請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉興華(Shing-Hwa Liu) | |
| dc.contributor.author | Ying-Chien Huang | en |
| dc.contributor.author | 黃縈倩 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:46:55Z | - |
| dc.date.copyright | 2020-09-04 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-11 | |
| dc.identifier.citation | 1. N Sarwar, P Gao, S R Kondapally Seshasai, R Gobin, S Kaptoge, E Di Angelantonio, E Ingelsson, D A Lawlor, E Selvin, M Stampfer, C D A Stehouwer, S Lewington, L Pennells, A Thompson, N Sattar, I R White, K K Ray J Danesh. (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 375(9733):2215-2222. 2. American Diabetes Association. Diagnosis and classification of diabetes mellitus. (2014). Diabetes Care. 37(Suppl 1): S81-S90. 3. Ronald Goldenberg Zubin Punthakee. (2013). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes. 37(Suppl 1): S8-S11. 4. Thomas R Einarson, Annabel Acs, Craig Ludwig Ulrik H Panton. (2018). Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol. 17(1):83. 5. Radica Z. Alicic, Michele T. Rooney Katherine R. Tuttle. (2017). Diabetic kidney disease. Clin J Am Soc Nephrol. 12(12): 2032–2045. 6. Ian H de Boer, Tessa C Rue, Yoshio N Hall, Patrick J Heagerty, Noel S Weiss Jonathan Himmelfarb. (2011). Temporal trends in the prevalence of diabetic kidney disease in the United States. JAMA. 305(24):2532-2539. 7. Corey Magee, David J Grieve, Chris J Watson Derek P Brazil. (2017). Diabetic nephropathy: a tangled web to unweave. Cardiovasc Drugs Ther. 31(5-6):579-592. 8. Maryam Afkarian, Michael C Sachs, Bryan Kestenbaum, Irl B Hirsch, Katherine R Tuttle, Jonathan Himmelfarb Ian H de Boer. (2013). Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 24(2):302-308. 9. Kimberly Reidy, Hyun Mi Kang, Thomas Hostetter Katalin Susztak. (2014). Molecular mechanisms of diabetic kidney disease. J Clin Invest. 124(6):2333-40. 10. Kyoung Mi Kim, Kotb Abdelmohsen, Maja Mustapic, Dimitrios Kapogiannis Myriam Gorospe. (2017). RNA in extracellular vesicles. Wiley Interdiscip Rev RNA. 8(4):10. 11. Samir EL Andaloussi, Imre Mäger, Xandra O. Breakefield Matthew J. A. Wood. (2013). Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 12(5):347-357. 12. Angélique Bobrie , Marina Colombo, Graça Raposo Clotilde Théry. (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic. 12(12):1659-1668. 13. Chiara Cianciaruso, Edward A Phelps, Miriella Pasquier, Romain Hamelin, Davide Demurtas, Mohamed Alibashe Ahmed, Lorenzo Piemonti, Sachiko Hirosue, Melody A Swartz , Michele De Palma, Jeffrey A Hubbell Steinunn Baekkeskov. (2010). Primary human and rat β-cells release the intracellular autoantigens GAD65, IA-2, and proinsulin in exosomes together with cytokine-induced enhancers of immunity. Diabetes. 66(2):460-473. 14. Wei Ying, Matthew Riopel, Gautam Bandyopadhyay, Yi Dong, Amanda Birmingham, Jong Bae Seo, Jachelle M Ofrecio, Joshua Wollam, Angelina Hernandez-Carretero, Wenxian Fu, Pingping Li Jerrold M Olefsky. (2017). Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell. 171(2):372-384. 15. Huina Zhang, Jian Liu, Dan Qu, Li Wang, Chi Ming Wong, Chi-Wai Lau, Yuhong Huang, Yi Fan Wang, Huihui Huang, Yin Xia, Li Xiang, Zongwei Cai, Pingsheng Liu, Yongxiang Wei, Xiaoqiang Yao, Ronald Ching Wan Ma Yu Huang. (2018). Serum exosomes mediate delivery of arginase 1 as a novel mechanism for endothelial dysfunction in diabetes. Proc Natl Acad Sci U S A. 115(29): E6927-E6936. 16. Tengku Ain Kamalden, Anne M Macgregor-Das, Sangeetha Marimuthu Kannan, Brittany Dunkerly-Eyring, Nurliza Khaliddin, Zhenhua Xu, Anthony P Fusco, Syatirah Abu Yazib, Rhuen Chiou Chow, Elia J Duh, Marc K Halushka, Charles Steenbergen Samarjit Das. (2017). Exosomal microRNA-15a transfer from the pancreas augments diabetic complications by inducing oxidative stress. Antioxid Redox Signal. 27(13):913-930. 17. Lin-Li Lv, Ye Feng, Tao-Tao Tang Bi-Cheng Liu. (2019). New insight into the role of extracellular vesicles in kidney disease. J Cell Mol Med. 23(2):731-739. 18. H. Jing, S. Tang, S. Lin, M. Liao, H. Chen J. Zhou. (2019). The role of extracellular vesicles in renal fibrosis. Cell Death Dis. 10(5):367. 19. Xiaoming Wu, Yanbin Gao, Liping Xu, Wanyu Dang, Huimin Yan, Dawei Zou, Zhiyao Zhu, Liangtao Luo, Nianxiu Tian, Xiaolei Wang, Yu Tong Zheji Han. (2017). Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci Rep. 7(1):9371. 20. Xiao-Ming Wu, Yan-Bin Gao, Fang-Qiang Cui Na Zhang. (2016). Exosomes from high glucose-treated glomerular endothelial cells activate mesangial cells to promote renal fibrosis. Biol Open. 5(4):484-491. 21. Charles E Alpers Kelly L Hudkins. (2011). Mouse models of diabetic nephropathy. Curr Opin Nephrol Hypertens. 20(3):278-84. 22. Anthony M Bolger, Marc Lohse Bjoern Usadel. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114-2120. 23. Marc R Friedländer, Sebastian D Mackowiak, Na Li, Wei Chen Nikolaus Rajewsky. (2012). miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 40(1):37-52. 24. Antonella Agodi, Andrea Maugeri, Sarka Kunzova, Ondrej Sochor, Hana Bauerova, Nikola Kiacova, Martina Barchitta Manlio Vinciguerra. (2018). Association of dietary patterns with metabolic syndrome: results from the Kardiovize Brno 2030 study. Nutrients. 10(7):898. 25. K M Narayan, E W Gregg, A Fagot-Campagna, M M Engelgau F Vinicor. (2000). Diabetes--a common, growing, serious, costly, and potentially preventable public health problem. Diabetes Res Clin Pract. 50(Suppl 2):S77-84. 26. Claudiane Guay, Véronique Menoud, Sophie Rome Romano Regazzi. (2015). Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal. 13:17. 27. Claudiane Guay Romano Regazzi. (2017). Exosomes as new players in metabolic organ cross-talk. Diabetes Obes Metab. 19(Suppl 1):137-146. 28. Mikael Simons Graça Raposo. (2009). Exosomes--vesicular carriers for intercellular communication. Curr Opin Cell Biol. 21(4):575-581. 29. Shirong Zheng, David W Powell, Feng Zheng, Phillip Kantharidis Luigi Gnudi. (2016). Diabetic nephropathy: proteinuria, inflammation, and fibrosis. J Diabetes Res. 2016:5241549. 30. Ivonne Loeffler Gunter Wolf. (2015). Epithelial-to-mesenchymal transition in diabetic nephropathy: fact or fiction? Cells. 9;4(4):631-652. 31. Swayam Prakash Srivastava, Daisuke Koya Keizo Kanasaki. (2013). MicroRNAs in kidney fibrosis and diabetic nephropathy: roles on EMT and EndMT. Biomed Res Int. 2013:125469. 32. Soma Meran Robert Steadman. (2011). Fibroblasts and myofibroblasts in renal fibrosis. Int J Exp Pathol. 92(3):158-167. 33. Evangelia Pardali, Gonzalo Sanchez-Duffhues, Maria Catalina Gomez-Puerto Peter Ten Dijke. (2017). TGF-β-induced endothelial-mesenchymal transition in fibrotic diseases. Int J Mol Sci. 18(10):2157. 34. Guoping Zheng, James Guy Lyons, Thian Kui Tan, Yiping Wang, Tzu-Ting Hsu, Danqing Min, Lena Succar, Gopala K Rangan, Min Hu, Beric R Henderson, Stephen I Alexander David C H Harris. (2009). Disruption of E-cadherin by matrix metalloproteinase directly mediates epithelial-mesenchymal transition downstream of transforming growth factor-beta1 in renal tubular epithelial cells. Am J Pathol. 175(2):580-591. 35. Pradeep Kumar Dabla. (2010). Renal function in diabetic nephropathy. World J Diabetes. 1(2):48-56. 36. Hadi Valadi, Karin Ekström, Apostolos Bossios, Margareta Sjöstrand, James J Lee Jan O Lötvall (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9(6):654-659. 37. Hakimeh Moghaddas Sani, Mina Hejazian, Seyed Mahdi Hosseinian Khatibi, Mohammadreza Ardalan Sepideh Zununi Vahed. (2018). Long non-coding RNAs: an essential emerging field in kidney pathogenesis. Biomed Pharmacother. 99:755-765. 38. Witold Filipowicz, Suvendra N Bhattacharyya Nahum Sonenberg. (2008). Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? Nat Rev Genet. 9(2):102-114. 39. Jacob O'Brien, Heyam Hayder, Yara Zayed Chun Peng. (2018). Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9: 402. 40. Yang Zhou, Mingxia Xiong, Li Fang, Lei Jiang, Ping Wen, Chunsun Dai, Chen-Yu Zhang Junwei Yang. (2013). miR-21-containing microvesicles from injured tubular epithelial cells promote tubular phenotype transition by targeting PTEN protein. Am J Pathol. 183(4):1183-1196. 41. Zhenlong Xin, Zhiqiang Ma, Wei Hu, Shuai Jiang, Zhi Yang, Tian Li, Fulin Chen, Guozhan Jia Yang Yang. (2018). FOXO1/3: Potential suppressors of fibrosis. Ageing Res Rev. 41:42-52. 42. Rachel Kaletsky, Vanisha Lakhina, Rachel Arey, April Williams, Jessica Landis, Jasmine Ashraf Coleen T Murphy. (2016). The C. elegans adult neuronal IIS/FOXO transcriptome reveals adult phenotype regulators. Nature. 529(7584):92-96. 43. Kerstin Wilhelm, Katharina Happel, Guy Eelen, Sandra Schoors, Mark F Oellerich, Radiance Lim, Barbara Zimmermann, Irene M Aspalter, Claudio A Franco, Thomas Boettger, Thomas Braun, Marcus Fruttiger, Klaus Rajewsky, Charles Keller, Jens C Brüning, Holger Gerhardt, Peter Carmeliet Michael Potente. (2016). FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 529(7585):216-220. 44. Masayuki Adachi, Yosuke Osawa, Hiroshi Uchinami, Tadahiro Kitamura, Domenico Accili David A Brenner. (2007). The forkhead transcription factor FoxO1 regulates proliferation and transdifferentiation of hepatic stellate cells. Gastroenterology. 132(4):1434-1446. 45. Robert G Gourdie, Stefanie Dimmeler Peter Kohl. (2016). Novel therapeutic strategies targeting fibroblasts and fibrosis in heart disease. Nat Rev Drug Discov. 15(9):620-638. 46. Georg Wick, Cecilia Grundtman, Christina Mayerl, Thomas-Florian Wimpissinger, Johann Feichtinger, Bettina Zelger, Roswitha Sgonc Dolores Wolfram. (2013). The immunology of fibrosis. Annu Rev Immunol. 31:107-135. 47. Soo-Jung Park, Hee-Young Sohn, Jeongsook Yoon Sang Ick Park. (2009). Down-regulation of FoxO-dependent c-FLIP expression mediates TRAIL-induced apoptosis in activated hepatic stellate cells. Cell Signal. 21(10):1495-1503. 48. Xiaoyan Pan, Yang Zhang, Hyeong-Geug Kim, Suthat Liangpunsakul X. Charlie Donga. (2017). FOXO transcription factors protect against the diet-induced fatty liver disease. Sci Rep. 7: 44597. 49. Stephen A Koff. (2003). The beneficial and protective effects of hydronephrosis. APMIS Suppl. 2003;(109):7-12. 50. Keren Grynberg, Frank Y Ma David J Nikolic-Paterson. (2017). The JNK Signaling Pathway in Renal Fibrosis. Front Physiol. 8:829. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16810 | - |
| dc.description.abstract | 糖尿病是腎衰竭的主要原因之一,據統計國內目前的洗腎病人中約有40%-50%是糖尿病引起的。糖尿病腎病是糖尿病小血管病發症之一,它的進程涉及腎小球超濾、白蛋白尿、腎小球過濾速率下降,並最終導致腎衰竭。而糖尿病所引起的代謝變化將導致腎小球發炎、肥大和硬化以及腎小管間質發炎和纖維化。外泌體(Exosomes)是一種直徑界於50‐200奈米的囊泡,內含mRNA、miRNA、蛋白質及核酸等物質,並被證實會參與在糖尿病疾病進程之中,影響β-cell存活、葡萄糖不耐受性及和胰島素阻抗等。然而關於糖尿病血液中的外泌體是否在糖尿病腎臟病的進程中扮演重要的角色目前尚待釐清。因此本研究欲探討糖尿病血液中的外泌體是否會引起腎臟產生病變。本研究中 in vitro部分,我們將利用MTT assay及Western blots探討小鼠腎膈細胞(SV40-MES13)、小鼠腎小球內皮細胞(C57BL/6 mouse primary kidney glomerular endothelial cells)與大鼠近曲小管上皮細胞(NRK-52E)暴露於糖尿病db/db小鼠血液中的外泌體24小時後,觀察各別細胞之存活率及發炎、纖維化、EMT (epithelial-mesenchymal transition)、MFT (myofibroblast transdifferentiation)與EndMT (endothelial-mesenchymal transition) 相關蛋白表現情況。而在in vivo部分,我們將糖尿病db/db小鼠血液中的外泌體以尾靜脈注射方式送入對照組db/m小鼠體內,並將小鼠分成2天及14天後犧牲的組別,觀察糖尿病db/db小鼠血液中的外泌體對於正常db/m小鼠腎臟的影響。截至目前為止,在in vitro的部分,我們發現糖尿病db/db小鼠血液中的外泌體會: (1)促進小鼠腎膈細胞的增生,並顯著增加細胞中與MFT和纖維化相關蛋白的表現量; (2)顯著增加小鼠腎小球內皮細胞中與發炎和EndoMT相關蛋白的表現量; (3)顯著增加大鼠近曲小管上皮細胞中與EMT和纖維化相關蛋白的表現量。而在in vivo部分,我們也發現以尾靜脈將糖尿病db/db小鼠血液中的外泌體送入正常db/m小鼠後,在2天及14天後犧牲的兩者組別中: (1)小鼠血中尿素氣、肌酸酐和胱抑素C都顯著上升了; (2)小鼠腎臟組織中與發炎、纖維化、EMT、MFT與EndoMT相關蛋白的表現量都呈現增加的趨勢; (3)H E與Masson’s trichrome組織切片染色的結果發現小鼠腎小球出現肥大與細胞外基質沉積的現象,而在腎小管間質的部位也可觀察到細胞外基質沉積的現象; (4)螢光染色結果發現小鼠腎小球中CD31和Podocin的表現有下降的趨勢,並發現腎小球中細胞外基質Collagen IV的表現呈現增加的趨勢。接著我們透過次世代定序相關的生物分析資料預測並以qPCR驗證,推測外泌體可能是透過miR-669c-3p去抑制FOXO1基因的表現,進一步促進腎臟纖維化的產生。另外,以qPCR及western blotting進一步分析亦發現糖尿病db/db小鼠血液中的外泌體送入正常db/m小鼠之後,其腎臟中FOXO1的基因與蛋白表現量皆顯著下降。總結而言,在糖尿病db/db小鼠血液中的外泌體能引起腎病變,並發現外泌體中具有大量的miR-669c-3p,可調節腎臟中FOXO1的基因與蛋白表現,進一步促進腎臟纖維化。 | zh_TW |
