請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16735
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊平世?(Ping-Shih Yang) | |
dc.contributor.author | Narangarvuu Dashdondog | en |
dc.contributor.author | 達嘎爾烏 | zh_TW |
dc.date.accessioned | 2021-06-07T23:44:41Z | - |
dc.date.copyright | 2014-07-11 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-07 | |
dc.identifier.citation | Allan, D., D. Erickson, and J. Fay. 1997. The influence of catchment land use on stream integrity across multiple spatial scales. Freshwater Biology 37, 149-161.
Allan, J. D. 2004. Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35, 257-284. Arheimer, B., G. Torstensson, and H. B. Wittgren. 2004. Landscape planning to reduce coastal eutrophication: agricultural practices and constructed wetlands. Landscape and Urban Planning 67, 205-215. AUSRIVAS, 2005. Australian River Assessment System (AUSRIVAS) Bioassessment: macroinvertebrates. Canberra, Australia. Azrina, M. Z., C. K. Yap, A. Rahim Ismail, A. Ismail, and S. G. Tan. 2006. Anthropogenic impacts on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River, Peninsular Malaysia. Ecotoxicology and Environmental Safety 64, 337-347. Baptista, D. F., L. F. M. Dorville, D. F. Buss, and J. L. Nessiamian. 2001. Spatial and temporal organization of aquatic insects assemblages in the longitudinal gradient of a tropical river. Revista Brasileira de Biologia 61, 295-304. Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd ed. EPA/841-B-99-002. U.S. EPA Office of Water, Washington, D.C. Barg, L., and R. Kort. 1999. Stream geomorphic assessment. In Watershed hydrology protection and flood mitigation project, phase II - technical analysis: Vermont Agency of Natural Resources, pp. 180. Bazzanti, M., V. Della Bella, and F. Grezzi. 2009. Functional characteristics of macroinvertebrate communities in Mediterranean ponds (Central Italy): influence of water permanence and mesohabitat type, Annales de Limnologie-International Journal of Limnology. Cambridge Univ Press, pp. 29-39. Beisel, J. N., P. Usseglio Polatera, S. Thomas, and J. C. Moreteau. 1998. Stream community structure in relation to spatial variation: the influence of mesohabitat characteristics. Hydrobiologia 389, 73-88. Berg, M. B. 1995. Larval food and feeding behaviour. In: Armitage, P., P. Cranston, and L. C. V. Pinder (Eds.), The Chironomidae. Springer Netherlands, pp. 136-168. Bispo, P. C., and L. G. Oliveira. 2007. Diversity and structure of Ephemeroptera, Plecoptera and Trichoptera (Insecta) assemblages from riffles in mountain streams of Central Brazil. Revista Brasileira de Zoologia 24, 283-293. Braak, C. F., and P. M. Verdonschot. 1995. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Science 57, 255-289. Brewin, P. A., S. T. Buckton, and S. J. Ormerod. 2000. The seasonal dynamics and persistence of stream macroinvertebrates in Nepal: Do monsoon floods represent disturbance? Freshwater Biology 44, 581-594. C.D.P.R. 2004. Standard operatting procedure: instructions for the calibration and use of a spherical densiometer. California Department of Pesticide Regulation (C.D.P.R), Environmental Monitoring Branch, pp. 4. Cairns, J., and J. R. Pratt. 1993. A history of biological monitoring using benthic macroinvertebrates. In: D. M. Rosenberg and V. H. Resh (Eds), Freshwater Biomonitoring and Benthic Macroinvertebrates. Chapman and Hall, New York. pp, 10-27. Carlson, P. E., R. K. Johnson, and B. G. McKie. 2013. Optimizing stream bioassessment: habitat, season, and the impacts of land use on benthic macroinvertebrates. Hydrobiologia 704, 363-373. Chang, H. Y., S. H. Wu, K. T. Shao, W. Y. Kao, C. J. W. Maa, R. Q. Jan, L. L. Liu, C. S. Tzeng, J. S. Hwang, H. L. Hsieh, S. J. Kao, Y. K. Chen, and H. J. Lin. 2012. Longitudinal variation in food sources and their use by aquatic fauna along a subtropical river in Taiwan. Freshwater Biology 57, 1839-1853. Chang, Y. T., and Y. J. Chang. 2013. The investigation of the bacterial indicators and point sources of pollution for the Nanshih River, Taiwan: a case study. Desalination and Water Treatment, 52, 1130-1142. Chen, Y. C. 2013. Flood discharge measurement of a mountain river–Nanshih River in Taiwan. Hydrology and Earth System Sciences 17, 1951-1962. Chiu, C. Y., and C. H. Chou. 1991. The distribution and influence of heavy metals in mangrove forests of the Tamshui estuary in Taiwan. Soil Science and Plant Nutrition 37, 659-669. Chu, L., M. McAleer, and C.-H. Chang. 2013. Statistical modelling of extreme rainfall in Taiwan. Tinbergen Institute, pp. 1-20. Clarke, K., and R. Gorley. 2006. PRIMER (v6): User manual/tutorial, PRIMER-E, Plymouth, UK. Clarke, K., and R. Warwick. 1994. Similarity-based testing for community pattern: the two-way layout with no replication. Marine Biology 118, 167-176. Crawford, J. K., and D. R. Lenat. 1994. Effects of land use on the water quality and aquatic biota of three North Carolina Piedmont streams. Hydrobiologia 294, 185-199. Cummins, K. W. 1973. Trophic relation of aquatic insects. Annual Review of Entomology 18, 183-206. Cummins, K. W., and M. J. Klug. 1979. Feeding ecology of stream invertebrates. Annual Review of Ecology and Systematics 10, 147-172. De Pauw, N., W. Gabriels, and P. L. M. Goethals. 2006. River monitoring and assessment methods based on macroinvertebrates, In: Biological Monitoring of Rivers. Applications and Perspectives, Water Quality Measurements Series. Ziglio G, Siligardi M, Flaim G (Eds). John Wiley and Sons, Ltd.: Chichester; 111-134. Dirmeyer, P. A., D. Niyogi, N. de Noblet-Ducoudre, R. E. Dickinson, and P. K. Snyder. 2010. Impacts of land use change on climate. International Journal of Climatology 30, 1905-1907. Dudgeon, D., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Leveque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. L. J. Stiassny, and C. A. Sullivan. 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews 81, 163-182. EPA. 2010. Taiwan water annual report. Environmental Protection Administration, Taipei, The Republic of China. Everett, T., M. Ishwaran, G. P. Ansaloni, and A. Rubin. 2010. Economic growth and the environment, MPRA Paper 23585, University Library of Munich, Germany. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, and H. K. Gibbs. 2005. Global consequences of land use. science 309, 570-574. Frissell, C., W. Liss, C. Warren, and M. Hurley. 1986. A hierarchical framework for stream habitat classification: Viewing streams in a watershed context. Environmental Management 10, 199-214. Goodnight, C. J. 1973. The use of aquatic macroinvertebrates as indicators of stream pollution. Transactions of the American Microscopical Society 92, 1-13. Graca, M. A. S. 2001. The role of invertebrates on leaf litter decomposition in streams – a review. International Review of Hydrobiology 86, 383-393. Greathouse, E. A., and C. M. Pringle. 2006. Does the river continuum concept apply on a tropical island? Longitudinal variation in a Puerto Rican stream. Canadian Journal of Fisheries and Aquatic Sciences 63, 134-152. Growns, I. O., and J. A. Davis. 1994. Longitudinal changes in near-bed flows and macroinvertebrate communities in a Western Australian Stream. Journal of the North American Benthological Society 13, 417-438. Grubaugh, J., B. Wallace, and E. Houston. 1997. Production of benthic macroinvertebrate communities along a southern Appalachian river continuum. Freshwater Biology 37, 581-596. Guimaraes, R., K. Facure, L. Pavanin, and G. Jacobucci. 2009. Water quality characterization of urban streams using benthic macroinvertebrate community metrics. Acta Limnol. Bras 21, 217-226. Hawkins, C. P., M. L. Murphy, and N. H. Anderson. 1982. Effects of canopy, substrate composition, and gradient on the structure of macroinvertebrate communities in cascade range streams of Oregon. Ecology 63, 1840-1856. Hawkins, C. P., and J. R. Sedell. 