Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16881
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林清富(Ching-Fuh Lin)
dc.contributor.authorChien Leeen
dc.contributor.author李謙zh_TW
dc.date.accessioned2021-06-07T23:48:45Z-
dc.date.copyright2014-03-09
dc.date.issued2014
dc.date.submitted2014-02-14
dc.identifier.citation[1] 洪連輝、劉立基、魏榮君合譯,”固態物理學導論”,高立圖書有限公司,(1994), p.15-20.
[2] http://bbs.sciencenet.cn/blog-3777-328239.html
[3] Supporting Information is available electronically on the Bandstructure Web site, http://www.bandstructure.jp/Table/BAND/ZnO_zb.html.
[4] Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 292, (2001), p.1897.
[5] J. Nause, M. Pan, V. Rengarajan, W. Nemeth, S. Ganesan, A. Payne, N. Li, and I. Ferguson, Proc. SPIE 5941, (2005), p.70.
[6] Y. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, and C. J. Youn, Appl. Phys. Lett. 88, (2006), p. 241108.
[7] S. H. Park, S. H. Kim, and S. W. Han, Nanotechnology 18, (2007), p. 055608.
[8] Z. P. Wei, Y. M. Lu, D. Z. Shen, Z. Z. Zhang, B. Yao, B. H. Li, J. Y. Zhang, D. X. Zhao, X. W. Fan, and Z. K. Tang, Appl. Phys. Lett. 90, (2007), p. 042113.
[9] S. Mende, L. Judith, M.D. Mac, MATERIALSTODAY, 2007, 10, p.40 – 48.
[10] Z. L. Yuan, J. S. Yu, N. Wang, Y. Jiang, J. MATER SCI-MATER EL., 2011, 22, 1730–1735.
[11] Y. S. Lee, Y. I. Jung, B.Y. Noh, I.K. Park, APPL. PHYS. EXPRESS., 2011, 4, 112101.
[12] C. Y. Lu, S. J. Chang, S. P. Chang, C. T. Lee, C. F. Kuo, H. M. Chang, Y. Z. Chiou, C. L. Hsu, and I. C. Chen, Appl. Phys. Lett. 89, (2006), p. 153101.
[13] M. S. Son, K. H. Yoo, B. D. Ahn, S. Y. Lee, Appl. Phys. Lett., 2007, 90, p. 033512.
[14] B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, C. N. Rao, JPN. J. APPL. PHYS., 2011, 50, 100206.
[15] J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Pusche, P. Geithner, and L. Ley, J. Appl. Phys. 97, (2005), p. 044315.
[16] B. Cao, X. Teng, S. H. Heo, Y. Li, S. O. Cho, G. Li, and W. Cai, J. Phys. Chem. C111, (2007), p.2470.
[17] W. Wang, G. Zhang, L. Yu, X. Bai, Z. Zhang, and X. Zhao, Physica E (Amsterdam) 36, (2007), p.86.
[18] S. Huang, C. Y. Chou, C. F. Lin, SOL ENERG MAT SOL C., 2010, 94, p.182–186.
[19] B. Chitara, L. S. Panchakarla, S. B. Krupanidhi, C. N. Rao, JPN. J. APPL. PHYS., 2011, 50, 100206.
[20] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Thin Solid Films 496, (2006). P. 26.
[21] M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O’Brien, D. D. C. Bradley, J. Nelson, and J. R. Durrant, J. Mater. Chem. 16, (2006), p. 2088.
[22] P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, and J. Nelson, J. Phys. Chem. B 110, (2006), p. 7635.
[23] J. Owen, M. S. Son, K. H. Yoo, B. D. Ahn, and S. Y. Lee, Appl. Phys. Lett. 90, (2007), p. 033512.
[24] B. Weintraub, S. Chang, S. Singamaneni, W. H. Han, Y. J. Choi, J. Bae, M. Kirkham, V. V. Tsukruk, Y. Deng, NANOTECHNOLOGY, 2008, 19, 435302.
[25] M. Thambidurai, N. Muthukumarasamy, D. Velauthapillai, N. S. Arul, S. Agilan, R. Balasundaraprabhu, J. MAT. SCI-MATER EL., 2011, 22, 1662-1666.
[26] H. N. Chen, W. P. Li, Q. Hou, H. Liu, L. Zhu, ELECTROCHIM. ACTA., 2011, 56, 8358– 8364.
[27] J. Cui, U. Gibson, NANOTECHNOLOGY, 2007, 18, p. 155 ~ 302.
[28] D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, D. S. Ginley, THIN SOLID FILMS, 2006, 496, P. 26.
[29] M. Peiro, P. Ravirajan, K. Govender, D. S. Boyle, P. O. Brien, D. D. C. Bradley, J. Nelson, J. R. Durrant, J. Mater. Chem., 2006, 16, p. 2088.
[30] A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, J. Nelson, J. Phys. Chem. B., 2006 ,110, p.7635.
[31] Y. Lee, J. Y. Wang, Y. Chou, C. L. Cheng, C. H. Chao, S. C. Shiu, S. C. Hung, J. J. Chao, M. Y. Liu, W. F. Su, Y. F. Chen, C.F. Lin, Nanotechnology, 2009, 20, p.425202.
[32] Porting Information is available electronically on the LEDs magazine Web site, http://ledsmagazine.com/news/4/9/22
[33] H. N. Chen, W. P. Li, Q. Hou, H. Liu, L. Zhu, ELECTROCHIM. ACTA., 2011, 56, 8358– 8364.
[34] Z. L. Yuan, J. S. Yu, N. Wang, Y. Jiang, J. MATER SCI-MATER EL., 2011, 22, 1730–1735.
[35] Y. S. Lee, Y. I. Jung, B.Y. Noh, I.K. Park, APPL. PHYS. EXPRESS., 2011, 4, 112101.
[36] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, 'Polymer solar cells with enhanced open-circuit voltage and efficiency,' Nat. Photonics 3, 649-653 (2009).
[37] Kim, J.Y., et al., Efficient tandem polymer solar cells fabricated by all-solution processing. Science, 2007. 317(5835): p. 222-225.
[38] Li, G., et al., Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly (3-hexylthiophene). Journal of Applied Physics, 2005. 98(4): p. 043704-043704-5.
[39] http://www.kmle.co.kr/search.php?Search=sol+gel+transformation
[40] L. Vayssieres, “Groeth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Advanced Materials 15, (2003), p.464-466.
[41] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-化學分析儀器”,行政院國家科學委員會精密儀器發展中心, (1998), p.1-3.
[42] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-化學分析儀器”,行政院國家科學委員會精密儀器發展中心, (1998), p.33-35
[43] http://homepage.ntu.edu.tw/~f95943128/instrument/PG-manual.pdf
[44] http://nanost.ntu.edu.tw/device_manual/212021400.pdf
[45] 鄧吉雄編輯,”Electron Beam Evaporation 1”國科會南區微系統研究中心,(2003), p.2-4.
[46] 伍秀菁、汪若文、林美吟編輯,”儀器總覽-材料分析儀器”,行政院國家科學委員會精密儀器發展中心, (1998), p.43-44.
[47] Van de Pol F C M 1990 Ceram. Bull. 69 1959
[48] Wensa W W, Yamada A, Takahashi K, Yoshino M and Konagai M 1991 J. Appl. Phys. 70 7119
[49] Ko H-J, Yao T, Chen Y and Hong S-K 2002 J. Appl. Phys. 92 4354
[50] Ohgaki T, Ohashi N, Kakemoto H, Wada S, Adachi Y, Haneda H and Tsurumi T 2002 J. Appl. Phys. 93 1961
[51] Chen Y, Bagnall D M, Koh H-J, Park K-T, Hiraga K, Zhu Z and Yao T 1998 J. Appl. Phys. 84 3912
[52] Ogata K, Kawanishi T, Maejima K, Sakurai K, Fujita S Z and Fugita S G 2002 J. Cryst. Growth 237–239 553
[53] Kashiwaba Y, Haga K, Watanabe H, Zhang B P, Segawa Y and Wakatsuki K 2002 Phys. Status Solidi. b 229 921
[54] Ye J, Gu S, Zhu S, Chen T, Hu L, Qin F, Zhang R, Shi Y and Zheng Y 2002 J. Cryst. Growth 243 151
[55] Wang X, Yang S, Wang J, Li M, Jiang X, Du G, Liu X and Chang R P H 2001 J. Cryst. Growth 226 123
[56] Jeong S-H, Kim B-S and Lee B-T 2003 Appl. Phys. Lett. 82 2625
[57] Kim K-K, Song J-H, Jung H-J, Choi W-K, Park S-J, Song J-H and Lee J-Y 2000 J. Vac. Sci. Technol. A 18 2864
[58] Kim K-K, Song J-H, Jung H-J, Choi W-K, Park S-J and Song J-H 2000 J. Appl. Phys. 87 3573
[59] Xiong G, Wilkinson J, Mischuck B, Tuzemen S, Ucer K B and Williams R T 2002 Appl. Phys. Lett. 80 1195
[60] Vossen J L 1977 Phys. Thin Films 9 1
[61] Yamaya K, Yamaki Y, Nakanish H and Chichibu S 1998 Appl. Phys. Lett. 72 235
[62] Bang K H, Hwang D K and Myoung J M 2003 Appl. Surf. Sci. 207 359
[63] Ogata K, Koike K, Tanite T, Komuro T, Yan F, Sasa S, Inoue M and Yano M 2003 J. Cryst. Growth 251 623
[64] Gruber T, Kirchner C and Waag A 2002 Phys. Status Solidi b 229 841
[65] K. M. Lin, P. Tsai, THIN SOLID FILMS, 2007, 515, 8601-8604.
[66] K. M. Lin, P. Tsai, J. SOL-GEL SCI. TECHN., 2009, 51, 215-221.
[67] G. Amin, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, J. NANOMATER, 2011, 269692.
[68] M. Guo, P. Diao, X.D. Wanga, S.M. Cai, J. SOLID STATE CHEM., 2005, 178, 3210-3215.
[69] X. Zhao, C.R. Lee, J. Heo, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, W.G. Jung, C.S. Son, B.C. Shin, W.J. Lee, S.T. Tang, J.L. Zhao, X.W. Sun, J. PHYSICA E., 2009, 41, 1423-1426.
[70] M. Dutta, S. Mridha, D. Basak, APPL. SURF. SCI., 2008, 254, 2743-2747.
[71] C.Y. Tsay, K.S. Fan; C.Y. Chen,; J.M. Wu, C.M. Lei, J. ELECTROCERAM., 2011, 26, 23–27.
[72] A.F. Pakdel, E. Ghodsi, PRAMANA-J PHYS., 2011, 76, 973-983.
[73] M. Guo, P. Diao, X. D. Wang, and S. M. Cai, J. Solid State Chem. 178, 3210 _2005_.
[74] T. Ma, M. Guo, M. Zhang, Y. J. Zhang, and X. D. Wang, Nanotechnology 18, 035605 _2007_.
[75] B. S. Kang, S. J. Pearton, and F. Ren, Appl. Phys. Lett. 90, 083104 _2007_.
[76] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, 'Solar cell efficiency tables (version 36),' Progress in Photovoltaics 18, 346-352 (2010).
[77] M. C. Scharber et al., “Design Rules for Donors in Bulk‐Heterojunction Solar Cells—Towards 10 % Energy‐Conversion Efficiency,” Adv.Mater.18,789-794(2006).
[78] Alex C. Mayer, Shawn R. Scully, Brian E. Hardin, Michael W. Rowell, Michael D. McGehee.Polymer-based solar cells REVIEW, MaterialsToday. 10 (2007).
[79] Jarzab, D. et al. Charge Transfer Dynamics in Polymer-Fullerene Blends for Efficient Solar Cells,J. Phys. Chem. B.113(2009)16513–16517.
[80] Jing-Shun Huang, Chen-Yu Chou, Meng-Yueh Liu, Kao-Hua Tsai, Wen-Han Lin, Ching-Fuh Lin. Solution-processed vanadium oxide as an anode interlayer for inverted polymer solar cells hybridized with ZnO nanorods, Organic Electronics. 10 (2009) 1060–1065.
[81] Ming-Yi Lin, Chun-Yu Lee, Shu-Chia Shiu, Ing-Jye Wang, Jen-Yu Sun, Wen-Hau Wu, Yu-Hong Lin,Jing-Shun Huang, Ching-Fuh Lin, Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells, Org. Electron. 11 (2010) 1828–1834
[82] K. W. Wong, H. L. Yip, Y. Luo, K. Y. Wong, W. M. Lau et al., Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer, App. Phys. Lett. 80 (2002) 2788.
[83] M. P. de Jong, L. J. van IJzendoorn, M. J. A. de Voigt, Stability of the interfacebetween indium-tin-oxide and poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate) in polymer light-emitting diodes, App. Phys. Lett. 77 (2000) 2255.
