calculate water-conducting porosity. Water-conducting macroporosity (pressure head range 0.6 to –3 cm H2O) of soil surface calculated by the WL approach in Taiwania plantation, Areca palm plantation, and banana plantation were 0.056%, 0.023%, and 0.027% respectively; and soil depth of 20 cm were 0.031%, 0.006%, and 0.007% respectively; and soil surface calculated by the BSX approach in Taiwania plantation, Areca palm plantation, and banana plantation were 0.019%, 0.006%, and 0.007% respectively; and soil depth of 20 cm were 0.010%, 0.002%, 0.002% respectively. Both soil macropore water flux ratio and water-conducting macroporosity of soil surface were higher than soil depth of 20 cm. Besides, the results of water-conducting macroporosity calculated by BSX approach were far less than those measured by Ceramic Plate Extractor. This revealed that the actual water-conducting macroporosity was only about 1% of total macroporosity, and the remaining unconnected macropores which was helpless for water conduction.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:49:19Z (GMT). No. of bitstreams: 1
ntu-103-R00625021-1.pdf: 854260 bytes, checksum: e66752b622aa73c93bac2d8e66593b6e (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents摘要 Ⅰ
Abstract Ⅲ
目錄 Ⅴ
圖目錄 Ⅶ
表目錄 Ⅷ
第一章 前言 1
第二章 前人研究 3
第一節 土壤水的能量狀態 3
第二節 達西定律 4
第三節 土壤孔隙分類 5
第四節 大孔隙與優勢流 8
第五節 大孔隙之研究 12
第六節 水力傳導度 13
  一、 飽和水力傳導度 14
  二、 不飽和水力傳導度 14
  三、 水力傳導度之研究 15
第七節 土壤孔隙水通量與導水孔隙率 17
  一、 孔隙水通量 17
  二、 導水孔隙率 17
第三章 材料與方法 19
第一節 研究地概況 19
第二節 研究方法 21
ㄧ、 土壤物理性質分析 21
二、 現地水力傳導度測定 22
(一) 原理 22
(二) 張力滲透計簡介 24
(三) 試驗方法 25
三、 土壤孔隙水通量計算 26
四、 土壤導水孔隙率計算 28
第四章 結果與討論 33
第一節 土壤物理性質測定 33
一、 現地體積含水率、比重、乾總體密度及粒徑分析 33
二、 孔隙率測定 34
第二節 水力傳導度測定 42
第三節 土壤質地結構參數值與水力傳導度的關係 49
第四節 土壤孔隙水通量與導水孔隙率 54
一、 土壤孔隙水通量 54
二、 導水孔隙率 58
第五章 結論 64
參考文獻 66
dc.language.isozh-TW
dc.subject導水孔隙率zh_TW
dc.subject張力滲透計zh_TW
dc.subject蓮華池研究中心zh_TW
dc.subject水力傳導度zh_TW
dc.subjectHydraulic conductivityen
dc.subjectLienhuachih Research Centeren
dc.subjectTension infiltrometeren
dc.subjectWater-conducting porosityen
dc.title蓮華池地區不同植被土壤的水力特性zh_TW
dc.titleSoil hydraulic properties of different vegetation in Lienhuachih areaen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳信雄,盧惠生,廖學誠
dc.subject.keyword水力傳導度,蓮華池研究中心,張力滲透計,導水孔隙率,zh_TW
dc.subject.keywordHydraulic conductivity,Lienhuachih Research Center,Tension infiltrometer,Water-conducting porosity,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2014-02-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept森林環境暨資源學研究所zh_TW
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
834.24 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved