Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16841
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 吳信志 | |
dc.contributor.author | Shao-Yu Peng | en |
dc.contributor.author | 彭劭于 | zh_TW |
dc.date.accessioned | 2021-06-07T23:47:41Z | - |
dc.date.copyright | 2014-07-22 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-04-22 | |
dc.identifier.citation | Adnan, Z. R, J. R. Swain, P. S. Davies, A. S. Bailey, A. D. Decker, and H. Willenbring. 2006. Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc. Natl. Acad. Sci. USA 103: 6321-6325.
Alvarez, D., M. Pardal, R. Garcia-Vardugo, J.M. Fike, J.R. Lee, H.O. Pfeffer, K. Lois, C. Morrison, and S.J. Alvarez-Buylla. 2003. Fusion of bone marrow derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425: 968–973. Amar, N.W., M. Jarvis, E. Le, T. Tang, and Q. Mackenzie. 2011. Maternal T cells limit engraftment after in utero haematopoietic cell transplantation in mice. J. Clin. Invest. 121: 582–592. Atoui, R.A., J.F. Duong, M. Chen, G. Chiu, and R.C. Shum-Tim. 2008. Marrow stromal cells as universal donor cells for myocardial regenerative therapy: their unique immune tolerance. Ann. Thorac. Surg. 85: 571–579. Banas, R. A., C.Trumpower, C.Bentlejewski,V.Marshall, G.Sing,and A.Zeevi 2008. Immunogenicity and immunomodulatory effects of amnion-derived multipotent progenitor cells. Hum. Immunol. 69: 321–328. Beltrami, A. P., L. Barlucchi, D. Torella, M. Baker, F. Limana, S. Chimenti, H. Kasahara, M. Rota, E. Musso, K. Urbanek, A. Leri, J. Kajstura, B. Nadal-Ginard, and P. Anversa. 2003. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114: 763-776. Bestor, T.H. 2000. Gene silencing as a threat to the success of gene therapy. J. Clin. Invest. 105: 409-411. Blanc, K.L., I. Rasmusson, B. Sundberg, C. Gotherstrom, M. Hassan, M. Uzunel, and O. Ringden. 2005. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 105: 2214-2219. Bolli, R., A. R. Chugh, D. D'Amario, J. H. Loughran, M. F. Stoddard, S. Ikram, G. M. Beache, S. G. Wagner, A. Leri, T. Hosoda, F. Sanada, J. B. Elmore, P. Goichberg, D. Cappetta, N. K. Solankhi, I. Fahsah, D. G. Rokosh, M.S. Slaughter, J. Kajstura, and P. Anversa. 2011. Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378: 1847-1857. Bollini, S., K. K. Cheung, J. Riegler, X. Dong, N. Smart, M. Ghionzoli, S. P. Loukogeorgakis, P. Maghsoudlou, K. N. Dube´, P. R. Riley, M. F. Lythgoe, and P. De Coppi. 2011. Amniotic fluid stem cells are cardioprotective following acute myocardial infarction. Stem Cells Dev. 20: 1985-1894. Brenda, M. O., M. Cascalho, and J. L. Platt. 2005. Biological implications of cell fusion. Nat. Rev. Mol. C. Bio. 6: 567-575. Brinkley, B.R. 2001. Managing the centrosome numbers game: from chaos to stability in cancer cell division. Trends Cell Biol. 11: 18–21. Cananzi, M., A.Atala, and P. DeCoppi. 2009. Stem cells derived from amniotic fluid: new potentials in regenerative medicine. Reprod. Biomed. 18:17-27. Chan, J., K. O'donoghue, J. De La Fuente, I.A. Roberts, S. Kumar, J.E. Morgan and N.M. Fisk. 2005. Human fetal mesenchymal stem cells as vehicles for gene delivery. Stem Cells 23: 93-102. Chan, J., N. Simon, and M. Fisk. 2007. Widespread distribution and muscle differentiation of human fetalmesenchymalstem cells after intrauterine transplantation in dystrophic mdx mouse. Stem cells 25: 875-884. Chen, J., Z. Lu, D. Cheng, S. Peng, and H. Wang. 2011. Isolation and characterization of porcine amniotic fluid-derived multipotent stem cells. PLoS ONE 6:e19964. Chen, Y., L. Zhang, Y. Zhou, Y. Geng, and Z. Chen. 2000. Inducing somatic meiosis-like reduction at high frequency by caffeine in root-tip cells of Vicia faba. Mutat. Res. 452: 67–72. Chiavegato, A., S. Bollini, M. Pozzobon, A. Callegari, L. Gasparotto, J. Taiani, M. Piccoli, E. Lenzini, G. Gerosa, I. Vendramin, E. Cozzi, A. Angelini, L. Iop, G. F. Zanon, A. Atala, P. De Coppi, and S. Sartore. 2007. Human amniotic f luid-derived stem cells are rejected after transplantation in the myocardium of normal, ischemic, immuno-suppressed or immuno-deficient rat. J. Mol. Cell. Cardiol. 42: 746-759. Chou, S.H., T.K. Kuo, M. Liu, and O.K. Lee. 2006. In utero transplantation of human bone marrow-derived multipotent mesenchymal stem cells in mice. J. Orthop. Res. 24: 301–312. Corcione, A., F. Benvenuto, E. Ferretti, D. Giunti, V. Cappiello, F. Cazzanti, M. Risso, F. Gualandi, G. L. Mancardi, V. Pistoia, and A. Uccelli. 2006. Human mesenchymal stem cells modulate B-cell functions. Blood 107: 367-372. De Coppi, P., A. Callegari, A. Callegari, and A. Chiavegato.2007. Amniotic fluid and bone marrow derived mesenchymal stem cells can be converted to smooth muscle cells in the cryo-injured rat bladder and prevent compensatory hypertrophy of surviving smooth muscle cells. J. d’Uro. 177: 369-376. De Coppi, P., G. Bartsch Jr, M. M. Siddiqui1, T. Xu, C. C. Santos., L. Perin, G. Mostoslavsky, A. C. Serre., E. Y. Snyder., J. J. Yoo, M. E. Furth, S. Soker, and A. Atala. 2007. Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25: 100-106. Delo, D. M., J.Olson,and P. M.Baptista. 2008. Non-invasive longitudinal tracking of human amniotic fluid stem cells in the mouse heart. Stem Cells Dev. 17: 1185-1194. Ditadi, A., P. De Coppi, O. Picone, L. Gautreau, R. Smati, E. Six, D. Bonhomme, S. Ezine, R. Frydman, M. Cavazzana-Calvo,andI. Andre-Schmutz. 2009. Human and murine amniotic fluid c-Kit+Lin- cells display hematopoietic activity. Blood 113: 3953-3960. Djouad, F., P. Plence, C. Bony, P. Tropel, F. Apparailly,J. Sany, D. Noel, and C. Jorgensen. 2003. Immunosuppresive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837–3844. Dor, Y., J.Brown, O.I. Martinez, and D.A. Melton. 2004. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429: 41–46. Durkin, E.T., K.A. Jones, D. Elnaggar, and A.F. Shaaban. 2008. Donor major histocompatibility complex class I expression determines the outcome of prenatal transplantation. J. Pediatr. Surg. 43: 1142–1147. Matteucci, S. Grisanti, and A.M. Gianni. 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99: 3838-3843. Djouad, F., P. Plence, C. Bony, P. Tropel, F. Apparailly, J. Sany, D. Noel, and C. Jorgensen. 2003. Immunosuppresive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 102: 3837-3844. Fangjun J., K. D. Wilson, and N. Sun. 2010. A nonviralminicircle vector for deriving human iPS cells. Nat. Meth. 7: 197-202. Ferrand, J., D. Noel, P. Lehours, M. Prochazkova-Carlotti, L. Chambonnier, A. Menard , F.Megraud,andC.Varon 2011. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS One 6: 1-11. Flake, A.W., M.R. Harrison,and N.S. Adzick. 1986. Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science 233:776–778. Fukumitsu, K., T.Ishii, K. Yasuchika, Y. Amagai, M. Kawamura-Saito, T. Kawamoto, E. Kawase, H. Suemori, N. Nakatsuji, I. Ikai, andS.Uemoto. 2009. Establishment of acell line derived from a mouse fetal liver that has the characteristic to promote thehepatic maturation of mouse embryonic stem cells by a coculture method.Tiss. Eng. Part. A. 15: 3847-3856. Gonzales, C., and T.Pedrazzini. 2009. Progenitor cell therapy for heart disease. Exp. C. Res. 315: 3077-3085. Gosden, C.M. 1983. Amniotic fluid cell types and culture. Br. Med. Bull. 39:348-54. Guan, X., D. M. Delo, A. Atala, andS. Soker. 2010. In vitro cardiomyogenic potential of human amniotic fluid stem cells. J. Tiss. Eng. Regen. Med. 5:220-228. Harrison, M., R.N. Slotnick, and T.M. Crombleholme. 1989. In utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet 11:1425–1427. Hatzistergos, K.E., H. Quevedo, B.N. Oskouei, Q. Hu, G.S. Feigenbaum, I.S. Margitich, R. Mazhari, A.J. Boyle, J.P. Zambrano, J.E. Rodriguez, R. Dulce, P.M. Pattany, D. Valdes, C. Revilla, A.W. Heldman, I. McNiece and J.M.Hare.2010. Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Cir. Res. 107: 913–922. Hedrick, M.H., H.E. Rice, and D.H. Sachs. 1993. Creation of pig sheep xenogeneic hematopoietic chimerism by the in utero transplantation of hematopoietic stem cells. Transplant. Science 3:23. Heeney, J.L., A.G. Dalgleish,andR.A.Weiss. 2006. Origins of HIV and the evolution of resistance to AIDS. Science 313: 462-466. Hsiao, F.S., C.C. Cheng, S.Y. Peng, H.Y. Huang, W.S. Lian, M.L. Jan, Y.T. Fang, E.C. Cheng, K.H. Lee, W.T. Cheng, S.P. Lin,andS.C. Wu. 2010. Isolation of therapeutically functional mouse bone marrow mesenchymal stem cells within 3 h by an effective single-step plastic-adherent method. Cell prolif. 43: 235-248. In 't Anker, P. S., S. A. Scherjon, C. Kleijburg-van der Keur, W. A. Noort, F.H. Claas, R. Willemze, W. E. Fibbe, and H.H. Kanhai. 2003. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 102: 1548-1549. Iop, L., A.Chiavegato, andA.Callegari. 2008. Different cardiovascular potential of adult and fetal-type mesenchymal stem cells in a rat model of heart cryoinjury. Cell Transplant. 17: 679-694. Isacson, O., C. Van Horne, J.M.Schumacher,and A.L.Brownell. 2001. Improved surgical cell therapy in Parkinson's disease physiological basis and new transplantation methodology. Adv. Neurol. 86: 447–454. Ivana, K. P., S. Z. Tomas, and D. Roje. 2011. Apoptosis, proliferation and Fas ligand expression in placental trophoblast from pregnancies complicated by HELLP syndrome or pre-eclampsia. Nordic Fed. of Soc. of Obst. Gyn. 90: 1157–1163. Jiang, X. X., Y. Zhang, B. Liu, S. X. Zhang, Y. Wu, X. D. Yu, and N. Mao. 2005. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 105:4120-4126. Jonathan, L. H. 2006. Origins of HIV and the evolution of resistance to AIDS. Science 313: 462-466. Jonathan, F., D. le. Noe¨, P. Lehours, M. Prochazkova-Carlotti, L. Chambonnier, A. Me´nard, F. Me´graud, and C. Varon. 2011. Human bone marrow-derived stem cells acquire epithelial characteristics through fusion with gastrointestinal epithelial cells. PLoS ONE 6: 1-11. Kadner, A., S. P.Hoerstrup, andJ. Tracy.2002. Human umbilical cord cells: a new cell source for cardiovascular tissue engineering. Ann. Thorc. Surg. 74: 1422-1428. Kazutoshi, T.,and S. Yamanaka. 2006. Induction of Pluripotent Stem Cellsfrom Mouse Embryonic and A 343 dult Fibroblast Cultures by Defined Factors. Cell 126: 663–676. Kazutoshi, T.,K. Tanabe,M. Ohnuki,M. Narita,T. Ichisaka,K. Tomoda, and S. Yamanaka. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 861–872. Kim, J., Y. Lee, H. Kim, K. J. Hwang, H. C. Kwon, S. K. Kim, D. J. Cho, S. G. Kang, and J. You. 2007. Human amniotic fluid-derived stem cells have characteristics of multipotent stem cells. Cell Prolif. 40: 75-90. Klyushnenkova, E., J.D. Mosca, V. Zernetkina, M.K. Majumdar, K.J. Beggs, D.W.Simonetti, R.J. Deans, and K.R. McIntosh. 2005. T cell response to allogeneic human mesenchymal stem cells: immunogenicity, tolerance and suppression. J. Biomed. Sci. 12: 47-57. Liechty, K.W., T.C. Mackenzie, A.F. Shaaban, A. Radu, A.M. Moseley, R. Deans, D.R. Marshak,andA.W. Flake. 2000. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat. Med. 6: 1282-1286. Mackenzie, T.C., and A.W. Flake. 2001. Multilineage differentiation of human mesenchyml stem cell after in utero transplantation. Cytoth. 3:403–405. Mackenzie T.C., andA.W.Flake 2001. Human mesenchymal stem cells persist, demonstrate site-specific multipotential differentiation, and are present in sites of wound healing and tissue regeneration after transplantation into fetal sheep. Blo. C. Mol. Dis. 27:601–604. Martin, G.R. 1981.Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. 78: 7634-7638. Martin-Rendon, E., S. J. Brunskill, C. J. Hyde, S. J. Stanworth, A. Mathur, and S. M. Watt. 2008. Autologous bone marrow stem cells to treat acute myocardial infarction: a systematic review. Eur. Heart J. 29: 1807-1818. Mauro, A., M.Turriani, andA.Ioannoni. 2010. Isolation, characterization, and in vitro differentiation of ovine amniotic stem cells. Vet. Res. Communi. 34: 25-28. Mcmahon, J.M., S. Conroy, M. Lyons, U. Greiser, C. O'shea, P. Strappe, L. Howard, M. Murphy, F. Barry,and T. O'brien 2006. Gene transfer into rat mesenchymal stem cells: a comparative study of viral and nonviral vectors. Stem cells dev. 15: 87-96. Menasche, P. 2009. Cell-based therapy for heart disease: a clinically oriented perspective. Mol. Ther. 17: 758-766. Menasche, P., A. A. Hagege, M. Scorsin, B. Pouzet, M. Desnos, D. Duboc, K. Schwartz, J. T. Vilquin, and J. P. Marolleau. 2001. Myoblast transplantation for heart failure. Lancet 357: 279-280. Menon, L.G., S. Picinich, R. Koneru, H. Gao, S.Y. Lin, M. Koneru, P. Mayer-Kuckuk, J. Glod, and D. Banerjee. 2007. Differential gene expression associated with migration of mesenchymal stem cells to conditioned medium from tumor cells or bone marrow cells. Stem Cells 25: 520-528. Merianos, D.J., E.Tiblad,M.T.Santore, C.A.Todorow, P. Laje,M.Endo, P.W.Zoltick,and A.W.Flake. 2009. Maternal alloantibodies induce a postnatal immune response that limits engraftment following in utero hematopoietic cell transplantation in mice. J. Clin. Invest. 119: 2590–2600. Mikiko, K., S. Sakaki, Y. Amano, and H. Kurosawa. 2007. Characterization of embryoid bodies of mouse embryonic stem cells formed under various culture conditions and estimation of differentiation status of such bodies. J. biomed. Bioen. 104: 249-299. Milunsky, A. 1979. Amniotic fluid cell culture. In: Milunsky A, editors. Genetic disorderand the fetus. New York: Plenum Press75-84. Moorefield, E.C., E. E. McKee, L. Solchaga, G. Orlando, J. J. Yoo, S. Walker, M. E. Furth, and C. E. Bishop. 2011. Cloned, CD117 selected human amniotic fluid stem cells are capable of modulating the immune response. PLoS ONE 6: e26535. Mummery, C., O. D.Ward-van, andP.Doevendans. 2003. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circul. 107: 2733-2740. Nadri, S.,and M. Soleimani. 2007. Comparative analysis of mesenchymal stromal cells from murine bone marrow and amniotic fluid. Cytother. 9:729–737. Naohiro, T., T. Hamazaki, and M. Oka. 2002. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nat. 416: 542-545. Ogawa, R., H. Mizuno, A. Watanabe, M. Migita, T. Shimada,andH. Hyakusoku. 2004. Osteogenic and chondrogenic differentiation by adipose-derived stem cells harvested from GFP transgenic mice. Biochem. Biophys. Res. Commun. 313: 871-877. Ogle, B.M., M. Cascalho,andJ.L. Platt. 2005. Biological implications of cell fusion. Nature reviews. Mol.C.Bio. 6: 567-575. Oh, H., X.Chi, andS. B.Bradfute.2004. Cardiac muscle plasticity in adult and embryo by heart-derived progenitor cells. Ann. N. Y. Aca. Sci. 1015: 182-189. Pallavicini, M.G., A.W. Flake, and D. Madden. 1992. Hemopoieticchimerism in rodents transplanted in utero with fetal human hemopoietic cells. Transplant. Proc. 24:542–543. Partridge, K.A.,andR.O. Oreffo. 2004. Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies. Tiss.Eng. 10:295-307. Pascale, V. G., O. Abass, and J. H. Duncan Bassett. 2008. Intrauterine transplantation of human fetal mesenchymal stem cells from first-trimester blood repairs bone and reduces fractures in osteogenesis imperfecta mice. Blood 111: 1717-1725. Paul, M. W. 1999. Mammalian Fertilization: Review Molecular Aspects of Gamete Adhesion, Exocytosis, and Fusion. Cell 175-183. Perin, L., S. Sedrakyan, S. Giuliani, S. Da Sacco, G. Carraro, L. Shiri, K. V. Lemley, M. Rosol, S. Wu, A. Atala, D. Warburton, and R. E. De Filippo. 2010. Protective effect of human amniotic fluid stem cells in an immunodeficient mouse model of acute tubular necrosis. PLoS One 5: e9357. Perin, L., S.Giuliani, S.Sedrakyan, S.DaSacco,andR. E.DeFilippo.2008. Characterization of human amniotic fluid stem cells and their pluripotential capability. Meth. C. Bio. 86: 85-99. Perin, L., S. Giuliani, S. Sedrakyan, S. DaSacco, and R. E. DeFilippo. 2008. Stem Cell and Regenerative Science Applications in the Development of Bioengineering of Renal Tissue. Pediatr. Res. 63: 467-471 Plumas, J., L. Chaperot, M.J. Richard, J.P. Molens, J.C. Bensa, and M.C. Favrot. 2005. Mesenchymal stem cells induce apoptosis of activated T cells. Leuk. 19: 1597-1604. Pozzobon, M., M.Ghionzoli,and P.DeCoppi. 2010. ES, IPS, MSC, and AFS cells. Stem cells exploitation for Pediatric Surgery: current research and perspective. Pedi. Surg. Inter. 26: 3-10. Prasongchean, W., M.Bagni, C.Calzarossa, P.De Coppi,andP. Ferretti. 2012. Amniotic fluid stem cells increase embryo survival following injury. Stem cells Dev. 21: 675-688. Prusa, A.R., E. Marton, M. Rosner, A. Freilinger, G. Bernaschek, andM.Hengstschläger. 2003. Stem cell marker expression in human trisomy 21 amniotic fluid cells andtrophoblasts. J. Neural. Transm. Suppl. 67:235-242. Prusa, A. R., E.Marton,M.Rosner,G.Bernaschek, andM.Hengstschlager. 2003. Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Hum. Repro. 18: 1489-1493. Quevedoa, H. C., K. E. Hatzistergosa, B. N. Oskoueia, G. S. Feigenbauma, J. E. Rodrigueza, D. Valdesa, P. M. Pattanya, J. P. Zambranoa, Q. Hua, I. McNiecea, A. W. Heldmana, and J. M. Harea. 2009. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc. Natl. Acad. Sci. 106: 14022-14027. Rice, H.E., M.H. Hedrick,and A.W.Flake 1994. In utero transplantation of rat. Proc. 26:126–128. Rizvi, A.Z., J.R.Swain, P.S.Davies, A.S.Bailey, A.D.Decker,H.Willenbring, M.Grompe, W.H.Fleming,and M.H.Wong. 2006. Bone marrow-derived cells fuse with normal transformed intestinal stem cells. Proc. Natl. Acad. Sci. 103: 6321–6325. Roelen, D. L., B. J. van der Mast, P. S. in't Anker, C. Kleijburg, M. Eikmans, E., G. M. de Groot-Swings, W. E. Fibbe, H. H. Kanhai, S. A. Scherjon, and F. H. Claas. 2009. Differential immunomodulatory effects of fetal versus maternal multipotent stromal cells. Hum. Immunol. 70: 16-23. Roodman, G.V., J.L. Vandenberg, andT.J. Kuehl. 1990. Mixed lymphocyte culture reactivity of fetal baboons: application for in utero bone marrow transplantation. B. Marr. Trans. 6:263–267. Roubelakis, M.G., K.I. Pappa, V. Bitsika, D. Zagoura, A. Vlahou, H.A. Papadaki, A. Antsaklis,andN.P. Anagnou. 2007. Molecular and proteomic characterization of human mesenchymal stem cells derived from amniotic fluid: comparison to bone marrow mesenchymal stem cells. Stem Cells Dev. 16: 931-952. Sartore, S., M.Lenzi, andA.Angelini. 2005. Amniotic mesenchymal cells autotransplanted in a porcine model of cardiac ischemia do not differentiate to cardiogenic phenotypes. Euro. J. Cardio. Sur. 28: 677-684. Sato, K., K. Ozaki, I. Oh, A. Meguro, K. Hatanaka, T. Nagai, K. Muroi, and K. Ozawa.2007. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood 109: 228-234. Sessarego, N., A.Parodi, andM. Podesta. 2008. Multipotent mesenchymal stromal cells from amniotic fluid: solid perspectives for clinical application. Haematol. 93: 339-346. Shaw, S.W., A.L. David,andP. De Coppi. 2011a. Clinical applications of prenatal and postnatal therapy using stem cells retrieved from amniotic fluid. Curr.Opin. obstet. gyn. 23: 109-116. Simantov, R. 2008. Amniotic stem cell international. Repro. Biomed. 16: 597-598. Sotiropoulou, P.A., S.A. Perez, A.D. Gritzapis, C.N. Baxevanis, and M. Papamichail.2006. Interactions between human mesenchymal stem cells and natural killercells. Stem Cells 24: 74-85. Stefano, D. S., S. Sedrakyan, F. Boldrin, S. Giuliani, P.Parnigotto, R. Habibian, D. Warburton, R. E. De Filippo, and L. Perin. 2010. Human amniotic fluid as a potential new source of organ specificprecursor cells for future regenerative medicine applications. J.Uro.183: 1193-1200. Sveva, B., M. Pozzobon, M. Nobles, and J. Riegler. 2011. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem cell Rev. Rep. 7: 364-380. Tiblad, E.,andM. Westgren. 2008. Fetal stem-cell transplantation. B. Pract. Res. Clin. Obstet. Gynaecol. 22: 189-201. Tiina, M., and J. Laine. 2005. Placenta-an alternative source of stem cells. Toxcico. Ap. Pharm. 207: 544-549. Tsai, M.S., J.L. Lee,Y.J. Chang,andS.M. Hwang. 2004. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19: 1450-1456. Tsai, M.S., S.M.Hwang, andY.L.Tsai. 2006. Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 74: 545–551. Valli, A., M. Roger, C. Fuchs, N. Siegel, C.E. Bishop, H. Dolznig, U.Madel, W. Feichtinger, A. Atala, and M. Hengstschl ger. 2010. Embryoid body formation of human amniotic fluid stem cells depends on mTOR. Oncog. 29: 966-977. Wang, J., H. Bo, X. Meng, Y. Wu, Y. Bao, and Y. Li. 2006. A simple and fast experimental model of myocardial infarction in the mouse. Tex. Heart Inst. J. 33: 290-293. Wang, X., H.Willenbring,Y.Akkari,Y.Torimaru, M.Foster,M.Al-Dhalimy, E.Lagasse,M.Finegold, S.Olson, andM.Grompe. 2003. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422: 897–901. Wassarman, P.M. 1999. Mammalian fertilization: molecular aspects of gameteadhesion, exocytosis, and fusion. Cell 96: 175-183. Weimann, J.M., C.A.Charlton,T.R.Brazelton,R.C.Hackman, and H.M.Blau. 2003. Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc. Natl. Acad. Sci.100: 2088–2093. Westgren, M., O. Ringden, S. Eik-Nes, S. Ek, M. Anvret, A.M. Brubakk, T.H. Bui, A. Giambona, T. Kiserud, A. Kjaeldgaard, A. Maggio, L. Markling, A. Seiger,andF. Orlandi. 1996. Lack of evidence of permanent engraftment after in utero fetal stem cell transplantation in congenital hemoglobinopathies. Transplant. 61: 1176-1179. Yeh, Y. C., W.Y.Lee, andC. L. Yu.2010. Cardiac repair with injectable cell sheet fragments of human amniotic fluid stem cells in an immune-suppressed rat model. Biomat. 31: 6444-6453. Yong, W.K., J.K.Hyun, and M.B.Su 2010. Time-course transcriptional profiling of human amniotic fluid-derived stem cells using microarray. Can. Res. Treat. 42: 82-94. Zanjani, E.D., M.G. Pallavicini, andJ.L. Ascensao. 1992. Engraftment and long-termexpression of human fetal hemopoietic stem cells in sheep following transplantation in utero. J. Clin. Invest. 89:1178–1188. Zhou, Y., O. Genbacev, and S. J. Fisher. 2003. The human placenta remodels the uterus by using a combination of molecules that govern vasculogenesis or leukocyte extravasation. Ann. N.Y. Acad. Sci. 995: 73-83. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16841 | - |
dc.description.abstract | 羊水來源幹細胞為胎兒脫落之細胞且已被證實具有多分化潛能。本試驗利用本研究室產製之攜帶紅色螢光蛋白轉基因豬與攜帶綠色螢光蛋白轉基因小鼠來建立羊水來源幹細胞,以做為後續之追蹤。經本試驗結果得知小鼠羊水來源幹細胞可表現幹細胞之標誌例如CD29, CD44, Sca-1,但不表現造血、淋巴等免疫細胞或是內皮細胞之標誌例如CD31, CD45, CD34, CD166, CD11b, CD117, CD133, CD86, CD105。豬羊水幹細胞可表現幹細胞之標誌例如CD44, CD90,但不表現內皮細胞、巨噬細胞、淋巴球細胞等標誌例如CD31,CD4a。此類羊水來源幹細胞於體外可分化成多種特異性之細胞,例如硬骨細胞(ARS 染鈣離子沉澱),軟骨細胞(Toluidine blue染glycosaminoglycan),脂肪細胞(Oil Red O 染neutral lipid vacuoles),心肌細胞 (myosin heavy chain 與cardiac troponin I抗體結合)等,分化後之羊水來源幹細胞仍然表現螢光蛋白,此結果顯示未來細胞移植可長期追蹤其細胞命運。迄今,尚無研究探討羊水來源幹細胞於體內之命運,因此吾人以注射方式移植小鼠或豬之羊水來源前驅細胞於12.5-13.5天懷孕母鼠子宮內探討此細胞之遷移。結果顯示羊水來源幹細胞具有遷移至腸子,肝臟,腎臟等參與至小鼠三個胚層細胞之能力且發現植入的細胞會與接受者小鼠的細胞進行細胞融合之現象 (藉由組織染色切片與流氏細胞儀方式測得知以同種異體移植為例,帶有綠色螢光之小鼠羊水幹細胞可與全身攜帶紅色螢光蛋白的小鼠細胞做融合而呈現黃色之現象;以異種移植為例,帶有紅色螢光之豬羊水幹細胞可與全身攜帶綠色螢光蛋白之小鼠做融合而呈現黃色之現象),經由病理組織判讀顯示,同種異體或是異種細胞移植的各個器官均無發現癌化或是病變的現象。此發現未來可於先天性疾病胎兒治療提供重要的臨床參考資訊。 | zh_TW |
dc.description.abstract | Amniotic fluid-derived stem cells (AFSCs) are multipotent and shed from the fetus into the amniotic fluid. We established AFSCs from Ds-red transgenic pig and EGFP transgenic mouse which were produced in our lab for tracing and tracking purpose. The result indicated that mouse derived AFSCs can express stem cells related markers such as CD29, CD44, Sca-1, whereas do not express hematopoietic、lymphocyte、immune related or endothelial cells markers such as CD31, CD45, CD34, CD166, CD11b, CD117, CD133, CD86, CD105. Pig derived AFSCs can express stem cells related markers such as CD44, CD90, yet do not express neutrophile, macrophages, endothelial cells or lymphocyte related markers such as CD31,CD4a. AFSCs can give rise to different lineages cells such as ostoblast (ARS for calcium deposition)、chondrocyte (Toluidine blue staining for glycosaminoglycan)、adipocyte (Oil Red O staining for neutral lipid vacuoles)、spontaneously beating cardiomyocyte like cells (myosin heavy chain and cardiac troponin I antibody conjugation). After differentiation of AFSCs, the cells still remain expressing fluorescent protein. The outcome demonstrated here implies that after transplantation of the cells into the receipient, we can trace the cell fate and cell destiny. Hence, AFSCs are capable of expressing stem cell like markers and differentiating into specific cell type in the experiments in vitro. However, no study has fully investigated the potentiality and destiny of these cells in in vivo experiments. Mouse fetuses (on day 12.5-13.5 of pregnancy) were transplanted in utero with mouse or pig amniotic fluid-derived stem cells. Our results demonstrated that transplantability of AFSCs into intestine, liver and kidney ect these three germ layers were observed. By means of histological section and flow cytometry methods, allogenic transplantation for example, EGFP harboring mouse AFSCs hold the potentiality to fuse with the mouse recipient Ds-red harboring cells and eventually present in yellow color. In terms of xenotransplantation, Ds-red harboring pig AFSCs are capable of fusing with the mouse recipient EGFP harboring cells and finially present in yellow color. The pathological section results reveal that after either allotransplantion or xenotransplantaion, all organs were not found tumor formation risk. The findings may justify a clinical trial of in utero transplantation during gestation for patients who have inherited genetic disorders. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:47:41Z (GMT). No. of bitstreams: 1 ntu-103-D99642001-1.pdf: 1859527 bytes, checksum: b5ebf0f9de84a4ec22a42175d13f1372 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 口試委員會審定書…………………………………………………ii
致謝……………………………………………………………………iii 緒言…………………………………………………………………iv 中文摘要……………………………………………………………vi Abstract (英文摘要)…………………………………..vii 目錄…………………………………………………………………ix Chapter I:Amniotic fluid derived stem cells (AFSCs): a literature review………….1 Various sources of stem cells and fetal stem cells - amniotic fluid derived stem cells…………………………1 Intra uterus transplantation (IUT)………………………4 Cell fate………………………………………………………...5 Immuno-modulatory of AFSCs…………………………………6 Chapter II:Engraftment of Mouse Amniotic Fluid-Derived Stem Cells After In Utero Transplantation in Mice......................................................7 Abstract…………………………………………………...7 Introduction……………………………………………….8 Materials and methods………………………………………………........10 Animals……………………………………………………………….10 Generation of GFP and RFP (Ds-red)-expressing transgenic mice…..10 The procedure to collect the amniotic fluid derived stem cells from EGFP bearing mice………………………………..10 In utero transplantation procedure in Ds-red transgenic mice………...11 Immunofluorescence………………………………………………….11 Fluorescence-activated cell sorting analysis……………….12 Cell differentiation procedures………………………..12 Histological assessment……………………………….....13 Polymerase chain reaction of genomic DNA analysis………….13 In vivo image system detection for Ds-red protein………14 Results…………………………………………………………..15 Discussion……………………………………………....27 Chapter III: Cell fusion phenomena could be detected after in utero transplantation of Ds-red harboring porcine amniotic fluid derived stem cells into the EGFP harboring mice…………………………………………….33 Abstract…………………………………………......33 Introduction………………………………………………...34 Materials and Methods…………………………………...36 Animal……………………………………………………………….36 The procedure of collecting porcine amniotic fluid derived stem cell fromDs-red harboring conceptus…………………….36 Fluorescence-Activated Cell-Sorting Analysis……….……...36 Mesoderm tri-lineage differentiation………………….37 Intra uterus transplantation (IUT) procedure………………..37 Histological assessment………………………………………37 Fluorescence-activated cell sorting (FACS) analysis of red fluorescent protein and green fluorescent protein……38 PI staining……………………………………………………39 In vivo Imaging System (IVIS) detection…………………….39 Cell culture for detecting fluorescent protein………….39 Results…………………………………………………40 Discussion……………………………………………….......50 Conclusion…………………………………………………………53 References…………………………………………………54 Figure list Figure II-1. The characterization of EGFP-mAFSCs……………18 Figure II-2. Tri-lineage differentiation of EGFP-mAFSCs….19 Figure II-3. Spontaneously heart beating cardiomyocytes were differentiated From EGFP-mAFSCs……………………21 Figure II-4. Enhanced green fluorescent protein harboring mouseamniotic fluidderived stem cells (EGFP-mAFSCs) engrafted into mice tissuesoriginating from three germ layers after IUT……………………22 Figure II-5. Cell fusion phenomena of EGFP-mAFSCs was verified by means of organ section………………………....24 Figure II-6. Cell fusion phenomena of EGFP-mAFSCs was verified by means of flow cytometry……………………….....25 Figure II-7. Pathological section of whole mice organs……26 Figure III-1. Ds-red pAFSCs surface antigen markers were detected by flow cytometry………………………...…42 Figure III-2. Ds-red pAFSCs differentiation capability.……………….…………….43 Figure III-3. The data provided in the figure demonstrates that as long asthe donor cells express Ds-red, they also express EGFP…………………….44 Figure III-4.IVIS detection of mouse intestine………………45 Figure III-5. Intestine cells DNA copy number of the mouse which was subject toIUT of Ds-red AFSCs………………...46 Figure III-6. Ds-red pAFSCs were injected into 12.5 days embryos of EGFP bearing mice…………………………..47 Figure III-7. Ds-red pAFSCs were intra-uterus transplanted into EGFP-bearing Mice. Cell fusion phenomenon was detected in intestine Cell culture.…………………………………..48 Figure III-8. Ds-red pAFSCs were intra-uterus transplanted into EGFP-bearing mice. Cell fusion phenomenon was detected in liver cell culture………49 | |
dc.language.iso | en | |
dc.title | 小鼠與豬羊水幹細胞之細胞治療及命運之研究 | zh_TW |
dc.title | The cell-based therapeutics and cell fate of stem cells
derived from amniotic fluid of pig and mouse conceptuses | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 鄭登貴,黃木秋,陳全木,王耀宏 | |
dc.subject.keyword | 小鼠,豬,羊水幹細胞, | zh_TW |
dc.subject.keyword | Mouse,Pig,Amniotic fluid stem cell, | en |
dc.relation.page | 66 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-04-22 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物科技研究所 | zh_TW |
Appears in Collections: | 生物科技研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-103-1.pdf Restricted Access | 1.82 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.