[84] Claire H. Woo, Barry C. Thompson, Bumjoon J. Kim, Michael F. Toney, Jean M. J. Fre’chet “The influence of poly (3-hexylthiophene) regioregularity on fullerene-composite solar cell performance.” J. Am. Chem. Soc. 130 (2008) 16324–16329
[85] Yongbo Yuan, Timothy J. Reece, Pankaj Sharma, Shashi Poddar, Stephen Ducharme, Alexei Gruverman, Yang Yang, Jinsong Huang, Efficiency enhancement in organic solar cells with ferroelectric polymers, Nature Materials 10 (2011) 296–302.
[86] G. Li, C.-W. Chu, V. Shrotriya, J. Huang, Y. Yang, Efficient inverted polymer solar cells, App. Phys. Lett. 88 (2006) 253503.
[87] Ming-Yi Lin, Chun-Yu Lee, Shu-Chia Shiu, Ing-Jye Wang, Jen-Yu Sun, Wen-Hau Wu, Yu-Hong Lin, Jing-Shun Huang, Ching-Fuh Lin, Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells, Org. Electron. 11 (2010) 1828–1834.
[88] Jing-Shun Huang, Chen-Yu Chou, Ching-Fuh Lin, Efficient and air-stable polymer photovoltaic devices with WO3-V2O5 mixed oxides as anodic modification, IEEE Electr. Dev. Lett. 31 (2010) 332–334
[89] Po-Ching Yang, Jen-Yu Sun, Shou-Yuan Ma, Yu-Min Shen, Yu-Hong Lin,Chih-Ping Chen, Ching-FuhLin, Interface modification of a highly air-stable polymer solar cell, Sol. Energy Mater. Sol. Cells 98 (2012) 351-356.
[90] H.-H. Liao, L.-M. Chen, Z. Xu, G. Li, Y. Yang, Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer, Appl. Phys. Lett. 92 (2008) 173303
[91] Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu, Y. Yang, Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure, Solar Cells Adv. Funct. Mater. 19 (2009) 1227.
[92] C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, andC. J. Brabec. Highly efficient inverted organic photovoltaics using solution basedtitanium oxide as electron selective contact, APPLIED PHYSICS LETTERS. 89 (2006) 233517.
[93] Y. J. Cheng, F. Y. Cao, W. C. Lin, C. H. Chen, C. H. Hsieh, Self-Assembled and Cross-Linked Fullerene Interlayer on Titanium Oxide for Highly Efficient Inverted Polymer Solar Cells, Chem. Mater. 23 (2011) 1512.
[94] Yip, H-L., Hau, S. K., Baek, N. S., Ma, H. & Jen, A. K-Y. Polymer solar cells thatuse self-assembled-monolayer-modified ZnO/metals as cathodes. Adv. Mater.20 (2008) 2376–2382.
[95] F.C. Krebs, S.A. Gevorgyan, J. Alstrup, A roll-to-roll process to flexible polymersolar cells: model studies, manufacture and operational stability studies, J. Mater.Chem. 19 (2009) 5442–5451
[96] MS White, DC Olson, SE Shaheen, N. Kopidakis and DS Ginley.Invertedbulk-heterojunction organic photovoltaic device using a solution-derived ZnOunderlayer, APPLIED PHYSICS LETTERS.89 (2006) 143517.
[97] Jing-Shun Huang, Chen-Yu Chou, Meng-Yueh Liu, Kao-Hua Tsai, Wen-Han Lin,Ching-Fuh Lin. Solution-processed vanadium oxide as an anode interlayer for invertedpolymer solar cells hybridized with ZnO nanorods, Organic Electronics. 10 (2009) 1060–1065
[98] L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells, Appl, Phys. Lett. 88 (2006) 093511–1–3.
[99] M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards 10 % Energy-Conversion Efficiency, Adv. Mater 18 (2006) 789–794.
[100] H.Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nat. Photonics 3 (2009) 649–653.
[101] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray and L. Yu, For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%, Adv. Mater. 22 (2010) E135–E138.
[102] T.-Y. Chu, S. Alem, S.-W. Tsang, S.-C. Tse, S. Wakim, J. Lu, G. Dennler, D.Waller, R. Gaudiana and Y. Tao, Morphology control in polycarbazole based bulk heterojunction solar cells and its impact on device performance, Appl. Phys.Lett. 98 (2011) 253301–1–3.
[103] T.-Y. Chu, J. Lu, S. Beaupre, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M.Leclerc, Z. Li, J. Ding and Y. Tao, Bulk Heterojunction Solar Cells Using Thieno[3,4-c]pyrrole-4,6-dione and Dithieno[3,2-b:20,30-d]silole Copolymer with a Power Conversion Efficiency of 7.3%, J. Am. Chem. Soc. 133 (2011) 4250–4253.
[104] Badrou Reda Aich, Jianping Lu, Serge Beaupre, Mario Leclerc and Ye Tao, Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells, Organic Electronics 13 (2012) 1736–1741.
[105] L. Dou, J. You1, J. Yang, C.-C. Chen, Y. He1, S. Murase, T. Moriarty, K. Emery, G. Li and Y. Yang, Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer, Nat. Photonics 6 (2012) 180–185.
[106] X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You and Y. Yang, Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells, Adv. Mater. 24 (2012) 3046–3052.
[107] “Best Research-Cell Efficiencies”, National Renewable Energy Laboratory(NREL).
[108] 蘇明德《科學發展》月刊2010年8月,452期,70 ~ 71頁
[109] Hideki Shirakawa.Nobel Lecture: The discovery of polyacetylene film—the dawningof an era of conducting polymers, REVIEWS OF MODERN PHYSICS.73(2001).
[110] B.R. Weinberger, M. Akhtar, and S.C. Gau.Polyacetylene photovoltaic devices, Synthetic Metals.4(1982)187-197.
[111] Karg, S.; Riess, W.; Dyakonov, V.; Schwoerer, M. Electrical and optical characterization of poly(phenylene-vinylene) light-emitting-diodes,Synth. Met. 54 (1993) 427-433.
[112] G. Yu, J. Gao, J. C. Hummelen, F. Wudl, A. J. Heeger.Polymer Photovoltaic Cells -Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions, Science.270(1995)1789-1791.
[113] G. Yu, A. J. Heeger.Charge Separation and Photovoltaic Conversion in Polymer Composites with InternalDonor-Acceptor Heterojunctions, J. Appl. Phys. 78(1995)4510-4515.
[114] Mitsubishi Chemical, Action to KAITEKI, Progress Report 1 (website).
[115] J.Hou, H.-Y. Chen, S. Zhang, R. I. Chen, Y. Yang, Y. Wu and G. Li, “Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells,” J. Am. Chem. Soc. 131, 15586–15587 (2009).
[116] Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. Yu, “For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%,” Adv. Mater. 22, E135–E138 (2010).
[117] Z. He, C. Zhong, S. Su, M. Xu, H. Wu and Y. Cao, “Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure,” Nat. Photonics. 6, 591–595 (2012).
[118] M. Mo, J. C. Yu, L. Zhang, S.-K. A. Li,Self-Assembly of ZnO Nanorods and Nanosheets into Hollow Microhemispheres and Microspheres†, Volume17, Issue6, pages756–760, March,2005
[119] Soumitra Kar,Bhola Nath Pal,Subhadra Chaudhuri,andDipankar Chakravorty, One-Dimensional ZnO Nanostructure Arrays:Synthesis and Characterization, J. Phys. Chem. B,2006,110(10), pp 4605–4611
[120] Wakatsuki, K.; Binh, N.T.;Segawa, Y.,Low-temperature growth of ZnO nanostructure networks, Journal of Applied Physics(Volume:96 ,Issue: 1)
[121] Ting-Jen Hsueha, Cheng-Liang Hsu, Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles, Sensors and Actuators B: Chemical, Volume 131, Issue 2, 14 May 2008, Pages 572–576
[122] Chua, S.J. ; Koh, Y.W. ; Loh, K.P.,Growth of single crystal ZnO nanorods on GaN using an aqueous solution method, Applied Physics Letters (Volume:87 , Issue: 10 )
[123] Fallert, J. ; Sartor, J. ; Dietz, R.J.B. ,Ordered n-type ZnO nanorod arrays, Applied Physics Letters (Volume:92 , Issue: 13 )
[124] Haiyong Gao, Fawang Yan, Jinmin Li, Yiping Zeng and Junxi Wang, Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method, J. Phys. D: Appl. Phys. 40 3654
[125] Kaufman, M. ; Kim, K.,Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy, Applied Physics Letters (Volume:81 , Issue: 16 )
[126] Youngjo Tak and Kijung Yong ,Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B, 2005, 109 (41), pp 19263–19269
[127] Willander, M.; Ost, Anita ; Stralfors, Peter, ZnO nanorods as an intracellular sensor for pH measurements, Journal of Applied Physics (Volume:102 , Issue: 8 )
[128] D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by directelectrochemical deposition, Langmuir 24 (2008) 9707.
[129] http://bbs.sciencenet.cn/blog-3777-328239.html
[130] http://www.bandstructure.jp/Table/BAND/ZnO_zb.html.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16881-
dc.description.abstract在第一個部分中,我成功地利用全溶液製程的方式在c-plane藍寶石基板上成長出高品質且平整的單晶氧化鋅奈米柱陣列,並利用鍍金後以退火溫度900℃退火一小時的製程處理,使氧化鋅種子層的表面形貌平坦化,將其粗糙度rms value從2.3奈米降低到0.46奈米。隨著退火溫度的提高,PL頻譜的氧化鋅主要放光強度增加,缺陷放光降低,而XRD頻譜強度也從43.6K提升至77.8K,且其氧化鋅c軸方向的半高寬(FWHM)可以從0.1531°降低到0.1326°,所以藉由鍍金後以退火溫度900℃退火一小時的製程處理,氧化鋅奈米柱陣列的單晶性、結晶性與準直性都有顯著地增加。
在第二個部分中,我藉由添加不同濃度的氯化鉀溶液來調整水熱法生長氧化鋅奈米柱陣列的成長環境,成功地控制了氧化鋅奈米柱陣列的形貌,包括柱長、柱徑、柱間距與柱密度。統和這些因子,計算出長柱所增加的單位面積填入PTB7:PC71BM等效體積(nm3/nm2)。在有機太陽能電池的應用上,氧化鋅奈米柱有增加主動層有效利用區域的效益,透過控制氧化鋅奈米柱和主動層接觸的單位面積填入的主動層等效體積(nm3/nm2),以及探討柱間距對於主動層滲入氧化鋅奈米柱的影響,可以大幅增加元件短路電流和轉換效率。對於PTB7:PC71BM倒置結構太陽能電池,最佳的長柱條件為使用KCl添加濃度為25mM來成長氧化鋅奈米柱陣列,可以抑制水平方向的成長速度,讓其長柱能大幅提升有機主動層中載子利用的效率,在旋塗主動層之後,有別於一般倒置結構,氧化鋅從電子傳輸層可以發展為電子傳輸通道,降低了電子電洞對複合的機會,也因此可以更有效的利用太陽光,產生更多的光電流,將使太陽能電池元件短路電流從平面的15.8mA/cm2,又能進一步的提升到16.3mA/cm2,而元件光電轉換效率從7.03%提升到7.46%。值得一提的是,此方法因為是作電子傳輸層的形貌改善,因此和有機主動層內部的形貌控制能夠獨立操作,而對於元件表現的影響也能夠加成。
在第三個部分中,改變成長時間找出最適合的氧化鋅奈米柱陣列長度,從元件各參數的表現來看,可以知道成長時間90分鐘有最佳轉換效率,從7.46%提升到7.95%,其原因是來自於較高的短路電流密度,電流可以從原本的16.3mA/cm2提升到17.6mA/cm2,由於合適的柱長與柱間距讓主動層溶液能完全滲入底部,因此造成短路電流密度上升的結果。在主動層最佳化的結果中,由於較快的轉速使得主動層薄膜更薄,降低了電子電洞對複合的機會,短路電流密度也因此獲得提升,元件效率從7.95%提昇至8.12%。最後在預塗PC71BM的實驗結果中,可以看到其短路電流密度增加至18.1mA/cm2,且填充因子與串並聯電阻都有更好的表現,讓整體效率提升到8.23%,其原因應該跟先旋塗上的PC71BM有關係,藉由多了一層的PC71BM來阻擋電洞,讓電子更容易往氧化鋅奈米柱的方向傳導,而正確的載子傳遞方向在元件表現上即為更多的載子可以被有效的傳遞出來,損耗減少,造成填充因子與短路電流密度上升,進而提升效率。最後,根據第四章對主動層等效滲入體積的分析,可以發現KCl添加濃度在0~25mM的區間內所成長的氧化鋅奈米柱陣列,可能有更適合有機太陽能電池的表面形態,使得整體元件的表現更佳,因此針對不同的KCl添加濃度所成長的氧化鋅奈米柱陣列搭配成長時間90分鐘、主動層轉速1500轉及預塗PC71BM的製程,在KCl添加濃度在25mM的長柱條件下仍有最佳的元件效率,其短路電流密度與填充因子分別為18.0mA/cm2和64.8%並不是最高,但在開路電壓的提升下,讓整體效率提升到8.39%,其原因應該跟先旋塗上的PC71BM有關係,此一步驟可以增加在氧化鋅層上方之PC71BM濃度可以增加施體(Donor)與受體(Acceptor)的垂直相分離,讓此部分實驗的開路電壓(Voc)有明顯的提升。
zh_TW
dc.description.abstractIn the first part, I successfully used the solution process to grow well-aligned and high quality single-crystal ZnO nanorod arrays on c-plane sapphire substrates by Au-layer annealing at 900℃ for one hour. The surface morphology of the ZnO seed layer is planarized, the roughness rms value decreased from 2.3 nm to 0.46 nm. With increasing annealing temperature, the ZnO main peak intensity of PL spectra is increased and the defect peak intensity is decreased. The XRD spectrum intensity also increased from 43.6K to 77.8K and the FWHM can be reduced from 0.1531 ° to 0.1326°. By Au-layer annealing at 900℃ for one hour treatment, crystallinity and alignment of ZnO nanorod arrays have significantly increased.
In the second part, I found a method to effectively control the ZnO nanorod array morphology. The ZnO nanorod arrays morphology parameters, including length, diameter, spacing, and density, were able to be controlled by adding different concentrations of potassium chloride in a growth-promoting solution to create different environments for hydrothermal growth. I also found that the contact area between ZnO nanorod arrays and the active layer could be maximized with this ZnO nanorod arrays morphology control method, and the condition of the active infiltration could be improved. As a result, PTB7:PC71BM low-bandgap solar cells perform high short-circuit current density 16.3mA/cm2, and the device efficiency improved to 7.46%.
In the third section, I changed the growth time to find the most suitable ZnO nanorods arrays length. From the performance of each parameter, the best growth time is 90 minutes. Since the appropriate length and density, the active layer can fully infiltrate to the bottom. The conversion efficiency increased from 7.46% to 7.95 % and the short-circuit current density also increased from 16.3mA/cm2 to 17.6mA/cm2. I also optimized the thickness of active layer, and enhanced the PCE of ITO/ZnO NRAs/PTB7:PC71BM/MoO3/Ag to 8.12% successfully. Finally, we pre-coated PC71BM to increase the short-circuit current density to 18.0mA/cm2 and enhanced PCE to 8.39%.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:48:45Z (GMT). No. of bitstreams: 1
