Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16814
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林長壽(Chang-Shou Lin)
dc.contributor.authorKuan-Yu Linen
dc.contributor.author林冠宇zh_TW
dc.date.accessioned2021-06-07T23:47:00Z-
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-06-11
dc.identifier.citationXavier Cabre, Xavier Ros-Oton, and Joaquim Serra. Sharp isoperimetric inequalities via the abp method. arXiv preprint arXiv:1304.1724, 2013.
Xavier Cabre and Xavier Ros-Oton. Sobolev and isoperimetric inequalities with monomial weights. Journal of Differential Equations, 255(11):4312–4336, 2013.
Pierre-Louis Lions and Filomena Pacella. Isoperimetric inequalities for convex cones. Proceedings of the American Mathematical Society, pages 477–485, 1990.
R Gardner. The brunn-minkowski inequality. Bulletin of the American Mathematical Society, 39(3):355–405, 2002.
Georg Wulff. Zur frage der geschwindigkeit des wachstums und der auflosung der kristallflachen. Z. kristallogr, 34(5/6):449–530, 1901.
Jean E Taylor. Existence and structure of solutions to a class of nonelliptic variational problems. In Symposia Mathematica, volume 14, pages 499–508, 1974.
Jean E Taylor. Unique structure of solutions to a class of nonelliptic variational problems. In Proc. Symp. pure Math, volume 27, pages 419–427, 1975.
Giorgio Talenti. A weighted version of a rearrangement inequality. Annali dell’Universita di Ferrara, 43(1):121–133, 1997.
Giorgio Talenti. Best constant in sobolev inequality. Annali di Matematica pura ed Applicata, 110(1):353–372, 1976.
David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order, volume 224. springer, 2001.
Giovanni Bellettini, Guy Bouchitte, and Ilaria Fragala. Bv functions with respect to a measure and relaxation of metric integral functionals. Journal of convex analysis, 6(2): 349–366, 1999.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16814-
dc.description.abstract在這篇論文中,我們探討加權之等周不等式。對於所有固定加權體積之可測集,
我們的目標是刻劃使加權周長最小的所有可能。對於所有具有特定” 凹特性” 之權
重,透過ABP 方法,所有此種” 等周集” 可被完整地刻劃。
特別地,將此定理運用至某些” 單項式權重”,我們可以證明具有此種權重之
Sobolev、Trudinger、以及Morrey 不等式。
zh_TW
dc.description.abstractIn this thesis, we study isoperimetric problems with weights following [Cabre
et al., 2013]. Given a positive function $w$ on $mathbb{R}^n$ (called a weight), our goal is to characterize minimizers of the weighted perimeter $int_{partial E} w,mathrm{d}S$ among all measurable sets E with a fixed weighted volume
$int_{E} w , mathrm{d}x$.
The result applies to all homogeneous weights satisfying certain concavity conditions, and the proof is achieved by applying the ABP method to an appropriate linear Neumann problem.
In particular, by applying this result to the monomial weight $|x_1|^{A_1} cdots |x_n|^{A_n}$ in $mathbb{R}^n$ , where $A_i geq 0$, we can establish the weighted Sobolev, Morrey, and Trudinger inequalities with such weights [Cabre and Ros-Oton, 2013].
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:47:00Z (GMT). No. of bitstreams: 1
ntu-103-R01221033-1.pdf: 249047 bytes, checksum: 81e768ecf5831949d313444c45e6f6b9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents中文摘要i
Abstract ii
Contents iii
1 Introduction: the setting and results 1
1.1 The non-weighted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The weighted case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Applications 6
2.1 Sobolev Inequality with monomial weight . . . . . . . . . . . . . . . . . . 7
2.2 Trudinger Inequality with monomial weight . . . . . . . . . . . . . . . . 11
2.3 Morrey Inequality with monomial weight . . . . . . . . . . . . . . . . . . 12
3 The proof of Main Theorem 15
References 20
dc.language.isoen
dc.title加權等周不等式之ABP方法及其應用zh_TW
dc.titleWeighted Isoperimetric Inequalities via the ABP method and its Applicationsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊全(Chiun-Chuan Chen),張樹城(Shu-Cheng Chang)
dc.subject.keyword等周不等式,ABP方法,Neumann問題,Sobolev不等式,單項式權重.,zh_TW
dc.subject.keywordIsoperimetric inequality,ABP method,Neumann problem,Sobolev inequality,monomial weight.,en
dc.relation.page20
dc.rights.note未授權
dc.date.accepted2014-06-11
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
243.21 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved