請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16838
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃敏銓 | |
dc.contributor.author | Chiung-Hui Liu | en |
dc.contributor.author | 劉烱輝 | zh_TW |
dc.date.accessioned | 2021-06-07T23:47:37Z | - |
dc.date.copyright | 2014-10-09 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-05-07 | |
dc.identifier.citation | [1] Roderick N. M. MacSween PPA, Peter J. Scheuer, Alastair D. Burt, Bernard C. Portmann. Pathology of the Liver. 2002;3 Sub edition:711–775.
[2] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005;55:74-108. [3] Xiaohong S, Huikai L, Feng W, Ti Z, Yunlong C, Qiang L. Clinical significance of lymph node metastasis in patients undergoing partial hepatectomy for hepatocellular carcinoma. World J Surg 2010;34:1028-1033. [4] Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GA, et al. Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic and therapeutic implications. Annals of Surgery 2006;243:229-235. [5] Tung-Ping Poon R, Fan ST, Wong J. Risk factors, prevention, and management of postoperative recurrence after resection of hepatocellular carcinoma. Annals of Surgery 2000;232:10-24. [6] Villanueva A, Hernandez-Gea V, Llovet JM. Medical therapies for hepatocellular carcinoma: a critical view of the evidence. Nat Rev Gastroenterol Hepatol 2013;10:34-42. [7] Llovet JM, Beaugrand M. Hepatocellular carcinoma: present status and future prospects. J Hepatol 2003;38 Suppl 1:S136-149. [8] Llovet JM, Bruix J. Molecular targeted therapies in hepatocellular carcinoma. Hepatology 2008;48:1312-1327. [9] Ohtsubo K, Marth JD. Glycosylation in cellular mechanisms of health and disease. Cell 2006;126:855-867. [10] Zender L, Villanueva A, Tovar V, Sia D, Chiang DY, Llovet JM. Cancer gene discovery in hepatocellular carcinoma. J Hepatol 2010;52:921-929. [11] Blomme B, Van Steenkiste C, Callewaert N, Van Vlierberghe H. Alteration of protein glycosylation in liver diseases. J Hepatol 2009;50:592-603. [12] Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci U S A 2002;99:10231-10233. [13] Fuster MM, Esko JD. The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 2005;5:526-542. [14] Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 2005;13:5021-5034. [15] Kotani N, Asano M, Iwakura Y, Takasaki S. Impaired galactosylation of core 2 O-glycans in erythrocytes of beta1,4-galactosyltransferase knockout mice. Biochemical and biophysical research communications 1999;260:94-98. [16] Wei Y, Liu D, Zhou F, Ge Y, Xu J, Yun X, et al. Identification of beta-1,4-galactosyltransferase I as a target gene of HBx-induced cell cycle progression of hepatoma cell. Journal of hepatology 2008;49:1029-1037. [17] Yanagi M, Aoyagi Y, Suda T, Mita Y, Asakura H. N-Acetylglucosaminyltransferase V as a possible aid for the evaluation of tumor invasiveness in patients with hepatocellular carcinoma. J Gastroenterol Hepatol 2001;16:1282-1289. [18] Miyoshi E, Nishikawa A, Ihara Y, Gu J, Sugiyama T, Hayashi N, et al. N-acetylglucosaminyltransferase III and V messenger RNA levels in LEC rats during hepatocarcinogenesis. Cancer Res 1993;53:3899-3902. [19] Noda K, Miyoshi E, Uozumi N, Yanagidani S, Ikeda Y, Gao C, et al. Gene expression of alpha1-6 fucosyltransferase in human hepatoma tissues: a possible implication for increased fucosylation of alpha-fetoprotein. Hepatology 1998;28:944-952. [20] Aoyagi Y, Saitoh A, Suzuki Y, Igarashi K, Oguro M, Yokota T, et al. Fucosylation index of alpha-fetoprotein, a possible aid in the early recognition of hepatocellular carcinoma in patients with cirrhosis. Hepatology 1993;17:50-52. [21] Kamiyama T, Yokoo H, Furukawa JI, Kurogochi M, Togashi T, Miura N, et al. Identification of novel serum biomarkers of hepatocellular carcinoma using glycomic analysis. Hepatology 2013. [22] Jensen PH, Kolarich D, Packer NH. Mucin-type O-glycosylation--putting the pieces together. FEBS J 2010;277:81-94. [23] Steentoft C, Vakhrushev SY, Vester-Christensen MB, Schjoldager KT, Kong Y, Bennett EP, et al. Mining the O-glycoproteome using zinc-finger nuclease-glycoengineered SimpleCell lines. Nat Methods 2011;8:977-982. [24] Tsuboi S, Sutoh M, Hatakeyama S, Hiraoka N, Habuchi T, Horikawa Y, et al. A novel strategy for evasion of NK cell immunity by tumours expressing core2 O-glycans. EMBO J 2011;30:3173-3185. [25] Wagner KW, Punnoose EA, Januario T, Lawrence DA, Pitti RM, Lancaster K, et al. Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat Med 2007;13:1070-1077. [26] Wu YM, Liu CH, Hu RH, Huang MJ, Lee JJ, Chen CH, et al. Mucin glycosylating enzyme GALNT2 regulates the malignant character of hepatocellular carcinoma by modifying the EGF receptor. Cancer Res 2011;71:7270-7279. [27] Tu L, Banfield DK. Localization of Golgi-resident glycosyltransferases. Cell Mol Life Sci 2010;67:29-41. [28] Petrosyan A, Ali MF, Cheng PW. Glycosyltransferase-specific Golgi-targeting mechanisms. J Biol Chem 2012;287:37621-37627. [29] Ju T, Brewer K, D'Souza A, Cummings RD, Canfield WM. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J Biol Chem 2002;277:178-186. [30] Ju T, Cummings RD. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc Natl Acad Sci U S A 2002;99:16613-16618. [31] Fu J, Gerhardt H, McDaniel JM, Xia B, Liu X, Ivanciu L, et al. Endothelial cell O-glycan deficiency causes blood/lymphatic misconnections and consequent fatty liver disease in mice. J Clin Invest 2008;118:3725-3737. [32] Xia L, Ju T, Westmuckett A, An G, Ivanciu L, McDaniel JM, et al. Defective angiogenesis and fatal embryonic hemorrhage in mice lacking core 1-derived O-glycans. J Cell Biol 2004;164:451-459. [33] Novikoff PM, Tulsiani DR, Touster O, Yam A, Novikoff AB. Immunocytochemical localization of alpha-D-mannosidase II in the Golgi apparatus of rat liver. Proc Natl Acad Sci U S A 1983;80:4364-4368. [34] Perrine C, Ju T, Cummings RD, Gerken TA. Systematic determination of the peptide acceptor preferences for the human UDP-Gal:glycoprotein-alpha-GalNAc beta 3 galactosyltransferase (T-synthase). Glycobiology 2009;19:321-328. [35] Lotan R, Skutelsky E, Danon D, Sharon N. The purification, composition, and specificity of the anti-T lectin from peanut (Arachis hypogaea). J Biol Chem 1975;250:8518-8523. [36] Marquardt JU, Galle PR, Teufel A. Molecular diagnosis and therapy of hepatocellular carcinoma (HCC): an emerging field for advanced technologies. J Hepatol 2012;56:267-275. [37] Herr P, Korniychuk G, Yamamoto Y, Grubisic K, Oelgeschlager M. Regulation of TGF-(beta) signalling by N-acetylgalactosaminyltransferase-like 1. Development 2008;135:1813-1822. [38] Whittaker S, Marais R, Zhu AX. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010;29:4989-5005. [39] Lee SA, Ladu S, Evert M, Dombrowski F, De Murtas V, Chen X, et al. Synergistic role of Sprouty2 inactivation and c-Met up-regulation in mouse and human hepatocarcinogenesis. Hepatology 2010;52:506-517. [40] Christensen JG, Schreck R, Burrows J, Kuruganti P, Chan E, Le P, et al. A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 2003;63:7345-7355. [41] Kong-Beltran M, Stamos J, Wickramasinghe D. The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell 2004;6:75-84. [42] Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 2003;3:453-458. [43] Li Y, Tang ZY, Hou JX. Hepatocellular carcinoma: insight from animal models. Nat Rev Gastroenterol Hepatol 2012;9:32-43. [44] Marcucci F, Bellone M, Caserta CA, Corti A. Pushing tumor cells towards a malignant phenotype: Stimuli from the microenvironment, intercellular communications and alternative roads. Int J Cancer 2013. [45] Guo W, Giancotti FG. Integrin signalling during tumour progression. Nat Rev Mol Cell Biol 2004;5:816-826. [46] Hood JD, Cheresh DA. Role of integrins in cell invasion and migration. Nat Rev Cancer 2002;2:91-100. [47] Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nature reviews Cancer 2004;4:839-849. [48] Huang MC, Chen HY, Huang HC, Huang J, Liang JT, Shen TL, et al. C2GnT-M is downregulated in colorectal cancer and its re-expression causes growth inhibition of colon cancer cells. Oncogene 2006;25:3267-3276. [49] Park JH, Katagiri T, Chung S, Kijima K, Nakamura Y. Polypeptide N-acetylgalactosaminyltransferase 6 disrupts mammary acinar morphogenesis through O-glycosylation of fibronectin. Neoplasia 2011;13:320-326. [50] Zhang H, Meng F, Wu S, Kreike B, Sethi S, Chen W, et al. Engagement of I-branching {beta}-1, 6-N-acetylglucosaminyltransferase 2 in breast cancer metastasis and TGF-{beta} signaling. Cancer Research 2011;71:4846-4856. [51] Chang HH, Chen CH, Chou CH, Liao YF, Huang MJ, Chen YH, et al. beta-1,4-Galactosyltransferase III Enhances Invasive Phenotypes Via beta 1-Integrin and Predicts Poor Prognosis in Neuroblastoma. Clinical Cancer Research 2013;19:1705-1716. [52] Fransvea E, Mazzocca A, Antonaci S, Giannelli G. Targeting transforming growth factor (TGF)-betaRI inhibits activation of beta1 integrin and blocks vascular invasion in hepatocellular carcinoma. Hepatology 2009;49:839-850. [53] Yang C, Zeisberg M, Lively JC, Nyberg P, Afdhal N, Kalluri R. Integrin alpha1beta1 and alpha2beta1 are the key regulators of hepatocarcinoma cell invasion across the fibrotic matrix microenvironment. Cancer Research 2003;63:8312-8317. [54] Ke AW, Shi GM, Zhou J, Huang XY, Shi YH, Ding ZB, et al. CD151 amplifies signaling by integrin alpha6beta1 to PI3K and induces the epithelial-mesenchymal transition in HCC cells. Gastroenterology 2011;140:1629-1641 e1615. [55] Clement M, Rocher J, Loirand G, Le Pendu J. Expression of sialyl-Tn epitopes on beta1 integrin alters epithelial cell phenotype, proliferation and haptotaxis. J Cell Sci 2004;117:5059-5069. [56] Liao WC, Chen CH, Liu CH, Huang MJ, Chen CW, Hung JS, et al. Expression of GALNT2 in human extravillous trophoblasts and its suppressive role in trophoblast invasion. Placenta 2012;33:1005-1011. [57] Luque A, Gomez M, Puzon W, Takada Y, Sanchez-Madrid F, Cabanas C. Activated conformations of very late activation integrins detected by a group of antibodies (HUTS) specific for a novel regulatory region (355-425) of the common beta 1 chain. J Biol Chem 1996;271:11067-11075. [58] Chigaev A, Waller A, Amit O, Halip L, Bologa CG, Sklar LA. Real-time analysis of conformation-sensitive antibody binding provides new insights into integrin conformational regulation. J Biol Chem 2009;284:14337-14346. [59] Cao Y, Karsten U, Otto G, Bannasch P. Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and alpha2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch 1999;434:503-509. [60] Sasaki M, Yamato T, Nakanuma Y. Expression of sialyl-Tn, Tn and T antigens in primary liver cancer. Pathol Int 1999;49:325-331. [61] Brockhausen I. Mucin-type O-glycans in human colon and breast cancer: glycodynamics and functions. EMBO Rep 2006;7:599-604. [62] Astronomo RD, Burton DR. Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 2010;9:308-324. [63] Steentoft C, Vakhrushev SY, Joshi HJ, Kong Y, Vester-Christensen MB, Schjoldager KT, et al. Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology. EMBO J 2013;32:1478-1488. [64] Zhang L, Ten Hagen KG. Dissecting the biological role of mucin-type O-glycosylation using RNA interference in Drosophila cell culture. J Biol Chem 2010;285:34477-34484. [65] Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer 2012;12:387-400. [66] Kaposi-Novak P, Lee JS, Gomez-Quiroz L, Coulouarn C, Factor VM, Thorgeirsson SS. Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. J Clin Invest 2006;116:1582-1595. [67] Ke AW, Shi GM, Zhou J, Wu FZ, Ding ZB, Hu MY, et al. Role of overexpression of CD151 and/or c-Met in predicting prognosis of hepatocellular carcinoma. Hepatology 2009;49:491-503. [68] D'Errico A, Fiorentino M, Ponzetto A, Daikuhara Y, Tsubouchi H, Brechot C, et al. Liver hepatocyte growth factor does not always correlate with hepatocellular proliferation in human liver lesions: its specific receptor c-met does. Hepatology 1996;24:60-64. [69] Ma PC, Maulik G, Christensen J, Salgia R. c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 2003;22:309-325. [70] Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF. Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4:915-925. [71] Gao J, Inagaki Y, Song P, Qu X, Kokudo N, Tang W. Targeting c-Met as a promising strategy for the treatment of hepatocellular carcinoma. Pharmacol Res 2012;65:23-30. [72] Masumoto A, Arao S, Otsuki M. Role of beta1 integrins in adhesion and invasion of hepatocellular carcinoma cells. Hepatology 1999;29:68-74. [73] Gill DJ, Chia J, Senewiratne J, Bard F. Regulation of O-glycosylation through Golgi-to-ER relocation of initiation enzymes. Journal of Cell Biology 2010;189:843-858. [74] Holleboom AG, Karlsson H, Lin RS, Beres TM, Sierts JA, Herman DS, et al. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab 2011;14:811-818. [75] Park JH, Nishidate T, Kijima K, Ohashi T, Takegawa K, Fujikane T, et al. Critical roles of mucin 1 glycosylation by transactivated polypeptide N-acetylgalactosaminyltransferase 6 in mammary carcinogenesis. Cancer Res 2010;70:2759-2769. [76] Chen SY, Chen HC. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Molecular and Cellular Biology 2006;26:5155-5167. [77] Mccall-Culbreath KD, Li ZZ, Zutter MM. Crosstalk between the alpha 2 beta 1 integrin and c-met/HGF-R regulates innate immunity. Blood 2008;111:3562-3570. [78] Liu Y, Chattopadhyay N, Qin S, Szekeres C, Vasylyeva T, Mahoney ZX, et al. Coordinate integrin and c-Met signaling regulate Wnt gene expression during epithelial morphogenesis. Development 2009;136:843-853. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16838 | - |
dc.description.abstract | 細胞醣基化的改變是癌症的一項重要特徵。然而控制粘蛋白型O-聚醣合成的醣類轉換酵素core 1 β1,3-galactosyltransferase(C1GALT1)在癌症的重要性卻長期被忽略與低估。在此篇研究中我們發現C1GALT1的 mRNA和蛋白質經常在肝細胞癌(HCC)的腫瘤組織中過度表達,它的過量表現與腫瘤的高度分期、癌細胞轉移、與不良的預後呈正相關。
細胞實驗發現,強制表達C1GALT1可以提高癌細胞增生能力,而C1GALT1的核酸干擾可以抑制在體外和體內的細胞增殖。值得注意的是,在肝癌細胞中降低C1GALT1的表現可以抑制肝細胞生長因子(HGF)引發的MET激酶磷酸化,而C1GALT1過量表達可增強MET磷酸化。 使用MET抑制劑「PHA665752」可以抑制C1GALT1所增強的細胞活性。為了支持細胞實驗結果,我們分析肝癌檢體並且發現MET磷酸化和C1GALT1表達量呈現正相關。分子機轉研究顯示,毛苕子凝集素和花生凝集素的結合實驗顯示MET帶有粘蛋白型O-聚醣。此外,C1GALT1所調控的O-聚醣可以提高HGF所誘導的MET二聚化與活化。 我們進一步發現,C1GALT1的表達增強肝癌細胞粘附到細胞外基質(ECM)、細胞移動、與細胞侵襲等能力。而且C1GALT1的核酸干擾可以抑制細胞的這些表型。我們使用小鼠異種移植模型證明C1GALT1對肝癌細胞轉移有促進的作用。分子機轉的研究顯示,C1GALT1所增強的細胞粘附、移動和侵襲等能力均被細胞外基質接受器(integrin β1)的阻斷性抗體所抑制。此外,我們發現C1GALT1能夠修飾integrin β1上的粘蛋白型O-聚醣並且調控integrin β1的活性與訊息傳遞。 以上結果顯示C1GALT1在肝細胞癌中過度表達改變了癌細胞中MET與integrin β1的O-聚醣,因而增強了HGF的訊息與integrin β1的活性。此研究提供了粘蛋白型O-聚醣在肝細胞癌中新的機制與見解。 | zh_TW |
dc.description.abstract | Glycosylation plays a crucial role in tumor progression. The core 1 β1,3-galactosyltransferase (C1GALT1) controls the formation of mucin-type O-glycans. However, the role of C1GALT1 in cancer has long been underestimated and overlooked in the past.
In this study, we identified C1GALT1 mRNA and protein were frequently overexpressed in hepatocellular carcinoma (HCC) tumors compared with non-tumor liver tissues. C1GALT1 expression correlated with advanced tumor stage, metastasis, and poor survival in HCC. Knockdown of C1GALT1 in HA22T and PLC5 cells suppressed cell growth in vitro and decreased tumor growth in vivo. Conversely, overexpression of C1GALT1 enhanced cell growth. Interestingly, we found that C1GALT1 enhanced hepatocyte growth factor (HGF)-mediated phosphorylation of MET in HCC cells, and MET blockade with PHA665752 inhibited C1GALT1-enhanced cell viability. The expression level of phospho-MET was significantly associated with that of C1GALT1 in primary HCC tissues. Mechanistic investigation showed that MET was decorated with O-glycans. Moreover, C1GALT1 modified the O-glycosylation on MET and enhanced HGF-induced dimerization. In addition, we found that overexpression of C1GALT1 enhanced HCC cell adhesion, migration, and invasion, whereas RNAi-mediated knockdown of C1GALT1 suppressed these phenotypes. In animal models, C1GALT1 significantly promoted lung metastasis of HCC cells. Mechanistic investigations showed that the C1GALT1-enhanced adhesion, migration, and invasion were significantly suppressed by anti-integrin β1 blocking antibody. Moreover, C1GALT1 was able to modify O-glycans on integrin β1 and regulate integrin β1 activity as well as FAK signaling. Together, our results suggested that C1GALT1 contributed to the malignant growth of HCC cells and regulated MET and integrin β1 O-glycosylation and activation. This study provided new insights into how O-glycosylation drives HCC pathogenesis. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:47:37Z (GMT). No. of bitstreams: 1 ntu-103-D99446005-1.pdf: 1909063 bytes, checksum: c5cc35ad994c5d7021baa8f7016801da (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
口試委員審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv Chapter I: General Introduction 1 1.1 Significance of Hepatocellular carcinoma 2 1.2 Glycosylayion in HCC 3 1.3 Mucin-type O-glycosylation in HCC 4 1.4 Biological function of C1GALT1 6 Chapter II: Hypothesis and Specific Aims 7 2.1 Hypothesis 8 2.2 Specific Aims 8 Chapter III: Materials and Methods 9 3.1 Ethics Statement 10 3.2 Human tissue samples 10 3.3 Cell culture 10 3.4 Reagents and antibodies 11 3.5 Tissue array and immunohistochemistry 12 3.6 cDNA synthesis and quantitative real-time PCR 12 3.7 Transfection 13 3.8 RNA interference 13 3.9 Western blotting 14 3.10 Phospho- receptor tyrosine kinase (RTK) array 14 3.11 Cell viability, proliferation, and cell cycle 15 3.12 Cell migration and invasion assay 15 3.13 Cell adhesion assay 16 3.14 Flow cytometry assays 17 3.15 De-glycosylation, lectin pull down, and immunoprecipitation 17 3.16 Tumor growth in immunodeficient mice 18 3.17 Dimerization of MET 18 3.18 Statistical analysis 19 Chapter IV: Results 20 4.1 C1GALT1 is up-regulated in HCC and associated with advanced tumor stage, metastasis, and poor overall survival 21 4.2 Expression of C1GALT1 modifies mucin-type O-glycans on HCC cells 22 4.3 Expression of C1GALT1 regulates proliferation of HCC cell in vitro and in vivo 24 4.4 C1GALT1 modulates activation of MET 25 4.5 Mucin type O-glycans on MET 26 4.6 C1GALT1 modifies MET glycosylation and HGF-induced dimerization 27 4.7 Expression of C1GALT1 promotes HCC cell adhesion, migration, and, invasion. 28 4.8 C1GALT1 regulates HCC cell metastasis in NOD/SCID mice 29 4.9 Integrin β1 mediates the C1GALT1-induced migration, invasion, and adhesion in HCC cells 30 4.10 C1GALT1 modifies integrin β1 glycosylation and activation 31 Chapter V: Disscusion 34 5.1 Summary 35 5.2 Short mucin-type O-glycans in HCC 35 5.3 O-glycans on MET 36 5.4 O-glycans on integrin β1 38 5.5 Conclusion 40 Reference 42 Figures and legends 48 Tables 78 Appendix 80 Figures Figure 1. Biosynthesis of core 1 O-glycans 48 Figure 2. Expression of C1GALT1 in human HCC 49 Figure 3. Statistic result of C1GALT1 expression in two independent groups of patient 50 Figure 4. Kaplan-Meier analysis of the probabilities of overall survival for patients 51 Figure 5. Expression of C1GALT1 in normal liver tissues and HCC cell lines 52 Figure 6. C1GALT1 knockdown or overexpression in HCC cells 53 Figure 7. Effects of C1GALT1 on O-glycans of hepatocellular carcinoma cell surface 55 Figure 8. C1GALT1 modulates O-glycan structures on cell surfaces of HCC cells 56 Figure 9. C1GALT1 regulates hepatocellular carcinoma cell proliferation in vito 58 Figure 10. C1GALT1 regulates cell cycle 59 Figure 11. Establishment of stable transfectants of C1GALT1 knockdown cells 60 Figure 12. Effects of C1GALT1 on hepatocellular carcinoma tumor growth in SCID mouse model 61 Figure 13. Cell proliferation in the Xenograft tumors 62 Figure 14. Human phospo-RTK array 63 Figure 15. C1GALT1 modulates HGF-induced signaling in HCC cells 64 Figure 16. Effects of MET inhibitor, PHA665752, on C1GALT1-enhanced cell viability 65 Figure 17. Expression of C1GALT1 and p-MET in hepatocellular carcinoma tissues 66 Figure 18. c-MET is decorated with short O-glycans 67 Figure 19. C1GALT1 modifies O-glycosylation of MET in HCC cells 68 Figure 20. C1GALT1 regulates dimerization of MET in HCC cells 69 Figure 21. C1GALT1 regulates cell adhesion, migration, and invasion 70 Figure 22. C1GALT1 regulates lung metastasis of HCC cells in NOD/SCID mice 72 Figure 23. Expression of integrin family genes in HCC cell lines 73 Figure 24. C1GALT1 induces HCC cell adhesion, migration and invasion through integrin β1 74 Figure 25. C1GALT1 modifies O-glycans on integrin β1 75 Figure 26. C1GALT1 regulates integrin β1 activity 76 Figure 27. C1GALT1 regulated integrin β1-induced FAK activation 77 | |
dc.language.iso | en | |
dc.title | 醣類轉換酵素C1GALT1在肝細胞癌的功能 | zh_TW |
dc.title | The role of C1GALT1 in hepatocellular carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 吳耀銘,李明學,賴逸儒,陳?豪 | |
dc.subject.keyword | 肝細胞癌,醣類轉換酵素,粘蛋白型O-聚醣,肝細胞生長因子,細胞外基質接受器, | zh_TW |
dc.subject.keyword | hepatocellular carcinoma,C1GALT1,O-glycosylation,MET,integrin β1,metastasis, | en |
dc.relation.page | 80 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-05-07 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
顯示於系所單位: | 解剖學暨細胞生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 1.86 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。