Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16723
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏文(Hung-Wen Chen)
dc.contributor.authorPei-Yun Chuangen
dc.contributor.author莊珮雲zh_TW
dc.date.accessioned2021-06-07T23:44:27Z-
dc.date.copyright2014-08-14
dc.date.issued2014
dc.date.submitted2014-07-09
dc.identifier.citation1. Butler, S.A., The Molecular Genetics of hCG, in Human Chorionic Gonadotropin (hCG), L.A. Cole, Editor. 2010, Elsevier. p. 37-48.
2. Cross, J.C., Placental function in development and disease. Reproduction, Fertility and Development 2006. 18(2): p. 71-76.
3. Liu, Q., et al., Pre-eclampsia is associated with the failure of melanoma cell adhesion molecule (MCAM/CD146) expression by intermediate trophoblast. Lab Invest, 2004. 84(2): p. 221-8.
4. Bischof, P. and I. Irminger-Finger, The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol, 2005. 37(1): p. 1-16.
5. Schlembach, D. and U. Lang, Preeclampsia and pregnancy-induced hypertension - diseases determined in the uterus? Gynakol Geburtshilfliche Rundsch, 2008. 48(4): p. 225-30.
6. Maltepe, E., A.I. Bakardjiev, and S.J. Fisher, The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest, 2010. 120(4): p. 1016-25.
7. Handwerger, S., New insights into the regulation of human cytotrophoblast cell differentiation. Mol Cell Endocrinol, 2010. 323(1): p. 94-104.
8. Huppertz, B. and M. Borges, Placenta trophoblast fusion. Methods Mol Biol, 2008. 475: p. 135-47.
9. Huppertz, B. and M. Gauster, Trophoblast fusion. Adv Exp Med Biol, 2011. 713: p. 81-95.
10. Gude, N.M., et al., Growth and function of the normal human placenta. Thromb Res, 2004. 114(5-6): p. 397-407.
11. Moffett, A. and C. Loke, Immunology of placentation in eutherian mammals. Nat Rev Immunol, 2006. 6(8): p. 584-94.
12. Cole, L.A., Introduction to Pregnancy Implantation, Villous Formation, and Hemochorial Placentation, in Human Chorionic Gonadotropin (hCG), L.A. Cole, Editor. 2010, Elsevier. p. 23-33.
13. Hosoya, T., et al., glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell, 1995. 82(6): p. 1025-36.
14. Jones, B.W., et al., glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell, 1995. 82(6): p. 1013-23.
15. Wegner, M. and D. Riethmacher, Chronicles of a switch hunt: gcm genes in development. Trends Genet, 2001. 17(5): p. 286-90.
16. Kim, J., et al., Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci U S A, 1998. 95(21): p. 12364-9.
17. Kanemura, Y., et al., Isolation and expression analysis of a novel human homologue of the Drosophila glial cells missing (gcm) gene. FEBS Lett, 1999. 442(2-3): p. 151-6.
18. Cohen, S.X., et al., Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. Embo j, 2003. 22(8): p. 1835-45.
19. Schreiber, J., J. Enderich, and M. Wegner, Structural requirements for DNA binding of GCM proteins. Nucleic Acids Res, 1998. 26(10): p. 2337-43.
20. Akiyama, Y., et al., The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc Natl Acad Sci U S A, 1996. 93(25): p. 14912-6.
21. Schreiber, J., et al., Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol, 2000. 20(7): p. 2466-74.
22. Anson-Cartwright, L., et al., The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet, 2000. 25(3): p. 311-4.
23. Baczyk, D., et al., Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ, 2009. 16(5): p. 719-27.
24. Yamada, K., et al., A GCM motif protein is involved in placenta-specific expression of human aromatase gene. J Biol Chem, 1999. 274(45): p. 32279-86.
25. Yu, C., et al., GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem, 2002. 277(51): p. 50062-8.
26. Liang, C.Y., et al., GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol Reprod, 2010. 83(3): p. 387-95.
27. Chang, M., et al., Glial cell missing 1 regulates placental growth factor (PGF) gene transcription in human trophoblast. Biol Reprod, 2008. 78(5): p. 841-51.
28. Wang, L.J., et al., High-temperature requirement protein A4 (HtrA4) suppresses the fusogenic activity of syncytin-1 and promotes trophoblast invasion. Mol Cell Biol, 2012. 32(18): p. 3707-17.
29. Chang, C.W., G.D. Chang, and H. Chen, A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion. Mol Cell Biol, 2011. 31(18): p. 3820-31.
30. Chang, C.W., et al., Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol, 2005. 25(19): p. 8401-14.
31. Chuang, H.C., et al., Histone deacetylase 3 binds to and regulates the GCMa transcription factor. Nucleic Acids Res, 2006. 34(5): p. 1459-69.
32. Chiang, M.H., et al., Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia. J Biol Chem, 2009. 284(26): p. 17411-9.
33. Chou, C.C., et al., Small ubiquitin-like modifier modification regulates the DNA binding activity of glial cell missing Drosophila homolog a. J Biol Chem, 2007. 282(37): p. 27239-49.
34. Cole, L.A., Biological Function of Hyperglycosylated hCG, in Human Chorionic Gonadotropin (hCG), L.A. Cole, Editor. 2010, Elsevier. p. 141-148.
35. Morgan, F.J., S. Birken, and R.E. Canfield, The amino acid sequence of human chorionic gonadotropin. The alpha subunit and beta subunit. J Biol Chem, 1975. 250(13): p. 5247-58.
36. Cole, L.A. and S.A. Butler, Structure, Synthesis, Secretion, and Function of hCG, in Human Chorionic Gonadotropin (hCG), L.A. Cole, Editor. 2010, Elsevier. p. 49-62.
37. Beebe, J.S., J.R. Huth, and R.W. Ruddon, Combination of the chorionic gonadotropin free beta-subunit with alpha. Endocrinology, 1990. 126(1): p. 384-91.
38. Rao, C.V., Physiological and pathological relevance of human uterine LH/hCG receptors. J Soc Gynecol Investig, 2006. 13(2): p. 77-8.
39. Toth, P., et al., Clinical importance of vascular LH/hCG receptors--a review. Reprod Biol, 2001. 1(2): p. 5-11.
40. Jameson, W.J.a.J.L., AP2 (Activating Protein 2) and Sp1 (Selective Promoter Factor 1) Regulatory Elements Play Distinct Roles in the Control of Basal Activity and Cyclic Adenosine 3',5'Monophosphate Responsiveness of the Human Chorionic Gonadotropin Promoter. Molecular Endocrinology 1999. 13(11): p. 1963-1975.
41. Jameson, J.L. and A.N. Hollenberg, Regulation of chorionic gonadotropin gene expression. Endocr Rev, 1993. 14(2): p. 203-21.
42. Knofler, M., et al., Cyclic AMP- and differentiation-dependent regulation of the proximal alphaHCG gene promoter in term villous trophoblasts. Mol Hum Reprod, 1999. 5(6): p. 573-80.
43. Silver, B.J., et al., Cyclic AMP regulation of the human glycoprotein hormone alpha-subunit gene is mediated by an 18-base-pair element. Proc Natl Acad Sci U S A, 1987. 84(8): p. 2198-202.
44. Hoeffler, J.P., et al., Cyclic AMP-responsive DNA-binding protein: structure based on a cloned placental cDNA. Science, 1988. 242(4884): p. 1430-3.
45. Pestell, R.G., et al., c-Jun represses transcription of the human chorionic gonadotropin alpha and beta genes through distinct types of CREs. J Biol Chem, 1994. 269(49): p. 31090-6.
46. Liu, L., et al., Silencing of the gene for the alpha-subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. Mol Endocrinol, 1997. 11(11): p. 1651-8.
47. Liu, L. and R.M. Roberts, Silencing of the gene for the beta subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem, 1996. 271(28): p. 16683-9.
48. Eckert, D., et al., The AP-2 family of transcription factors. Genome Biol, 2005. 6(13): p. 246.
49. Wenke, A.K. and A.K. Bosserhoff, Roles of AP-2 transcription factors in the regulation of cartilage and skeletal development. FEBS J, 2010. 277(4): p. 894-902.
50. Winger, Q., et al., Analysis of transcription factor AP-2 expression and function during mouse preimplantation development. Biol Reprod, 2006. 75(3): p. 324-33.
51. Auman, H.J., et al., Transcription factor AP-2gamma is essential in the extra-embryonic lineages for early postimplantation development. Development, 2002. 129(11): p. 2733-47.
52. Kuckenberg, P., et al., The transcription factor TCFAP2C/AP-2gamma cooperates with CDX2 to maintain trophectoderm formation. Mol Cell Biol, 2010. 30(13): p. 3310-20.
53. Kidder, B.L. and S. Palmer, Examination of transcriptional networks reveals an important role for TCFAP2C, SMARCA4, and EOMES in trophoblast stem cell maintenance. Genome Res, 2010. 20(4): p. 458-72.
54. Kuckenberg, P., C. Kubaczka, and H. Schorle, The role of transcription factor Tcfap2c/TFAP2C in trophectoderm development. Reprod Biomed Online, 2012. 25(1): p. 12-20.
55. Schorle, H., et al., Transcription factor AP-2 essential for cranial closure and craniofacial development. Nature, 1996. 381(6579): p. 235-8.
56. Zhang, J., et al., Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2. Nature, 1996. 381(6579): p. 238-41.
57. Moser, M., et al., Enhanced apoptotic cell death of renal epithelial cells in mice lacking transcription factor AP-2beta. Genes Dev, 1997. 11(15): p. 1938-48.
58. Moser, M., et al., Terminal renal failure in mice lacking transcription factor AP-2 beta. Lab Invest, 2003. 83(4): p. 571-8.
59. Werling, U. and H. Schorle, Transcription factor gene AP-2 gamma essential for early murine development. Mol Cell Biol, 2002. 22(9): p. 3149-56.
60. Choi, I., et al., Transcription factor AP-2gamma is a core regulator of tight junction biogenesis and cavity formation during mouse early embryogenesis. Development, 2012.
61. Biadasiewicz, K., et al., Transcription factor AP-2alpha promotes EGF-dependent invasion of human trophoblast. Endocrinology, 2011. 152(4): p. 1458-69.
62. Shi, D. and R.E. Kellems, Transcription factor AP-2gamma regulates murine adenosine deaminase gene expression during placental development. J Biol Chem, 1998. 273(42): p. 27331-8.
63. Peng, L. and A.H. Payne, AP-2 gamma and the homeodomain protein distal-less 3 are required for placental-specific expression of the murine 3 beta-hydroxysteroid dehydrogenase VI gene, Hsd3b6. J Biol Chem, 2002. 277(10): p. 7945-54.
64. LiCalsi, C., et al., AP-2 family members regulate basal and cAMP-induced expression of human chorionic gonadotropin. Nucleic Acids Res, 2000. 28(4): p. 1036-43.
65. Richardson, B.D., et al., Differential expression of AP-2gamma and AP-2alpha during human trophoblast differentiation. Life Sci, 2001. 69(18): p. 2157-65.
66. Johnson, W., et al., Regulation of the human chorionic gonadotropin alpha- and beta-subunit promoters by AP-2. J Biol Chem, 1997. 272(24): p. 15405-12.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16723-
dc.description.abstract胎盤是主要提供母體與胎兒之間進行物質交換的場所,在胎盤樹狀絨毛的部分,絨毛膜內層的細胞性滋養層細胞 (cytotrophoblast, CTB) 可以經由細胞融合 (cell fusion) 分化成多細胞核的融合滋養層細胞 (syncytiotrophoblast, STB),且融合滋養層細胞會製造與分泌生長因子以及荷爾蒙,調控母體與胎兒之間的物質交換。從過去實驗已知,胎盤專一性表現的轉錄因子glial cells missing 1 (GCM1),可以藉由活化syncytin-1、syncytin-2來促進胎盤細胞融合。根據實驗室所做的染色質免疫沉澱結合晶片分析技術 (chromatin immunoprecipitation-on-chip (ChIP-chip) analysis) 找到GCM1轉錄因子相關的下游標的基因,發現GCM1轉錄因子會與hCGβ基因前方的啟動子結合。我們想了解GCM1轉錄因子調控hCGβ的機制,另外,GCM1與hCGβ皆會受到cAMP/PKA訊號傳遞的調控,是否會透過cAMP路徑活化GCM1進而去影響hCGβ的表現。而過去文獻指出轉錄因子activating protein 2 (AP-2) 家族會調控hCGβ的表現,在hCGβ啟動子上含有兩個AP-2的結合位置在-311到-275與-250到-200的區域,可以增加hCGβ的基因表現,本篇針對GCM1與AP-2轉錄因子之間的調控進行討論,幫助我們了解hCGβ受到GCM1與AP-2轉錄因子的調控機制。
首先,在BeWo建立穩定表現GCM1 shRNA的細胞株,由Q-PCR與西方墨點法的實驗結果發現GCM1會直接影響到由forskolin所刺激hCGβ基因的轉錄與蛋白質的表現。利用不含有內生性AP-2的人類肝癌細胞HepG2,進行冷光報導基因活性檢測實驗,發現在forskolin刺激下當GCM1與CBP coactivator同時存在時,GCM1可以增加hCGβ的啟動子活性。在hCGβ啟動子-1674~+103的區域中包含四個可能的GCM1結合區域 (GCM1-binding site, GBS),為了確定四個GCM1結合區域是否會與GCM1有交互作用,將結合區域個別進行突變,發現GBS2為最重要的GCM1調控hCGβ啟動子活性的區域。進一步利用電泳遷移確定GCM1與AP-2c會直接結合在GBS2的位置上,另外,在BeWo建立穩定表現AP-2c shRNA的細胞株,結果發現GCM1與hCGβ的蛋白質表現明顯下降,且證明AP-2c會去調控GCM1的啟動子活性,由以上的結果知道在胎盤細胞中hCGβ的轉錄機制受到GCM1與AP-2c的調控。
zh_TW
dc.description.abstractHuman cytotrophoblasts in the chorionic villi may undergo cell-cell fusion to form syncytiotrophoblasts to mediate gas and nutrient transport between mother and fetus. The placental transcription factor glial cells missing 1 (GCM1) has been shown to promote placental cell-cell fusion through transcriptional activation of membrane fusogenic proteins, syncytin-1 and -2. We recently performed chromatin immunoprecipitation-on-chip (ChIP-chip) analysis and identified the gene for human chorionic gonadotropin β (hCGβ) as a GCM1 target gene. A major function of hCGβ is to maintain the production of progesterone hormone and other growth factors in the corpus luteum until the 7th week of gestation. The activating protein 2 (AP-2) family has been shown to play an important role in hCGβ expression. The mechanism of regulation of hCGβ gene expression by GCM1and AP-2 is not clear.
In this study, we first demonstrated that the hCGβ mRNA and protein levels are significantly decreased in the GCM1-konckdown BeWo cells by Q-PCR and Western blotting. Luciferase reporter assays were performed to study the regulation of hCGβ reporter activity by GCM1 in HepG2 cells, which are human hepatoma-derived cells without endogenous AP-2 activity. Both GCM1 and CBP coactivator are required for the stimulation of hCGβ reporter activity by forskolin in HepG2 cells. The reporter construct harbors the hCGβ promoter region, nt -1674~+103 relative to the transcriptional start site, containing four potential GCM1-binding sites (GBSs). By site-directed mutagenesis, we identified GBS2 as a critical element for GCM1 and CBP to upregulate hCGβ promoter activity in response to forskolin. We further demonstrated that both GCM1 and AP-2c can bind GBS2 by EMSA. Interestingly, the GCM1 protein level was decreased by AP-2c knockdown in BeWo cells. Correspondingly, AP-2c upregulates GCM1 promoter activity in luciferase reporter assays. Our study reveals an underlying mechanism for regulation of hCGβ expression by GCM1 and AP-2c.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:44:27Z (GMT). No. of bitstreams: 1
ntu-103-R01b46011-1.pdf: 4861867 bytes, checksum: 2c5d8b6567944c9247adad2e5af5b883 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents第一章 緒論 1
1.1 胎盤 (Placenta) 1
1.2 GCM轉錄因子 (GCM transcription factor) 4
1.3 人類絨毛膜促性腺激素 (Human chorionic gonadotropin, hCG) 8
1.4 Activating protein 2 轉錄因子 (AP-2 transcription factors) 12
1.5 研究動機 16
第二章 材料與方法 17
2.1 重組質體構築 (Recombinant plasmid construction) 17
2.2 細胞株培養與轉染 (Cell culture and transfection) 21
2.3 SDS聚丙烯醯胺凝膠電泳 (SDS polyacrylamide gel electrophoresis, SDS-PAGE) 與西方墨點法 (Western blotting) 22
2.4 Luciferase 冷光報導基因活性檢測 (Luciferase reporter assay) 24
2.5 免疫沉澱法 (Immunoprecipitation, IP) 25
2.6 電泳遷移 (Electrophoretic mobility shift assay, EMSA) 25
第三章 實驗結果 28
3.1 GCM1轉錄因子在胎盤細胞調控hCGβ表現 28
3.2 cAMP對胎盤細胞蛋白質表現量的調控 29
3.3 AP-2 轉錄因子在胎盤細胞調控hCGβ表現 30
3.4 AP-2c轉錄因子調控GCM1基因啟動子的轉錄活性 30
3.5 GCM1轉錄因子調控hCGβ基因啟動子的轉錄活性 31
3.6 突變GCM1結合片段影響hCGβ的轉錄活性 32
3.7 hCGβ啟動子的GCM1結合片段與GCM1和AP-2c之間的交互關係 33
第四章 討論與總結 35
第五章 圖表 40
第六章 參考資料 52
dc.language.isozh-TW
dc.subjecthuman chorionic gonadotropin β (hCGβ)zh_TW
dc.subjectactivating protein 2 (AP-2)zh_TW
dc.subjectglial cells missing 1 (GCM1)zh_TW
dc.titlehCGβ受到轉錄因子GCM1及AP-2c的調控機制zh_TW
dc.titleRegulation of human chorionic gonadotropin β gene expression by GCM1 and AP-2cen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),李明亭(Ming-Ting Lee),張功耀(Kung-Yao Chang),黃娟娟(Jiuan-Jiuan Hwang)
dc.subject.keywordhuman chorionic gonadotropin β (hCGβ),glial cells missing 1 (GCM1),activating protein 2 (AP-2),zh_TW
dc.relation.page60
dc.rights.note未授權
dc.date.accepted2014-07-09
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  未授權公開取用
4.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved