請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙基揚 | |
| dc.contributor.author | Ying-Cheng Lin | en |
| dc.contributor.author | 林穎成 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:47:38Z | - |
| dc.date.copyright | 2014-07-22 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-04-30 | |
| dc.identifier.citation | 1. Guo, X.; Cui, C.; Zhang, M.; Huo, L.; Huang, Y.; Hou, J.; Li, Y. High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy & Environmental Science 2012, 5 (7), 7943-7949.
2. Coakley, K. M.; McGehee, M. D. Conjugated Polymer Photovoltaic Cells. Chemistry of Materials 2004, 16 (23), 4533-4542. 3. Brinker, C. J.; Scherer, G. W. Sol-gel Science: The Physics and Chemistry of Sol-gel Processing; Academic Press1990. 4. Gutierrez, J.; Tercjak, A.; Garcia, I.; Peponi, L.; Mondragon, I. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol–gel synthesis. Nanotechnology 2008, 19 (15), 155607. 5. Liou, G.-S.; Lin, P.-H.; Yen, H.-J.; Yu, Y.-Y.; Tsai, T.-W.; Chen, W.-C. Highly flexible and optical transparent 6F-PI/TiO2 optical hybrid films with tunable refractive index and excellent thermal stability. Journal of Materials Chemistry 2010, 20 (3), 531-536. 6. Boucle, J.; Ravirajan, P.; Nelson, J. Hybrid polymer-metal oxide thin films for photovoltaic applications. Journal of Materials Chemistry 2007, 17 (30), 3141-3153. 7. Kwong, C. Y.; Choy, W. C. H.; Djurišić, A. B.; Chui, P. C.; Cheng, K. W.; Chan, W. K. Poly(3-hexylthiophene):TiO 2 nanocomposites for solar cell applications. Nanotechnology 2004, 15 (9), 1156. 8. Boon, F.; Thomas, A.; Clavel, G.; Moerman, D.; De Winter, J.; Laurencin, D.; Coulembier, O.; Dubois, P.; Gerbaux, P.; Lazzaroni, R.; Richeter, S.; Mehdi, A.; Clément, S. Synthesis and characterization of carboxystyryl end-functionalized poly(3-hexylthiophene)/TiO2 hybrids in view of photovoltaic applications. Synthetic Metals 2012, 162 (17–18), 1615-1622. 9. Chang, Y.-M.; Su, W.-F.; Wang, L. Photoactive Polythiophene:Titania Hybrids with Excellent Miscibility for Use in Polymer Photovoltaic Cells. Macromolecular Rapid Communications 2008, 29 (15), 1303-1308. 10. Yen, W.-C.; Lee, Y.-H.; Lin, J.-F.; Dai, C.-A.; Jeng, U. S.; Su, W.-F. Effect of TiO2 Nanoparticles on Self-Assembly Behaviors and Optical and Photovoltaic Properties of the P3HT-b-P2VP Block Copolymer. Langmuir 2010, 27 (1), 109-115. 11. Lohwasser, R. H.; Thelakkat, M. Toward Perfect Control of End Groups and Polydispersity in Poly(3-hexylthiophene) via Catalyst Transfer Polymerization. Macromolecules 2011, 44 (9), 3388-3397. 12. Lim, H.; Ho, C.-C.; Wu, S.-J.; Tsai, H.-C.; Su, W.-F.; Chao, C.