| dc.description.abstract | Diabetes is the main causes of kidney failure, and there are about 40% to 50% of hemodialysis patients with diabetes in Taiwan. Diabetic nephropathy is a serious microvascular complication of diabetes. The progression of diabetic nephropathy involves in glomerular hyperfiltration, progressive albuminuria, declining GFR, and and ultimately leading to kidney failure. Metabolic changes associated with diabetes lead to glomerular hypertrophy, glomerulosclerosis, and tubulointerstitial inflammation and fibrosis. Exosomes are extracellular vesicles with 50‐200 nm in size. They contain mRNA, miRNA, proteins and nucleic acids, which have been proved to participate in the progression of diabetes. However, whether diabetic serum exosomes play a vital role in nephropathy remains unknown. Therefore, the objective of our study is to investigate whether diabetic serum exosomes induce kidney injure. In vitro study, we treated mouse mesangial cells (SV40-MES13), mouse primary kidney glomerular endothelial cells and rat proximal tubular epithelial cells (NRK-52E) with serum exosomes extracted from control db/m mice or diabetic db/db mice. In vivo study, we exposed db/m mice with serum exosomes isolated from db/m or db/db mice by tail vein injection. In vitro study, the administration of db/db mice serum exosomes compared to db/m serum exosomes induced: (1) mouse mesangial cells proliferation, MFT and fibrosis phenotype; (2) mouse primary kidney glomerular endothelial cells EndMT and inflammation phenotype; (3) rat proximal tubular epithelial cells EMT and fibrosis phenotype. In vivo study, we revealed that the db to m experimental mice (db/m mice tail vein injection with serum exosomes derived from db/db mice) compared to m to m control mice (db/m mice tail vein injection with serum exosomes derived from db/m mice) in 2 and 14 days sacrificed groups both improve: (1) their blood urea nitrogen (BUN), serum creatinine (SCr) and Cystatin C levels; (2) proteins expression related to inflammation, fibrosis, MFT, EndMT and EMT in kidney tissue; (3) glomerulus hypertrophy, glomerular and tubulointerstitial compartments displaying extracellular matrix collagen deposition detected by H E and Masson’s trichrome staining; (4) decreased level of CD31 and Podocin in glomerulus, and increased level of Collagen IV in glomerulus. Though Next Generation Sequencing (NGS) and qPCR analysis, we speculated that exosomes enriched in miR-669c-3p which can regulate the expression level of FOXO1 in kidney, and further promote renal fibrosis. Besides, we found that the db to m experimental mice compared to m to m control mice in 2 and 14 days sacrificed groups both reduce the gene and protein of FOXO1 in their kidneys. In summary, this study demonstrates that exosomes may be a novel mechanism to be involved in diabetic nephropathy, and abundant miR-669c-3p in exosomes may regulate the expression of FOXO1 in kidneys, and further give rise to renal fibrosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:46:55Z (GMT). No. of bitstreams: 1 U0001-1008202010063000.pdf: 3836841 bytes, checksum: 12614d574e196a25a2a2971e0efb1e31 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii Abstract v Contents vii List of abbreviation ix Part 1: Introduction 1 1.1 Diabetes mellitus 1 1.2 Diabetic nephropathy 1 1.3 Exosomes 4 1.4 Effects of exosomes on diabetes and diabetic complications 5 1.5 Aims 7 Part 2: Materials and methods 9 2.1 Cell culture 9 2.1.1 Mouse mesangial cell line (SV40 MES 13) 9 2.1.2 C57BL/6 mouse primary kidney glomerular endothelial cells 9 2.1.3 Rat proximal tubular epithelial cells (NRK-52E) 10 2.2 Cell viability assay 10 2.3 Exosome-depleted FBS preparation 11 2.4 Exosomes preparation 11 2.5 Nanoparticle tacking analysis (NTA) 11 2.6 Animals and treatments 12 2.7 Oral glucose tolerance test (OGTT) 12 2.8 Western blot analysis 12 2.9 Biochemical analysis 14 2.10 Histology 14 2.11 Immunohistochemical analysis 14 2.12 Immunofluorescence analysis 15 2.13 Next-Generation Sequencing (NGS) analysis 16 2.14 Quantitative reverse-transcription PCR 17 2.15 Statistics 18 Part 3: Results 19 3.1 Identification of serum exosomes isolated from control db/m mice and diabetic db/db mice 19 3.2 Effects of diabetic db/db mice-derived exosomes on cell viability and phenotype 19 3.2.1 Diabetic db/db mice-derived exosomes induce cell proliferation and myofibroblast transdifferentiation (MFT) and fibrosis in mouse glomerular mesangial cells (SV40 MES 13) 19 3.2.2 Diabetic db/db mice-derived exosomes tigger inflammation and endothelial mesenchymal transition (EndMT) in C57BL/6 mouse primary kidney glomerular endothelial cells 20 3.2.3 Diabetic db/db mice-derived exosomes prompt epithelial mesenchymal transition (EMT) and fibrosis in rat proximal tubular epithelial cells (NRK-52E) 21 3.3 Effects of diabetic db/db mice-derived exosomes on body weight and blood glucose levels in mice 21 3.4 Diabetic db/db mice-derived exosomes promote nephropathy in mice 22 3.5 Identification of miRNA profile in diabetic db/db mice-derived exosomes associated with renal fibrosis 24 Part 4: Discussion 26 Part 5: Conclusion 32 Part 6: Figures and tables 33 Part 7: References 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 外泌體 | zh_TW |
| dc.subject | FOXO1 | zh_TW |
| dc.subject | miR-669c-3p | zh_TW |
| dc.subject | 纖維化 | zh_TW |
| dc.subject | 糖尿病腎病 | zh_TW |
| dc.subject | miR-669c-3p | en |
| dc.subject | fibrosis | en |
| dc.subject | exosomes | en |
| dc.subject | FOXO1 | en |
| dc.subject | diabetic nephropathy | en |
| dc.title | 外泌體在糖尿病腎病變中扮演的角色 | zh_TW |
| dc.title | Role of exosomes in the diabetic nephropathy in vitro and in vivo | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.author-orcid | 0000-0001-0002-0003 | |
| dc.contributor.advisor-orcid | 劉興華(0000-0001-0002-0003) | |
| dc.contributor.oralexamcommittee | 許美鈴(Meei-Ling Sheu),姜至剛(Chih-Kang Chiang),吳鎮天(Cheng-Tien Wu) | |
| dc.contributor.oralexamcommittee-orcid | 許美鈴(0000-0001-0002-0003),姜至剛(0000-0001-0002-0003),吳鎮天(0000-0001-0002-0003) | |
| dc.subject.keyword | 外泌體,糖尿病腎病,纖維化,miR-669c-3p,FOXO1, | zh_TW |
| dc.subject.keyword | exosomes,diabetic nephropathy,fibrosis,miR-669c-3p,FOXO1, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU202002766 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2020-08-11 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 毒理學研究所 | zh_TW |
| 顯示於系所單位: | 毒理學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1008202010063000.pdf 未授權公開取用 | 3.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