1981. Longitudinal and seasonal changes in functional organization of macroinvertebrate communities in four Oregon Streams. Ecology 62, 387-397. Helms, B. S., J. E. Schoonover, and J. W. Feminella. 2009. Seasonal variability of landuse impacts on macroinvertebrate assemblages in streams of western Georgia, USA. Journal of the North American Benthological Society 28, 991-1006. Henriques-Oliveira, A. L., and J. L. Nessimian. 2010. Aquatic macroinvertebrate diversity and composition in streams along an altitudinal gradient in Southeastern Brazil. Biota Neotropica 10, 115-128. Hilsenhoff, W. L. 1988. Rapid field assessment of organic pollution with a family-level biotic index. Journal of the North American Benthological Society 7, 65-68. Hoang, T. H., K. Lock, K. C. Dang, N. De Pauw, and P. Goethals. 2010. Spatial and temporal patterns of macroinvertebrate communities in the du River basin in northern Vietnam. Journal of Freshwater Ecology 25, 637-647. Hsu, C. B., and P. S. Yang. 1997. Study on the assessment of water quality with biological indicators of aquatic insects in the Keelung River. Chin. J. Entomol 17, 152-162. Hsu, C. B., and P. S. Yang. 2005. Examining the relationship between aquatic insect assemblages and water variables by ordination techniques. Formosan Entomol 25, 67-85. Hsu, H. H., C. Chia, Y. C. Wu, M. M. Lu, C. T. Chen, and Y. M. Chen. 2011. Climate Change in Taiwan: Scientific Report 2011, pp. 67. Hu, T. J., H. W. Wang, and H. Y. Lee. 2007. Assessment of environmental conditions of Nan-Shih stream in Taiwan. Ecological Indicators 7, 430-441. Huang, J. C., C. C. Lin, S. C. Chan, T. Y. Lee, S. C. Hsu, C. T. Lee, and J. C. Lin. 2011. Stream discharge characteristics through urbanization gradient in Danshui River, Taiwan: perspectives from observation and simulation. Environmental Monitoring Assessment 184, 5689-5703. Hynes, H. B. N. 1970. The ecology of running waters. Univ. Toronto Press, Canada, pp. 555. Jiang, X., J. Xiong, Z. Xie, and Y. Chen. 2011. Longitudinal patterns of macroinvertebrate functional feeding groups in a Chinese river system: A test for river continuum concept (RCC). Quaternary International 244, 289-295. Johnson, R. K., T. Widerholm, and D. M. Rosenberg. 1993. Freshwater biomonitoring using individual organisms, populations, and species assemblages of benthic macroinvertebrates. In: Rosenberg, D. M., and V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, pp. 40-158. Jowett, I. G., and J. Richardson. 1990. Microhabitat preferences of benthic invertebrates in a New Zealand river and the development of in‐stream flow‐habitat models for Deleatidium spp. New Zealand journal of marine and freshwater research 24, 19-30. Kang, S. C. 1993. Ephemeroptera of Taiwan (excluding Baetidae), Entomology National Chung Hsing University, Taichung, The Republic of China. Karr, J. R., and E. W. Chu. 1995. Ecological integrity: reclaiming lost connections, perspectives on ecological integrity. Kluwer Academic, Dordrecht, The Netherlands, pp. 34-48. Kawai, T. 1985. An illustrated book of aquatic insects of Japan. Tokai Univ.Press, Tokyo. Kefford, B. 1998. The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. International Journal of Salt Lake Research 7, 153-170. Kolkwitz, R., and M. Marsson. 1909. Okologie der tierischen Saprobien. Beitrage zur Lehre von der biologischen Gewasserbeurteilung. Internationale Revue der Gesamten Hydrobiologie und Hydrographie 2, 126-152. Lenat, D. R. 1993. A biotic index for the southeastern United States: derivation and list of tolerance values, with criteria for assigning water-quality ratings. Journal of the North American Benthological Society 12, 279-290. Lepš, J., and P. Šmilauer. 2003. Multivariate analysis of ecological data using CANOCO. Cambridge university press. Lettenmaier, D. D., L. P. Major, and S. Running. 2008. Water Resources. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States. U.S. Climate change science program and the subcommittee on global change research, Washington, DC, USA, pp. 362. Lin, K. C., S. P. Hamburg, S. L. Tang, Y. J. Hsia, and T. C. Lin. 2003. Typhoon effects on litterfall in a subtropical forest. Canadian Journal of Forest Research 33, 2184-2192. Liou, S.-M., S.-L. Lo, and S.-H. Wang. 2004. A generalized water quality index for Taiwan. Environmental Monitoring and Assessment 96, 35-52. Mabry, C. M., S. P. Hamburg, T. C. Lin, F. W. Horng, H. B. King, and Y. J. Hsia. 1998. Typhoon disturbance and stand‐level damage patterns at a subtropical forest in Taiwan. Biotropica 30, 238-250. Magee, P., L. Fredrickson, and D. Humburg. 1993. Aquatic macroinvertebrate association with willow wetlands in northeastern Missouri. Wetlands 13, 304-310. Marchant, R. 2007. The use of taxonomic distinctness to assess environmental disturbance of insect communities from running water. Freshwater Biology 52, 1634-1645. Margalef, R. 1968. Perspectives in Ecological Theory. Univ. Chicago Press, Chicago, pp. 111. Matson, P. A., W. J. Parton, A. Power, and M. Swift. 1997. Agricultural intensification and ecosystem properties. Science 277, 504-509. Merritt, R. W., K. W. Cummins, and M. B. Berg. 2008. An Introduction to the aquatic insects of North America, 4 ed. Kendall/Hunt Publishing Company, Dubuque, Iowa. Metcalfe, J. L. 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: history and present status in Europe. Environmental Pollution 60, 101-139. Meyer, J. L., M. J. Paul, and W. K. Taulbee. 2005. Stream ecosystem function in urbanizing landscapes. Journal of the North American Benthological Society 24, 602-612. Milliman, J. D., and J. P. Syvitski. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology 100, 525-544. Minshall, G. W., R. C. Petersen, K. W. Cummins, T. L. Bott, J. R. Sedell, C. E. Cushing, and R. L. Vannote. 1983. Interbiome comparison of stream ecosystem dynamics. Ecological Monographs 53, 1-25. Mol, A. 1980. The role of the invertebrate fauna in the biological assessment of water quality. Hydrobiological Bulletin 14, 222-223. Morse, J. C., Y. J. Bae, G. Munkhjargal, N. Sangpradub, K. Tanida, T. S. Vshivkova, B. Wang, L. Yang, and C. M. Yule. 2007. Freshwater biomonitoring with macroinvertebrates in East Asia. Frontiers in Ecology and the Environment 5, 33-42. Nessimian, J., E. Venticinque, J. Zuanon, P. De Marco, M. Gordo, L. Fidelis, J. D’arc Batista, and L. Juen. 2008. Land use, habitat integrity, and aquatic insect assemblages in Central Amazonian streams. Hydrobiologia 614, 117-131. Norris, R. H., and A. Georges. 1993. Analysis and interpretation of benthic macroinvertebrate surveys. In: Rosenberg, D. M., and V. H. Resh (Eds.), Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York, New York, pp. 234-286. Omerik, J. M. 1977. Nonpoint source stream nutrient level relationships: A nationwide study. EPA-600/3-77-105. US Environmental Protection Agency, Corvallis, OR. Ormerod, S., and R. Edwards. 1987. The ordination and classification of macroinvertebrate assemblages in the catchment of the River Wye in relation to environmental factors. Freshwater Biology 17, 533-546. Paul, M. J., and J. L. Meyer. 2001. Streams in the urban landscape. Annual Review of Ecology and Systematics 32, 333-365. Pielou, E. C. 1966. Shannon's formula as a measure of specific diversity: its use and misuse. The American Naturalist 100, 463-465. Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. EPA/440/4-89/001. U.S. EPA Office of Water, Washington, D.C. Principe, R. E., C. M. Gualdoni, A. M. Oberto, G. B. Raffaini, and M. C. Corigliano. 2010. Spatial-temporal patterns of functional feeding groups in mountain streams of Cordoba, Argentina. Ecologia Austral 20, 257-268. R Development Core Team. 2014. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ROC. 2011. The Republic of China Yearbook. The Republic of China (ROC), pp. 282. ROC. 2012. The Republic of China Yearbook. The Republic of China (ROC), pp. 588. Rosenberg, D. M., I. J. Davies, D. G. Cobb, and A. P. Wiens. 1998. Protocols for measuring biodiversity: Benthic macroinvertebrates in fresh waters, report for the Ecological Monitoring and Assessment Network (EMAN) Biodiversity Science Board (BSB), Canada, pp. 43. Rosenberg, D. M., and V. H. Resh. 1993. Freshwater biomonitoring and benthic macroinvertebrates. Chapman and Hall, New York. Roy, A. H., A. D. Rosemond, M. J. Paul, D. S. Leigh, and J. B. Wallace. 2003. Stream macroinvertebrate response to catchment urbanisation (Georgia, U.S.A.). Freshwater Biology 48, 329-346. SAS. 2010. JMPRVersion 9. SAS Institute Inc, Cary, NC. SAS. 2012. JMPRVersion 10. SAS Institute Inc, Cary, NC. Shannon, C., and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press, Urbana, USA. pp.144. Shaviv, A., and R. L. Mikkelsen. 1993. Controlled-release fertilizers to increase efficiency of nutrient use and minimize environmental degradation - A review. Fertilizer Research 35, 1-12. Shieh, S. H., C. B. Hsu, C. P. Wang, and P. S. Yang. 2007. Leaf breakdown in a subtropical stream riffle and its association with macroinvertebrates. Zoological Studies 46, 609-621. Shieh, S. H., L. K. Wang, and W. F. Hsiao. 2012. Shifts in functional traits of aquatic insects along a subtropical stream in Taiwan. Zoological Studies 51, 1051-1065. Shieh, S. H., and P. S. Yang. 1999. Colonization patterns of macroinvertebrates on artificial substrates in a Taiwanese stream. Formosan Entomol 19, 27-50. Shieh, S. H., and P. S. Yang. 2000. Community structure and functional organization of aquatic insects in an agricultural mountain stream of Taiwan: 1985-1986 and 1995-1996. Zoological Studies 39, 191-202 Shih, Y. Z. 2007. River pollution load evualation - for example Beishi River (in Chinese), National Taiwan University. Silveira, M., D. Buss, J. Nessimian, and D. Baptista. 2006. Spatial and temporal distribution of benthic macroinvertebrates in a Southeastern Brazilian river. Brazilian Journal of Biology 66, 623-632. Simpson, E. H. 1949. Measurement of diversity. Nature 163, 688. Smilauer, P., and C. ter Braak. 2002. CANOCO reference manual on CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Stark, J., I. Boothroyd, J. Harding, J. Maxted, and M. Scarsbrook. 2001. Protocols for sampling macroinvertebrates in wadeable streams, New Zeland, pp. 57. Thorp, J. H., J. E. Flotemersch, M. D. Delong, A. F. Casper, M. C. Thoms, F. Ballantyne, B. S. Williams, B. J. O'Neill, and C. S. Haase. 2010. Linking ecosystem services, rehabilitation, and river hydrogeomorphology. BioScience 60, 67-74. Tomanova, S., P. A. Tedesco, M. Campero, P. A. Van Damme, N. Moya, and T. Oberdorff. 2007. Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept. Fundamental and Applied Limnology/Archiv fur Hydrobiologie 170, 233-241. Townsend, C. R., S. Doledec, R. Norris, K. Peacock, and C. Arbuckle. 2003. The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshwater Biology 48, 768-785. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell, and C. E. Cushing. 1980. The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130-137. Vitousek, P. M., H. A. Mooney, J. Lubchenco, and J. M. Melillo. 1997. Human domination of earth's ecosystems. Science 277, 494-499. Wallace, J. B., and J. R. Webster. 1996. The role of macroinvertebrates in stream ecosystem function. Annual review of entomology 41, 115-139. Warfe, D. M., L. A. Barmuta, and S. Wotherspoon. 2008. Quantifying habitat structure: surface convolution and living space for species in complex environments. Oikos 117, 1764-1773. Wentworth, C. K. 1922. A scale of grade and class terms for clastic sediments. The Journal of Geology, 377-392. WFD, 2000. Water framework directive (WFD) 2000/60/EC. Official Journal of the European Communities 23, 1-72. Whiting, P. J. 2005. Flow measurement and characterization, tools in fluvial geomorphology. John Wiley and Sons, Ltd, pp. 323-346. Wright, J. F., D. Moss, P. D. Armitage, and M. T. Furse. 1984. A preliminary classification of running-water sites in Great Britain based on macro-invertebrate species and the prediction of community type using environmental data. Freshwater Biology 14, 221-256. Zamora Munoz, C., A. Sanchez Ortega, and J. Alba Tercedor. 1993. Physico-chemical factors that determine the distribution of mayflies and stoneflies in a high-mountain stream in Southern Europe (Sierra Nevada, Southern Spain). Aquatic Insects 15, 11-20. Zar, J. H. 1998. Biostatistical analysis. Prentice Hall PTR, Upper Saddle River. Zhang, Y. Q. 2009. Effect of tea fertilizer on the Beishi River, Taiwan (in Chinese). National Taiwan University. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16735 | - |
dc.description.abstract | 本研究於對鄰近都會地區和農業開發活動之新店溪流域,根據不同時間季節及空間環境對其水棲生物之功能攝食群與各樣點之環境參數的相關性進行調查,以瞭解於當地溪流中無脊椎生物功能攝食群於不同環境與季節之群聚結構,並以其用於進行水質監測的指標生物;另外,河川之物理變量,包括海拔高度,河流寬度和與源頭之距離,並利用其和功能攝食群檢測河川連續概念。本研究供選擇7個樣區,自2010年12月至2012年12月,進行定期採樣 。
根據調查結果發現,共有8目46科87屬之水棲昆蟲,及另外3屬非昆蟲之底棲無脊椎生物被記錄;其中主要為脈翅目及雙翅目之幼蟲。其中無論根據Shannon, Simpson, and Pielou’s之指數分析,皆顯示於位於上游之樣區XD2、XD3及XD4 之物種密度與豐度皆高於位於下游之樣區XD5、XD6及XD7;而此結果亦與樣區受到之人為影響相符合。於樣區XD7中以能夠於底棲指標中,代表高度污染的搖蚊屬及貧毛綱為其主要物種。而在所有樣區,聚集者(collector-gatherers)不論時空變換皆為主要物種,亦符合本實驗之預期。 新店溪流域的水棲無脊椎生物之功能攝食群結構明顯受到其時空間變化影響,在不同月份及地點的群聚結構有明顯不同。聚集者(collector-gatherers)不論地點或季節皆為樣區之主要物種。物種豐度、碎食者 (shredders) 及捕食者 (predators) 從上游至下游漸漸減少,其結果符合河川連續概念 (River Continuum Concept)。研究結果顯示溶氧量、導電度、河床底質為卵石或礫石,為影響河流中功能攝食群組成的最主要因素。 而根據本研究之研究結果,根據不同之底棲生物指標,新店溪流域之水質由上游至下游漸漸劣化。簡言之 ,本研究認為以底棲生物作為水域之水質指標有其價值與重要性。 | zh_TW |
dc.description.abstract | The effect of human impacts on river ecosystem is gaining attention, and concerns about the situation of freshwater natural resources are increasing globally, as are attempts to restore habitat that has been degraded by disturbance. Macroinvertebrates are most commonly used in bioassessment due to their ability of responses to alterations in water quality and provide a more localized assessment to the river condition. In the current study, we describe the spatial and temporal patterns of community structures and functional feeding groups (FFGs) of macroinvertebrates in relation to environmental variables, and assess the water quality using benthic metrics along a reach of the watershed with considerable economic importance at the Xindian watershed in Taiwan. The research was carried out at seven sampling sites (abbreviated as XD1-XD7) which have different human impacts from upstream tributaries to the downstream of the Xindian watershed from December 2010 to December 2012, once per month periodically. A total of eighty seven taxa belonging to forty six families within 8 insect orders, along with 3 other invertebrate taxa, were recorded, with most representative orders of Ephemeroptera and Diptera. In general, the mean values of density, abundance of macroinvertebrates, and diversity indices (Shannon, Simpson, and Pielou’s) were much higher in the upstream-undisturbed sites (XD1, XD2, XD3, and XD4) compared with midstream and downstream-impacted sites (XD5, XD6, and XD7). Collector-gatherers were the most dominant FFG at all sampling sites during the study period. Results of ordination showed that upstream sites were clustered closer which separate from the middle and downstream. The results of the canonical correspondence analysis (CCA) suggested that water quality measures, such as conductivity, ammonia, phosphate, and hardness were the most determinant factors in the downstream sites, while habitat measures, such as altitude, width, and canopy cover were the most important factors explaining the variability in macroinvertebrate assemblages in the upstream. The results of redundancy analysis (RDA) based on the relationships between environmental variables and FFGs showed that the altitude and substrate composition showed higher correlation with RDA axis 1 where a higher number of shredders and predators found at the upstream sites. The relative proportions of shredders and predators were decreased, while the collector-filterers were increased along the Xindian watershed. Moreover, a synthetic longitudinal gradient, including the altitude, canopy cover, river width, and distances from source showed a higher correlation with the taxon richness and shredders. Most of the benthic metrics were greater in the reference site compared to the impacted sites. As the result of assessment of different benthic metrics, water quality of Xindian watershed became gradually worse from upstream to downstream. The results of community structure, FFGs patterns of the macroinvertebrates and their relations with the environmental variables also clearly indicated that downstream sites impacted by human activities. Results of the univariate and multivariate analysis suggest that macroinvertebrate assemblages can be used for assessment of water quality. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:44:41Z (GMT). No. of bitstreams: 1 ntu-103-D98632005-1.pdf: 2745122 bytes, checksum: 6973f824f18f0fa8b79d88483d18c07e (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | Contents
Acknowledgements iii 中文摘要 iv Abstract vi List of tables xi List of figures xiii Abbreviations xv CHAPTER 1 GENERAL INTRODUCTION 1 1.1 Background 1 1.2 Freshwater bioassessment 3 1.3 Objectives of the study 5 1.4 Dissertation outline 6 CHAPTER 2 CHARACTERISTICS OF STUDY AREA AND SAMPLING SITES 8 2.1 Introduction 8 2.2 Climate conditions and river ecosystem in Taiwan 8 2.2.1 Climate characteristics of the Xindian watershed 9 2.3 Study area 10 2.3.1 Nanshi River basin 10 2.3.2 Beishi River basin 11 2.3.3 Sampling sites 11 CHAPTER 3 MACROINVETEBRATE ASSEMBLAGES AS INDICATORS OF WATER QUALITY IN THE XINDIAN WATERSHED 17 3.1 Abstract 17 3.2 Introduction 18 3.3 Materials and methods 20 3.3.1 Environmental variables 20 3.3.2 Macroinvertebrate sampling 20 3.3.3 Data analysis 21 3.4 Results 22 3.4.1 Environmental variables 22 3.4.2 Macroinvertebrate communities 23 3.4.3 Benthic metrics 24 3.4.4 Relationships between benthic metrics and environmental variables 25 3.5 Discussion 25 3.6 Conclusion 27 CHAPTER 4 SPATIAL AND TEMPORAL PATTERNS OF MACROINVERTEBRATE ASSEMBLAGES IN RELATION TO ENVIRONMENTAL VARIABLES 35 4.1 Abstract 35 4.2 Introduction 36 4.3 Material and methods 37 4.3.1 Water quality measures 37 4.3.2 Hydrology measures 37 4.3.3 Habitat measures 38 4.3.4 Macroinvertebrate communities 39 4.3.5 Data analysis 40 4.4 Results 43 4.4.1 Description of the environmental variables 43 4.4.2 Seasonal patterns of the environmental variables 44 4.4.2 Macroinvertebrate communities 45 4.4.3 Ordination analysis 47 4.5 Discussion 49 4.6 Conclusion 52 CHAPTER 5 LONGITUDINAL PATTERNS OF FUNCTIONAL FEEDING GROUPS OF MACROINVERTERATES 67 5.1 Abstract 67 5.2 Introduction 68 5.3 Material and methods 69 5.3.1 Environmental variables 69 5.3.2 Macroinvertebrate communities 69 5.3.3 Data analysis 70 5.4 Results 71 5.4.1 Longitudinal and seasonal patterns of environmental variables 71 5.4.2 Spatial patterns of macroinvertebrate FFGs 72 5.4.3 Relationships between FFGs and environmental variables 74 5.5 Discussion 75 5.6 Conclusion 78 CHAPTER 6 SUMMARY 91 REFERENCES 94 APPENDIX 108 | |
dc.language.iso | en | |
dc.title | 新店溪流域大型無脊椎動物之時空變化:
在生物評估之應用 | zh_TW |
dc.title | Spatial and Temporal Variability of Macroinvertebrate Assemblages in Xindian Watershed, Taiwan:
Implications for Bioassessment | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 謝森和(Sen-Her Shieh),徐崇斌(Chorng-Bin Hsu),鄭明倫(Ming-Luen Jeng),助理教授(Rita Sau-Wai Yam) | |
dc.subject.keyword | 底棲生物組成,底棲生物指標,新店溪水質,台灣, | zh_TW |
dc.subject.keyword | Macroinvertebrate assemblages,functional feeding groups,benthic metrics,Xindian watershed,Taiwan, | en |
dc.relation.page | 126 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-07-07 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 昆蟲學研究所 | zh_TW |
顯示於系所單位: | 昆蟲學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。