請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16729完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳宏文(Hung-Wen Chen) | |
| dc.contributor.author | Yueh-Ho Chiu | en |
| dc.contributor.author | 邱越荷 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:44:34Z | - |
| dc.date.copyright | 2014-08-14 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-08 | |
| dc.identifier.citation | 1. Gude, N.M., et al., Growth and function of the normal human placenta. Thromb Res, 2004. 114(5-6): p. 397-407.
2. Bischof, P. and I. Irminger-Finger, The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol, 2005. 37(1): p. 1-16. 3. Huppertz, B. and M. Borges, Placenta trophoblast fusion. Methods Mol Biol, 2008. 475: p. 135-47. 4. Handwerger, S., New insights into the regulation of human cytotrophoblast cell differentiation. Mol Cell Endocrinol, 2010. 323(1): p. 94-104. 5. Cross, J.C., et al., Genes, development and evolution of the placenta. Placenta, 2003. 24(2-3): p. 123-30. 6. Hosoya T, T.K., Nitta K, Hotta Y., glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 1995. 82(6): p. 1025-36. 7. Jones BW, F.R., Tear G, Goodman CS, glial cells missing: A Genetic Switch That Controls Glial versus Neuronal Fate. Cell 1995. 82(6): p. 1013-23. 8. Wegner, M. and D. Riethmacher, Chronicles of a switch hunt: gcm genes in development. Trends Genet, 2001. 17(5): p. 286-90. 9. Cohen, S.X., et al., Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J, 2003. 22(8): p. 1835-45. 10. L., A.-C., et al., The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet, 2000. 25(3): p. 311-4. 11. Schreiber, J., et al., Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol, 2000. 20(7): p. 2466-74. 12. Gunther, T., et al., Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature, 2000. 406(6792): p. 199-203. 13. Desai, J., et al., Signal transduction and biological function of placenta growth factor in primary human trophoblast. Biol Reprod, 1999. 60(4): p. 887-92. 14. Ding, C.L., B. Buckingham, and M.A. Levine, Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. Journal of Clinical Investigation, 2001. 108(8): p. 1215-1220. 15. Rawn, S.M. and J.C. Cross, The evolution, regulation, and function of placenta-specific genes. Annu Rev Cell Dev Biol, 2008. 24: p. 159-81. 16. Baczyk, D., et al., Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ, 2009. 16(5): p. 719-27. 17. Yamada K, O.H., Honda S, Harada N, Okazaki T., A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem, 1999. 274(45): p. 32279-86. 18. Malassine, A., et al., Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells. Placenta, 2007. 28(2-3): p. 185-91. 19. Chen, C.P., et al., Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod, 2008. 79(5): p. 815-23. 20. Esnault, C., et al., A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci U S A, 2008. 105(45): p. 17532-7. 21. Vargas, A., et al., Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol, 2009. 392(2): p. 301-18. 22. Liang, C.Y., et al., GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol Reprod, 2010. 83(3): p. 387-95. 23. Yu, C., et al., GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem, 2002. 277(51): p. 50062-8. 24. Chang, M., et al., Glial cell missing 1 regulates placental growth factor (PGF) gene transcription in human trophoblast. Biol Reprod, 2008. 78(5): p. 841-51. 25. De Falco, S., The discovery of placenta growth factor and its biological activity. Exp Mol Med, 2012. 44(1): p. 1-9. 26. Wang, L.J., et al., High-temperature requirement protein A4 (HtrA4) suppresses the fusogenic activity of syncytin-1 and promotes trophoblast invasion. Mol Cell Biol, 2012. 32(18): p. 3707-17. 27. Chen, C.P., et al., Decreased placental GCM1 (glial cells missing) gene expression in pre-eclampsia. Placenta, 2004. 25(5): p. 413-21. 28. Lipinska, B., M. Zylicz, and C. Georgopoulos, The Htra (Degp) Protein, Essential for Escherichia-Coli Survival at High-Temperatures, Is an Endopeptidase. Journal of Bacteriology, 1990. 172(4): p. 1791-1797. 29. Strauch KL, J.K., Beckwith J., Characterization of degP, a gene required for proteolysis in the cell envelope and essential for growth of Escherichia coli at high temperature. J Bacteriol., 1989. 171(5): p. 2689-96. 30. Clausen, T., C. Southan, and M. Ehrmann, The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell, 2002. 10(3): p. 443-55. 31. Kadomatsu, T., M. Mori, and K. Terada, Mitochondrial import of Omi: the definitive role of the putative transmembrane region and multiple processing sites in the amino-terminal segment. Biochem Biophys Res Commun, 2007. 361(2): p. 516-21. 32. Martins, L.M., et al., The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem, 2002. 277(1): p. 439-44. 33. Hegde, R., et al., Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem, 2002. 277(1): p. 432-8. 34. Verhagen, A.M., et al., HtrA2 promotes cell death through its serine protease activity and its ability to antagonize inhibitor of apoptosis proteins. J Biol Chem, 2002. 277(1): p. 445-54. 35. Gray, C.W., et al., Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem, 2000. 267(18): p. 5699-710. 36. Inagaki, R., et al., Omi / HtrA2 is relevant to the selective vulnerability of striatal neurons in Huntington's disease. Eur J Neurosci, 2008. 28(1): p. 30-40. 37. Chien J, C.M., Shridhar V, Baldi A., HtrA Serine Proteases as Potential Therapeutic Targets in Cancer. Curr Cancer Drug Targets., 2009. 9(4): p. 451-68. 38. Westerlund, M., et al., Altered enzymatic activity and allele frequency of OMI/HTRA2 in Alzheimer's disease. FASEB J, 2011. 25(4): p. 1345-52. 39. Clawson, G.A., et al., Intracellular localization of the tumor suppressor HtrA1/Prss11 and its association with HPV16 E6 and E7 proteins. J Cell Biochem, 2008. 105(1): p. 81-8. 40. Chien, J., et al., Serine protease HtrA1 associates with microtubules and inhibits cell migration. Mol Cell Biol, 2009. 29(15): p. 4177-87. 41. He, X., et al., Downregulation of HtrA1 promotes resistance to anoikis and peritoneal dissemination of ovarian cancer cells. Cancer Res, 2010. 70(8): p. 3109-18. 42. Zumbrunn, J. and B. Trueb, Primary structure of a putative serine protease specific for IGF-binding proteins. FEBS Lett, 1996. 398(2-3): p. 187-92. 43. Nie, G., et al., Distinct expression and localization of serine protease HtrA1 in human endometrium and first-trimester placenta. Dev Dyn, 2006. 235(12): p. 3448-55. 44. Chien, J., et al., Serine protease HtrA1 modulates chemotherapy-induced cytotoxicity. J Clin Invest, 2006. 116(7): p. 1994-2004. 45. Nie, G.Y., et al., Identification and cloning of two isoforms of human high-temperature requirement factor A3 (HtrA3), characterization of its genomic structure and comparison of its tissue distribution with HtrA1 and HtrA2. Biochem J, 2003. 371(Pt 1): p. 39-48. 46. Clausen, T., et al., HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol, 2011. 12(3): p. 152-62. 47. Oka, C., et al., HtrA1 serine protease inhibits signaling mediated by Tgfbeta family proteins. Development, 2004. 131(5): p. 1041-53. 48. Tocharus J, T.A., Kajikawa M, Ueta Y, Oka C, Kawaichi M., Developmentally regulated expression of mouse HtrA3 and its role as an inhibitor of TGF-beta signaling. Dev Growth Differ, 2004. 46(3): p. 257-74. 49. Beleford, D., et al., Methylation induced gene silencing of HtrA3 in smoking-related lung cancer. Clin Cancer Res, 2010. 16(2): p. 398-409. 50. De Luca, A., et al., The serine protease HtrA1 is upregulated in the human placenta during pregnancy. J Histochem Cytochem, 2004. 52(7): p. 885-92. 51. Nie, G., J.K. Findlay, and L.A. Salamonsen, Identification of novel endometrial targets for contraception. Contraception, 2005. 71(4): p. 272-81. 52. Li, Y., et al., Placental HtrA3 is regulated by oxygen tension and serum levels are altered during early pregnancy in women destined to develop preeclampsia. J Clin Endocrinol Metab, 2011. 96(2): p. 403-11. 53. Evans, T., M. Reitman, and G. Felsenfeld, An Erythrocyte-Specific DNA-Binding Factor Recognizes a Regulatory Sequence Common to All Chicken Globin Genes. Proceedings of the National Academy of Sciences of the United States of America, 1988. 85(16): p. 5976-5980. 54. Pevny, L., et al., Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature, 1991. 349(6306): p. 257-60. 55. Lowry, J.A. and W.R. Atchley, Molecular evolution of the GATA family of transcription factors: conservation within the DNA-binding domain. J Mol Evol, 2000. 50(2): p. 103-15. 56. Chou, J., S. Provot, and Z. Werb, GATA3 in development and cancer differentiation: cells GATA have it! J Cell Physiol, 2010. 222(1): p. 42-9. 57. Morrisey EE, I.H., Tang Z, Parmacek MS., GATA-4 Activates Transcription Via Two Novel Domains That Are Conserved within the GATA-4/5/6 Subfamily. J Biol Chem, 1997. 272(13): p. 8515-24. 58. Takemoto, N., K. Arai, and S. Miyatake, Cutting edge: the differential involvement of the N-finger of GATA-3 in chromatin remodeling and transactivation during Th2 development. J Immunol, 2002. 169(8): p. 4103-7. 59. Zhou, M. and W. Ouyang, The function role of GATA-3 in Th1 and Th2 differentiation. Immunol Res, 2003. 28(1): p. 25-37. 60. Yamashita, M., et al., Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem, 2004. 279(26): p. 26983-90. 61. Tevosian SG, D.A., Cantor AB, Rieff HI, Fujiwara Y, Corfas G, Orkin SH., FOG-2: A novel GATA-family cofactor related to multitype zinc-finger proteins Friend of GATA-1 and U-shaped. Proc Natl Acad Sci U S A, 1999. 96(3): p. 950-5. 62. Svensson, E.C., et al., Molecular cloning of FOG-2: a modulator of transcription factor GATA-4 in cardiomyocytes. Proc Natl Acad Sci U S A, 1999. 96(3): p. 956-61. 63. Fox, A.H., et al., Key residues characteristic of GATA N-fingers are recognized by FOG. J Biol Chem, 1998. 273(50): p. 33595-603. 64. Tsang, A.P., et al., FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell, 1997. 90(1): p. 109-119. 65. Gaines, P., et al., GATA-1- and FOG-dependent activation of megakaryocytic alpha IIB gene expression. J Biol Chem, 2000. 275(44): p. 34114-21. 66. Dai, Y.S. and B.E. Markham, p300 Functions as a coactivator of transcription factor GATA-4. J Biol Chem, 2001. 276(40): p. 37178-85. 67. Yamashita, K., et al., Molecular regulation of the endothelin-1 gene by hypoxia. Contributions of hypoxia-inducible factor-1, activator protein-1, GATA-2, AND p300/CBP. J Biol Chem, 2001. 276(16): p. 12645-53. 68. Tremblay, J.J. and R.S. Viger, Transcription factor GATA-4 is activated by phosphorylation of serine 261 via the cAMP/protein kinase a signaling pathway in gonadal cells. J Biol Chem, 2003. 278(24): p. 22128-35. 69. Kaufman, C.K., et al., GATA-3: an unexpected regulator of cell lineage determination in skin. Genes Dev, 2003. 17(17): p. 2108-22. 70. Kouros-Mehr, H. and Z. Werb, Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn, 2006. 235(12): p. 3404-12. 71. Gregory, B.D., et al., A link between RNA metabolism and silencing affecting Arabidopsis development. Dev Cell, 2008. 14(6): p. 854-66. 72. Tsai, F.Y., C.P. Browne, and S.H. Orkin, Knock-in mutation of transcription factor GATA-3 into the GATA-1 locus: partial rescue of GATA-1 loss of function in erythroid cells. Dev Biol, 1998. 196(2): p. 218-27. 73. Ranganath, S. and K.M. Murphy, Structure and specificity of GATA proteins in Th2 development. Mol Cell Biol, 2001. 21(8): p. 2716-25. 74. Pandolfi, P.P., et al., Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet, 1995. 11(1): p. 40-4. 75. Ho, I.C., T.S. Tai, and S.Y. Pai, GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol, 2009. 9(2): p. 125-35. 76. Taghon, T., M.A. Yui, and E.V. Rothenberg, Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol, 2007. 8(8): p. 845-55. 77. Grogan, J.L. and R.M. Locksley, T helper cell differentiation: on again, off again. Current Opinion in Immunology, 2002. 14(3): p. 366-372. 78. Fang, T.C., et al., Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity, 2007. 27(1): p. 100-10. 79. Amsen, D., et al., Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity, 2007. 27(1): p. 89-99. 80. Shackleton, M., et al., Generation of a functional mammary gland from a single stem cell. Nature, 2006. 439(7072): p. 84-8. 81. Stingl, J., et al., Purification and unique properties of mammary epithelial stem cells. Nature, 2006. 439(7079): p. 993-7. 82. Kouros-Mehr, H., et al., GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell, 2006. 127(5): p. 1041-55. 83. Asselin-Labat, M.L., et al., Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol, 2007. 9(2): p. 201-9. 84. Perou, C.M., et al., Molecular portraits of human breast tumours. Nature, 2000. 406(6797): p. 747-52. 85. Sorlie, T., et al., Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001. 98(19): p. 10869-74. 86. Jenssen, T.K., et al., Associations between gene expressions in breast cancer and patient survival. Hum Genet, 2002. 111(4-5): p. 411-20. 87. Sorlie, T., et al., Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8418-23. 88. Mehra, R., et al., Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res, 2005. 65(24): p. 11259-64. 89. Kouros-Mehr, H., et al., GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell, 2008. 13(2): p. 141-52. 90. Usary, J., et al., Mutation of GATA3 in human breast tumors. Oncogene, 2004. 23(46): p. 7669-78. 91. Coussens, L.M. and Z. Werb, Inflammation and cancer. Nature, 2002. 420(6917): p. 860-7. 92. Condeelis, J. and J.W. Pollard, Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 2006. 124(2): p. 263-6. 93. Lin, E.Y., et al., Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res, 2006. 66(23): p. 11238-46. 94. DeNardo, D.G., et al., CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell, 2009. 16(2): p. 91-102. 95. Bingle, L., N.J. Brown, and C.E. Lewis, The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol, 2002. 196(3): p. 254-65. 96. Ng YK, G.K., Engel JD, Linzer DI., GATA factor activity is required for the trophoblast-specific transcriptional regulation of the mouse placental lactogen I gene. Development, 1994. 120(11): p. 3257-66. 97. Ma, G.T., et al., GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo. Development, 1997. 124(4): p. 907-14. 98. Liang, R., S.W. Limesand, and R.V. Anthony, Structure and transcriptional regulation of the ovine placental lactogen gene. Eur J Biochem, 1999. 265(3): p. 883-95. 99. Steger, D.J., J.H. Hecht, and P.L. Mellon, GATA-binding proteins regulate the human gonadotropin alpha-subunit gene in the placenta and pituitary gland. Mol Cell Biol, 1994. 14(8): p. 5592-602. 100. Cheng, K.W., B.K. Chow, and P.C. Leung, Functional mapping of a placenta-specific upstream promoter for human gonadotropin-releasing hormone receptor gene. Endocrinology, 2001. 142(4): p. 1506-16. 101. Ralston, A., et al., Gata3 regulates trophoblast development downstream of Tead4 and in parallel to Cdx2. Development, 2010. 137(3): p. 395-403. 102. Cheng, Y.H. and S. Handwerger, A placenta-specific enhancer of the human syncytin gene. Biol Reprod, 2005. 73(3): p. 500-9. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16729 | - |
| dc.description.abstract | 在人類胎盤滋養層細胞 (trophoblast cell) 的分化過程中,專ㄧ性表現在胎盤的GCM1 (glial cells missing 1) 轉錄因子會藉由啟動下游不同的目標基因來促使具有幹細胞特性的細胞性滋養層細胞 (cytotrophoblast, CTB) 分化成兩種不同的特化細胞: 融合滋養層細胞 (syncytiotrophoblast, STB) 及絨毛外滋養層細胞 (extravillous trophoblasts, EVT)。GCM1藉由活化syncytin-1的表現來促使細胞進行細胞融合形成多核的融合滋養層細胞 (STB),這層多核的STB主要功能為控制胎兒與母體之間物質與氣體的交換;另一方面,若GCM1提高另一條路徑的目標基因HtrA4 (high-temperature requirement protein A4) 的表現量,細胞將會分化為具有入侵能力的絨毛外滋養層細胞 (EVT),EVT入侵到母體子宮壁上蛻膜 (decidua) 的這個動作會使子宮內膜的螺旋動脈 (spiral arteries) 的血流量增加,提供足夠的血液幫助胎兒順利生長。GCM1在胎盤發育過程中扮演了舉足輕重的角色,由上述我們可以知道GCM1所調控的這兩條CTBs分化路徑對胎兒的生長來說是不可或缺的,他們提供了足夠的養分和血液使胎兒可以順利發育,但GCM1是如何決定活化下游哪一個目標基因其機制目前還不清楚。
GATA3 (GATA-binding protein 3 ) 轉錄因子已知會參與在許多器官與組織的發育之中,而胎盤也是其中之ㄧ,並且文獻指出GATA3會參與在胚胎發育以及滋養層幹細胞 (trophoblast stem cell) 的分化當中,因此,我們想知道GATA3會不會參與在由GCM1所調控的HtrA4表現路徑當中,更進一步,我們希望能藉由GATA3轉錄因子來告訴我們HtrA4大量表現在胎盤extravillous位置的原因。在我們的實驗結果中,藉由Luciferase reporter assay的結果我們發現無論是在HEK 293T細胞 (人類胚胎腎細胞株) 或是研究人類胎盤發育常用的人類絨毛膜癌細胞株BeWo以及JAR細胞中,GATA3的存在皆會降低HtrA4的表現量。利用共同免疫沉澱法我們發現GATA3和GCM1存在著交互作用的關係,並且GATA3會藉由結合在GCM1 transactivation domain (TAD) 來降低GCM1的轉錄活性。更進一步的,我們減緩BeWo及JAR細胞中GATA3的表現量,發現HtrA4的表現量及細胞入侵能力會隨之上升。綜合以上結果,我們發現GATA3轉錄因子會藉由透過和GCM1轉錄因子之間的交互作用來調控GCM1轉錄因子的轉錄活性,進而影響HtrA4蛋白的表現量,且證實胎盤細胞中GATA3表現量的下降會造成HtrA4表現量的上升,而這樣的結果會造成胎盤細胞侵襲能力的提高。 | zh_TW |
| dc.description.abstract | The glial cells missing 1 (GCM1) transcription factor regulates two trophoblast differentiation pathways in placental development. Syncytiotrophoblasts (STBs) and extravillous trophoblasts (EVTs) are two types of specialized trophoblasts developed from the stem cell-like cytotrophoblasts (CTBs) in the chorionic villi. GCM1 activates syncytin-1 expression to mediate cell-cell fusion for the formation of multinucleated STBs that mediate nutrient-gas exchange between mother and fetus. On the other hand, GCM1 up-regulates high-temperature requirement protein A4 (HtrA4) in the invasive EVTs to facilitate EVT invasion into decidua and adequate transformation of the spiral arteries. These events ensure sufficient blood flow to the placenta, which is essential for fetal growth. Given that GCM1 plays an important role in placental development, the mechanism of how GCM1 regulates HtrA4 expression in EVTs is not clear.
The transcription factor GATA-binding protein 3 (GATA3) is an essential regulator for several tissue developments including placenta. Previous studies have shown that GATA3 is able to induce trophoblast fate in embryonic stem cells and drive trophoblast differentiation in trophoblast stem cells. Here we investigated whether GATA3 is involved in HtrA4 expression. We showed that GATA3 down-regulates HtrA4 promoter activity in both choriocarcinoma cell lines, BeWo and JAR. Co-immunoprecipitation revealed that GATA3 interacts with GCM1 via its transactivation domain and therefore impairs GCM1 activity. Correspondingly, we observed that GATA3 knockdown in BeWo and JAR cells stimulates HtrA4 expression and therefore BeWo and JAR cell invasion. Taken together, our results indicated that GATA3 participates in HtrA4 expression and trophoblast invasion through interaction with GCM1. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:44:34Z (GMT). No. of bitstreams: 1 ntu-103-R01b46003-1.pdf: 2296955 bytes, checksum: ed489b206eb8c4d47cd6255765bcc142 (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄 Ⅰ
目錄圖表 Ⅲ 中文摘要 Ⅳ 英文摘要 Ⅵ 第一章 緒論 1.1 胎盤 1 1.2 GCM轉錄因子 4 1.3 HtrA蛋白質家族 6 1.4 GATA轉錄因子家族 9 1.5 研究動機 16 第二章 材料與方法 2.1 重組質體構築 17 2.2 細胞株培養與轉染 21 2.3 Luciferase冷光報導基因活性檢測 22 2.4 SDS聚丙烯醯胺凝膠電泳與西方墨點法 22 2.5 細胞蛋白質萃取 23 2.6 共同免疫沉澱法 24 2.7 重組蛋白表現 25 2.8 活體外交互作用分析 26 2.9 內生性共同免疫沉澱法 26 2.10 RNA干擾及慢病毒感染 27 2.11 細胞入侵能力檢測實驗 28 第三章 實驗結果 3.1 GATA3轉錄因子對HtrA4蛋白啟動子活性之影響 29 3.2 GATA3轉錄因子降低GCM1轉錄因子的轉錄活性 30 3.3 GATA3轉錄因子與GCM1轉錄因子的交互作用 30 3.4 GATA3轉錄因子與GCM1轉錄因子的結合片段 33 3.5 GATA3影響GCM1轉錄活性之機制 34 3.6 GATA3轉錄因子促進胎盤細胞入侵能力 36 第四章 討論與總結 37 第五章 圖表 42 第六章 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 胎盤 | zh_TW |
| dc.subject | GCM1 | zh_TW |
| dc.subject | HtrA4 | zh_TW |
| dc.subject | GATA3 | zh_TW |
| dc.subject | 滋養層細胞 | zh_TW |
| dc.subject | trophoblast cell | en |
| dc.subject | GCM1 | en |
| dc.subject | HtrA4 | en |
| dc.subject | GATA3 | en |
| dc.subject | placenta | en |
| dc.title | 探討GATA3參與在由GCM1所調控的滋養層細胞分化之機制 | zh_TW |
| dc.title | GATA3 participates in the GCM1-mediated placental trophoblast cell differentiation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張鎮東(Geen-Dong Chang),李明亭(Ming-Ting Lee),張功耀(Kung-Yao Chang),黃娟娟(Jiuan-Jiuan Hwang) | |
| dc.subject.keyword | GCM1,HtrA4,GATA3,胎盤,滋養層細胞, | zh_TW |
| dc.subject.keyword | GCM1,HtrA4,GATA3,placenta,trophoblast cell, | en |
| dc.relation.page | 65 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-08 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 2.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