-Y. A poly(3-hexylthiophene) block copolymer with macroscopically aligned hierarchical nanostructure induced by mechanical rubbing. Chemical Communications 2013, 49 (80), 9146-9148. 13. Park, J. T.; Roh, D. K.; Patel, R.; Kim, E.; Ryu, D. Y.; Kim, J. H. Preparation of TiO2 spheres with hierarchical pores via grafting polymerization and sol-gel process for dye-sensitized solar cells. Journal of Materials Chemistry 2010, 20 (39), 8521-8530. 14. Palomar, J.; De Paz, J. L. G.; Catalán, J. Vibrational study of intramolecular hydrogen bonding in o-hydroxybenzoyl compounds. Chemical Physics 1999, 246 (1–3), 167-208. 15. Hu, X.-L.; Hou, G.-M.; Zhang, M.-Q.; Rong, M.-Z.; Ruan, W.-H.; Giannelis, E. P. A new nanocomposite polymer electrolyte based on poly(vinyl alcohol) incorporating hypergrafted nano-silica. Journal of Materials Chemistry 2012, 22 (36), 18961-18967. 16. CHEMWiki. Infrared: Interpretation. http://chemwiki.ucdavis.edu/Physical_Chemistry/Spectroscopy/Vibrational_Spectroscopy/Infrared_Spectroscopy/Infrared%3A_Interpretation. 17. Kim, Y.-J.; Cho, C.-H.; Paek, K.; Jo, M.; Park, M.-k.; Lee, N.-E.; Kim, Y.-j.; Kim, B. J.; Lee, E. Precise Control of Quantum Dot Location within the P3HT-b-P2VP/QD Nanowires Formed by Crystallization-Driven 1D Growth of Hybrid Dimeric Seeds. Journal of the American Chemical Society 2014, 136 (7), 2767-2774 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16839 | - |
| dc.description.abstract | 在本論文中,我們分別以苯甲醛改質末端基之P3HT (P3HT-CHO)與雙親性P3HT共聚高分子 (poly(3-hexylthiophene-block-hydroxylated isoprene), P3HT-b-PIOH) 製備P3HT/TiO2奈米複合材料,並對其微結構與光學性質進行探討,我們採用了兩種方法製備複合材料: (1)將高分子溶液直接與TiO2奈米粒子(Degussa P25)進行攪拌混摻; (2)以in-situ溶凝膠法在高分子溶液中製備TiO2奈米粒子。
藉由P3HT-CHO的醛基與P25表面上氫氧基之間的吸引力,奈米複材中TiO2的聚集約在50至200奈米左右,而在in-situ溶凝膠法中,TiO2的前驅物chlorotitanium triisopropoxide (CTIP)可以與P3HT-CHO的醛基進行共價反應,使得P3HT-CHO被固定在TiO2表面,進一步改善TiO2在奈米複材中的散佈情形,但得到的TiO2奈米粒子大小也約在50至200奈米之間。而在溶凝膠法的製備過程中,因為不存在分散劑與ligand的關係,光激發螢光的強度也會下降,代表有較好的電子轉移效率。 在使用P3HT-b-PIOH/ClTIP製備的奈米複材中,我們可以得到均勻分布於高分子基質且尺寸大小均在30奈米的TiO2奈米粒子,這是因為PIOH上具有更多的親水性練段能與TiO2表面進行共價反應所致。 光學性質的部分則是以UV-vis光譜測量,即使TiO2的添加量達到了30 wt%,在P3HT-CHO/ClTIP及P3HT-b-PIOH/ClTIP的奈米複材中,其P3HT吸收峰均未見藍移的情形,並可觀察到π-π stacking 的吸收峰值訊號。 | zh_TW |
| dc.description.abstract | In this thesis, we reported the preparation, the microstructures and the optical properties of poly(3-hexylthiophene)/TiO2 nanocomposites based on aldehyde end-functionalized P3HT (P3HT-CHO) and amphiphilic P3HT block copolymer, poly(3-hexylthiophene-block-hydroxylated isoprene) (P3HT-b-PIOH). Pristine unmodified P3HT were also used for reference studies. Two methods were employed to prepare the Nanocomposites: (1) solution blending of polymers and commercial available TiO2 nanoparticles, Degussa P25 (~21 nm); (2) in-situ sol gel process of TiO2 precursors in polymer solution.
The attractive interaction between aldehyde of P3HT-CHO and hydroxyl group of TiO2 allowed smaller aggregations of TiO2 (~ 50 - 200 nm) blending.The in-situ sol gel processes using chlorotitanium triisopropoxide (ClTIP) would further enhance the homogeneity in TiO2 dispersion despite of enlarged particle sizes (~ 50 -200 nm) as the aldehyde group of P3HT-CHO would react with ClTIP to form covalent bonds to anchor P3HT in the surface of TiO2. Thus preventing the aggregation of TiO2. Since the in-situ sol gel process avoid the use of dispersants and ligands of TiO2 nanoparticles, the photoluminescence quenching of P3HT-CHO/ClTIP composites could be further improved comparing to P3HT-CHO/P25. The use of amphiphilic P3HT-b-PIOH block copolymer remarkably afforded the resulting P3HT-b-PIOH/ClTIP composites having uniformed TiO2 nanoparticles (~ 30 nm) homogenously dispersed in the polymer matrix, which could be attributed the increasing number of covalent linkages between the hydroxyl groups of PIOH and ClTIP. The optical properties were derived from the UV-vis spectroscopy. Even the loading of TiO2 was up to 30 wt%, the maximum absorption peak was not blue-shifted and the π-π stacking of P3HT retain for P3HT-CHO/ClTIP and P3HT-b-PIOH/ClTIP composites | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:47:38Z (GMT). No. of bitstreams: 1 ntu-103-R01527030-1.pdf: 8032564 bytes, checksum: a895073c35d1d20a2e4ab430da659250 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 中文摘要 I
Abstract II Contents IV List of Figures VI List of Tables IX Chapter 1. Introduction 1 1.1 Background 1 1.2 Motivation and research scope 2 Chapter 2. Literature review 4 2.1 Preparation of Polymer-Titania Hybrid Materials 4 2.1.1 In-situ sol-gel processes 4 2.1.2 Covalent bond between polymer pendent group and titanium precursor 5 2.2 P3HT/TiO2 Nanocomposites 6 2.3 P3HT/TiO2 Nanocomposites from functionalized P3HT 8 2.3.1 End functionalized P3HT 8 2.3.2 Side Chain Functionalized of P3HT 9 2.3.3 Amphiphilic P3HT block copolymer 10 Chapter 3. Experimentals 12 3.1 Materials 12 3.2 Synthesis of polymers 12 3.2.1 Synthesis of P3HT 13 3.2.2 Formylation of P3HT12 14 3.2.3 Synthesis of P3HT-b-PIOH 15 3.3 Preparation of hybrid materials 16 3.3.1 Composites from blending of polymers and P25 16 3.3.2 In situ sol-gel process 16 3.4 Characterization Methods 18 Chapter 4. Resuts and discussion 20 4.1 Synthesis of Benzaldehyde end-functionalized P3HT & P3HT Block copolymers 20 4.1.1 Synthesis of P3HT from GRIM method 20 4.1.2 Formylation of P3HT 22 4.1.3 Synthesis of amphiphilic P3HT block copolymer 24 4.2 P3HT/TiO2 composite from P3HT-CHO 25 4.2.1 Blends containing commercial available TiO2 25 4.2.2 In situ sol gel process 28 4.2.3 Covalent reaction between precursor and polymer 33 4.2.4 Summary 37 4.3 Amphiphilic P3HT block copolymer/TiO2 hybrid material 39 4.3.1 In situ sol gel process 39 4.3.2 Reaction between precursor and P3HT-b-PIOH 46 4.3.3 Summary 49 Chapter 5. Conclusion and outlook 51 5.1 Conclusion 51 5.2 P3HT-PIOH/ClTIP nanocomposite with higher loading of TiO2 52 5.3 Future Outlook 54 References 56 | |
| dc.language.iso | en | |
| dc.subject | 溶凝膠法 | zh_TW |
| dc.subject | 聚(3-己烷基?吩) | zh_TW |
| dc.subject | 二氧化鈦 | zh_TW |
| dc.subject | 兩親性嵌段共聚高分子 | zh_TW |
| dc.subject | 奈米複合材料 | zh_TW |
| dc.subject | poly(3-hexylthiophene) | en |
| dc.subject | nanocomposites | en |
| dc.subject | sol-gel | en |
| dc.subject | amphiphilic block copolymer | en |
| dc.subject | Tio2 | en |
| dc.title | 以苯甲醛改質末端基之P3HT與雙親性P3HT共聚高分子製備P3HT/TiO2奈米複合材料 | zh_TW |
| dc.title | P3HT/TiO2 nanocomposite based on benzaldehyde end-functionalized P3HT and amphiphilic P3HT block copolymer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林唯芳,王立義,陳暉 | |
| dc.subject.keyword | 聚(3-己烷基?吩),二氧化鈦,兩親性嵌段共聚高分子,溶凝膠法,奈米複合材料, | zh_TW |
| dc.subject.keyword | poly(3-hexylthiophene),Tio2,amphiphilic block copolymer,sol-gel,nanocomposites, | en |
| dc.relation.page | 57 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-05-01 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 材料科學與工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 7.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