ntu-103-R00941066-1.pdf: 4430688 bytes, checksum: efeac9f94bfb57a403e3a5e11e575ebc (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents口試審定書 .................................................................................................................. I
致謝 ............................................................................................................................ II
中文摘要 ................................................................................................................... III
ABSTRACT ................................................................................................................ V
目錄 ......................................................................................................................... VII
圖目錄 ....................................................................................................................... IX
表目錄 ..................................................................................................................... XII
第一章 緒論 ............................................................................................................... 1
1.1 氧化鋅奈米結構簡介 .................................................................................. 1
1.2 文獻回顧 ...................................................................................................... 3
1.3 研究動機 ...................................................................................................... 6
1.4 論文導覽 ...................................................................................................... 8
第二章 氧化鋅薄膜以及奈米柱的製作流程 ......................................................... 10
2.1 簡介 ............................................................................................................ 10
2.2 氧化鋅薄膜製作與流程 ............................................................................ 13
2.3 氧化鋅奈米柱製作與流程 ........................................................................ 14
2.4 實驗儀器的介紹與架設 ............................................................................ 16
第三章 在藍寶石基板上製作氧化鋅奈米柱陣列及特性分析 ............................. 24
3.1 實驗動機 .................................................................................................... 24
3.2 實驗步驟 .................................................................................................... 25
3.2.1 溶液配置 ......................................................................................... 26
3.2.2 元件製作流程 ................................................................................. 27
3.3 結果與討論 ................................................................................................ 27
3.3.1 氧化鋅薄膜在不同退火條件下對成長氧化鋅奈米柱陣列之影響與觀察 ........................................................................................................... 27
3.3.2 在相同退火時間下退火溫度對氧化鋅奈米柱陣列表面形態改變影響與觀察 ................................................................................................... 29
3.4 結論 ............................................................................................................ 32
第四章 添加氯化鉀來控制氧化鋅奈米柱陣列的形貌並應用於倒製有機太陽能電池 ............................................................................................................................... 33
4.1 太陽能電池簡介 ........................................................................................ 33
4.1.1 太陽能電池工作原理 ..................................................................... 33
4.1.2 太陽能電池各項參數表現定義 ..................................................... 35
4.2 有機高分子太陽能電池 ............................................................................ 37
4.2.1 有機高分子太陽能電池工作機制 ................................................. 37
4.2.2 有機高分子太陽能電池結構演進 ................................................. 38
4.2.3 有機高分子太陽能電池材料 ......................................................... 40
4.2.4 有機高分子太陽能電池主動層結構發展....................................... 43
4.3 低能隙高分子材料PTB7介紹 ................................................................... 45
4.4 實驗動機 .................................................................................................... 46
4.5 實驗步驟 .................................................................................................... 46
4.5.1 溶液配置 ......................................................................................... 47
4.5.2 元件製作流程 ................................................................................. 48
4.6 結果與討論 ................................................................................................ 50
4.6.1 不同濃度的氯化鉀溶液對氧化鋅奈米柱陣列形貌之影響與觀察 ............................................................................................................... 50
4.6.2 製作倒置有機太陽能電池之元件表現 ......................................... 54
4.6.3 量化分析氧化鋅奈米柱形貌對於元件的影響............................... 59
4.7 結論 ............................................................................................................ 60
第五章 氧化鋅奈米柱陣列優化後在元件上的應用 ............................................. 62
5.1 實驗動機 .................................................................................................... 62
5.2 實驗步驟 .................................................................................................... 62
5.2.1 溶液配置 ......................................................................................... 63
5.2.2 元件製作流程 ................................................................................. 64
5.3 結果與討論 ................................................................................................ 67
5.3.1 相同氯化鉀添加濃度不同成長時間之氧化鋅奈米柱陣列形貌... 67
5.3.2 製作成倒置有機太陽能電池之元件表現 ..................................... 68
5.3.3 主動層轉速最佳化提升效率 ......................................................... 75
5.3.4 預塗PC71BM提升主動層的垂直向分離 ....................................... 77
5.3.5 結合上述製程針對不同KCl濃度進行分析.................................... 80
5.4 結論 ............................................................................................................ 83
第六章 結論與未來展望 ......................................................................................... 84
6.1 結論 ............................................................................................................ 84
6.2 未來展望 .................................................................................................... 86
參考文獻 ................................................................................................................... 89
dc.language.isozh-TW
dc.subject形貌控制zh_TW
dc.subject溶液製程zh_TW
dc.subject鍍金退火製程zh_TW
dc.subject氧化鋅奈米柱zh_TW
dc.subject高分子太陽能電池zh_TW
dc.subject倒置結構zh_TW
dc.subject低能隙材料zh_TW
dc.subject氯化鉀zh_TW
dc.subject主動層滲入zh_TW
dc.subject載子傳輸zh_TW
dc.subjectpotassium chlorideen
dc.subjectmorphology controlen
dc.subjectcarrier transporten
dc.subjectactive layer infiltrateen
dc.subjectsolution processen
dc.subjectAu-layer annealingen
dc.subjectZnO nanorodsen
dc.subjectpolymer solar cellsen
dc.subjectinverted structureen
dc.subjectlow-bandgapen
dc.title不同形貌的氧化鋅奈米結構應用於光電元件之研究zh_TW
dc.titleApplications of Zinc Oxide Nanostructure with Different Morphology for Optoelectronic Devicesen
dc.typeThesis
dc.date.schoolyear102-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君(I-Chun Cheng),黃鼎偉(Ding-Wei Huang),吳肇欣(Chao-Hsin Wu)
dc.subject.keyword溶液製程,鍍金退火製程,氧化鋅奈米柱,高分子太陽能電池,倒置結構,低能隙材料,氯化鉀,形貌控制,主動層滲入,載子傳輸,zh_TW
dc.subject.keywordsolution process,Au-layer annealing,ZnO nanorods,polymer solar cells,inverted structure,low-bandgap,potassium chloride,morphology control,active layer infiltrate,carrier transport,en
dc.relation.page96
dc.rights.note未授權
dc.date.accepted2014-02-14
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.33 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved