Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16708
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳嘉文(Chia-Wen Wu)
dc.contributor.authorYu-Ting Chiuen
dc.contributor.author邱瑜婷zh_TW
dc.date.accessioned2021-06-07T23:44:08Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-14
dc.identifier.citation[1] www.ren21.net, REN21 2013.
[2] J. N. Chheda, G. W. Huber, J. A. Dumesic, Angewandte Chemie 2007, 46, 7164.
[3] D. M. Alonso, J. Q. Bond, J. A. Dumesic, Green Chemistry 2010, 12, 1493.
[4] 古森本, 植物種苗生技 2008.
[5] B. Scherr, Renewable Fuels Association (RFA) 2011.
[6] T. Werpy, G. Petersen, in Other Information: PBD: 1 Aug 2004, 2004, Medium: ED; Size: 76 pp. pages.
[7] 歐陽孚, 郭致廷, 楊卓儒, BioEnergyToday 生質能源趨勢 http://bioenergytoday.net/2011/06/20/algaefuel_01/ 2011.
[8] G. W. Huber, A. Corma, Angewandte Chemie International Edition 2007, 46, 7184.
[9] C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, Y. Y. Lee, Bioresource Technology 2005, 96, 1959.
[10] L. R. LYND, J. H. CUSHMAN, R. J. NICHOLS, C. E. WYMAN, Science 1991, 251, 1318.
[11] A. S. Mamman, J.-M. Lee, Y.-C. Kim, I. T. Hwang, N.-J. Park, Y. K. Hwang, J.-S. Chang, J.-S. Hwang, Biofuels, Bioproducts and Biorefining 2008, 2, 438.
[12] R. J. A. Gosselink, E. de Jong, B. Guran, A. Abacherli, Industrial Crops and Products 2004, 20, 121.
[13] R. J. Evans, T. A. Milne, M. N. Soltys, Journal of Analytical and Applied Pyrolysis 1986, 9, 207.
[14] J. Jae, G. A. Tompsett, Y.-C. Lin, T. R. Carlson, J. Shen, T. Zhang, B. Yang, C. E. Wyman, W. C. Conner, G. W. Huber, Energ Environ Sci 2010, 3, 358; T. R. Carlson, J. Jae, Y.-C. Lin, G. A. Tompsett, G. W. Huber, J Catal 2010, 270, 110.
[15] R. Rinaldi, F. Schuth, Chemsuschem 2009, 2, 1096.
[16] H. E. van Dam, A. P. G. Kieboom, H. van Bekkum, Starch - Starke 1986, 38, 95.
[17] S. Dutta, S. De, B. Saha, ChemPlusChem 2012, 77, 259.
[18] C. Moreau, M. Belgacem, A. Gandini, Top Catal 2004, 27, 11.
[19] W. N. Haworth, W. G. M. Jones, Journal of the Chemical Society (Resumed) 1944, 667.
[20] M. J. Antal Jr, W. S. L. Mok, G. N. Richards, Carbohydrate Research 1990, 199, 91.
[21] B. F. M. Kuster, Starch - Starke 1990, 42, 314.
[22] A. Corma, S. Iborra, A. Velty, Chemical Reviews 2007, 107, 2411.
[23] L. D. Cottier, G., Trends in Heterocyclic Chemistry 1991, 2, 233.
[24] Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982.
[25] J. B. Binder, R. T. Raines, Journal of the American Chemical Society 2009, 131, 1979.
[26] H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science 2007, 316, 1597.
[27] M. Mascal, E. B. Nikitin, Angewandte Chemie International Edition 2008, 47, 7924.
[28] M. Chidambaram, A. T. Bell, Green Chemistry 2010, 12, 1253.
[29] T. Noguchi, K. Takayama, M. Nakano, Biochem Bioph Res Co 1977, 78, 418; G. Wang, Z. Guan, R. Tang, Y. He, Synthetic Communications 2010, 40, 370.
[30] T. Thananatthanachon, T. B. Rauchfuss, Angewandte Chemie International Edition 2010, 49, 6616.
[31] C. Fellay, P. J. Dyson, G. Laurenczy, Angewandte Chemie 2008, 120, 4030.
[32] J. F. Hull, Y. Himeda, W.-H. Wang, B. Hashiguchi, R. Periana, D. J. Szalda, J. T. Muckerman, E. Fujita, Nat Chem 2012, 4, 383.
[33] 吳思翰, 牟中原, 化學期刊 2008, 第六十六卷第二期, 101.
[34] F. Hoffmann, M. Cornelius, J. Morell, M. Froba, Angewandte Chemie International Edition 2006, 45, 3216.
[35] 吳嘉文, 方盈倩, 張新彥, 李翊群, 王毓璞, 化學期刊 2013, 第七十一卷第二期, 131.
[36] S. dos Santos, 2010.
[37] J. Zha, H. Roggendorf, Advanced Materials 1991, 3, 522.
[38] Q. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, Chemistry of Materials 1994, 6, 1176; Q. Huo, D. I. Margolese, U. Ciesla, P. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Nature 1994, 368, 317.
[39] D. M. Antonelli, J. Y. Ying, Angewandte Chemie 1995, 107, 2202.
[40] S. A. Bagshaw, T. J. Pinnavaia, Angewandte Chemie 1996, 108, 1180.
[41] P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, G. D. Stucky, Chemistry of Materials 1999, 11, 2813.
[42] Z.-R. Tian, W. Tong, J.-Y. Wang, N.-G. Duan, V. V. Krishnan, S. L. Suib, Science 1997, 276, 926.
[43] D. M. Antonelli, J. Y. Ying, Angewandte Chemie 1996, 108, 461.
[44] K. J. Shea, D. A. Loy, Chemistry of Materials 2001, 13, 3306; D. A. Loy, K. J. Shea, Chemical Reviews 1995, 95, 1431.
[45] N. K. Gupta, S. Nishimura, A. Takagaki, K. Ebitani, Green Chemistry 2011, 13, 824; M. J. Antal Jr, T. Leesomboon, W. S. Mok, G. N. Richards, Carbohydrate Research 1991, 217, 71; Y. Roman-Leshkov, J. N. Chheda, J. A. Dumesic, Science 2006, 312, 1933.
[46] L. Hu, G. Zhao, W. Hao, X. Tang, Y. Sun, L. Lin, S. Liu, RSC Advances 2012, 2, 11184.
[47] X. Qi, M. Watanabe, T. M. Aida, J. R. L. Smith, Green Chemistry 2008, 10, 799; X. Qi, M. Watanabe, T. M. Aida, R. L. Smith, Ind Eng Chem Res 2008, 47, 9234.
[48] X. Qi, M. Watanabe, T. M. Aida, J. R. L. Smith, Green Chemistry 2009, 11, 1327.
[49] C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros, G. Avignon, Applied Catalysis A: General 1996, 145, 211.
[50] V. V. Ordomsky, J. van der Schaaf, J. C. Schouten, T. A. Nijhuis, J Catal 2012, 287, 68.
[51] X. Guo, Q. Cao, Y. Jiang, J. Guan, X. Wang, X. Mu, Carbohydrate Research 2012, 351, 35.
[52] X. Qi, M. Watanabe, T. M. Aida, R. L. Smith Jr, Catalysis Communications 2008, 9, 2244.
[53] F. Yang, Q. Liu, M. Yue, X. Bai, Y. Du, Chemical Communications 2011, 47, 4469.
[54] K.-i. Shimizu, R. Uozumi, A. Satsuma, Catalysis Communications 2009, 10, 1849.
[55] F. Wang, A.-W. Shi, X.-X. Qin, C.-L. Liu, W.-S. Dong, Carbohydrate Research 2011, 346, 982.
[56] C. Moreau, A. Finiels, L. Vanoye, Journal of Molecular Catalysis A: Chemical 2006, 253, 165; A. H. Jadhav, H. Kim, I. T. Hwang, Catalysis Communications 2012, 21, 96; S. Lima, P. Neves, M. M. Antunes, M. Pillinger, N. Ignatyev, A. A. Valente, Applied Catalysis A: General 2009, 363, 93.
[57] S. D. Sudipta De, and Basudeb Saha, 2012.
[58] Y. H. Zu, P. P. Yang, J. J. Wang, X. H. Liu, J. W. Ren, G. Z. Lu, Y. Q. Wang, Appl Catal B-Environ 2014, 146, 244.
[59] M. R. Grochowski, W. Yang, A. Sen, Chemistry – A European Journal 2012, 18, 12363.
[60] A. Zheng, S.-J. Huang, S.-B. Liu, F. Deng, Physical Chemistry Chemical Physics 2011, 13, 14889.
[61] Y. G. Jin, S. Z. Qiao, Z. P. Xu, Z. Yan, Y. Huang, J. C. D. da Costa, G. Q. Lu, Journal of Materials Chemistry 2009, 19, 2363.
[62] X. Wang, S. Cheng, J. C. C. Chan, J. C. H. Chao, Micropor Mesopor Mat 2006, 96, 321.
[63] C. S. Gill, B. A. Price, C. W. Jones, J Catal 2007, 251, 145.
[64] K. Kabiri, S. Hesarian, A. Jamshidi, M. J. Zohuriaan-Mehr, H. Boohendi, M. R. Poorheravi, S. A. Hashemi, F. Ahmad-Khanbeigi, Journal of Applied Polymer Science 2011, 120, 2716.
[65] W. P. W. Young-Seok Shon, and Royce W. Murray, American Chemical Society 2001, 17 1255.
[66] Q. Yang, M. P. Kapoor, S. Inagaki, Journal of the American Chemical Society 2002, 124, 9694.
[67] Q. Yang, J. Liu, J. Yang, M. P. Kapoor, S. Inagaki, C. Li, J Catal 2004, 228, 265; S. Hamoudi, S. Royer, S. Kaliaguine, Micropor Mesopor Mat 2004, 71, 17.
[68] F. Babonneau, L. Yeung, N. Steunou, C. Gervais, A. Ramila, M. Vallet-Regi, Journal of Sol-Gel Science and Technology 2004, 31, 219.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16708-
dc.description.abstract近年來由於石油短缺的問題,使得人們對於替代能源的需求日漸益增,因此本研究致力果糖、5-羥甲基糠醛(5-Hydroxymethyl furfural, HMF)至生質燃料─2,5-二甲基呋喃(2,5-dimethylfuran, DMF)的製備。在許多生質燃料中,2,5-二甲基呋喃(DMF)因其所具有的優異性質,例如高能量密度、高效配送、易儲存、高安全係數等特點,使2,5-二甲基呋喃(DMF)成為最具有吸引力及發展潛力的生質燃料。
本研究首先合成出三種不同酸官能化的中孔洞二氧化矽奈米粒子(mesoporous silica nanoparticles, MSNs),由於中孔洞二氧化矽奈米粒子(MSNs)具有高比表面積及易表面改質等特點,因此本研究以此材料作為反應的異相固態觸媒。本研究共將三種酸官能基成功嫁接於中孔洞二氧化矽奈米粒子(MSNs)上,同時利用X光繞射儀(X-ray diffraction, XRD)、掃描式電子顯微鏡(scanning electron microscopy, SEM)、穿透式電子顯微鏡(transmission electron microscopy, TEM)、氮氣吸/脫附孔隙儀(nitrogen adsorption/desorption isotherms)等儀器進行材料鑑定,並將這些帶有磺酸根、羧酸根和亞磷酸根的中孔洞二氧化矽奈米粒子(MSNs)分別以S-MSN、C-MSN、P-MSN表示。實驗結果顯示在四氫呋喃(tetrahydrofuran, THF)系統、反應溫度75°C及反應時間15小時的條件下,S-MSN和C-MSN分別有助於果糖至5-羥甲基糠醛(HMF)、5-羥甲基糠醛(HMF)至2,5-二甲基呋喃(DMF)的轉化反應。因此,本研究利用這兩種固態催化劑(S-MSN和C-MSN)有效地進行果糖-5-羥甲基糠醛-2,5-二甲基呋喃的序列式反應,其最佳2,5-二甲基呋喃產率可達69 mol %。
此外,本研究也以系統性的方式進行5-羥甲基糠醛(HMF)至2,5-二甲基呋喃(DMF)反應路徑的探討。由上述結果可知本研究所合成的酸官能化中孔洞二氧化矽奈米粒子可作為有效的反應催化劑,同時並顯示出酸官能化中孔洞二氧化矽奈米粒子在生質轉換的應用潛力。
zh_TW
dc.description.abstractDue to strong demand for green and economical alternatives to traditional fossil fuels, this study is focused on the production of 2,5-dimethylfuran (DMF) converted from fructose or 5-hydroxymethylfurfural (HMF). In many biomass-derived liquid fuels, 2,5-dimethylfuran (DMF) is the most attractive one because of its excellent properties such as high energy density, efficient distribution, easier storage, and higher safety coefficient.
In this study, we synthesized several acid-functionalized mesoporous silica nanoparticles (MSNs) as solid heterogeneous catalysts because of several advantages of MSNs including high surface area and easy surface functionalization. Three acid-functionalized MSNs (i.e. sulfonic acid, carboxylic acid and phosphoric acid for S-MSN, C-MSN and P-MSN, respectively) were synthesized and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption/desorption isotherms and so on. It was found that S-MSN and C-MSN exhibited the highest efficiency for fructose-to-HMF and HMF-to-DMF, respectively, conversion in tetrahydrofuran (THF) system under mild conditions (75 °C, 15 hr). Therefore, we utilized these two catalysts to achieve efficient and subsequent fructose-to-HMF-to-DMF conversion with highest DMF yield of 69 mol%. The pathway of the HMF-to-DMF conversion was systematically studies. The acid-functionalized MSN materials synthesized in this study have shown potential applications as efficient catalysts for biomass conversion.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:44:08Z (GMT). No. of bitstreams: 1
ntu-103-R01524048-1.pdf: 8312844 bytes, checksum: f5bb2d38158cd8b07683d895840588d2 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents致謝 I
ABSTRACT II
摘要 IV
目錄 V
圖目錄 IX
表目錄 XVI
第1章 緒論 1
第2章 文獻回顧 6
2.1 生質能轉換 6
2.1.1 常見的生質轉換 6
2.1.2 果糖轉化至5-羥甲基糠醛(HMF)之反應機制 11
2.1.3 2,5-二甲基呋喃(DMF)之製備方法 13
2.1.3.1 雙相系統合成法 13
2.1.3.2 N,N-dimethylacetamide系統合成法 17
2.1.3.3 離子液體合成法 20
2.1.3.4 甲酸系統合成法 28
2.2 奈米孔洞材料 31
2.2.1 奈米孔洞材料之合成 31
2.2.2 奈米孔洞材料之表面改質 34
2.2.2.1 嫁接法(Grafting) 34
2.2.2.2 共縮合法(Co-condensation method) 35
2.2.2.3 有機中孔洞二氧化矽合成法 36
2.2.3 用於生質能源轉換的固態觸媒 37
2.2.3.1 用於果糖脫水至HMF的固態觸媒 37
2.2.3.2 用於HMF氫化至DMF的固態觸媒 41
2.2.4 中孔洞材料與上述固態觸媒的優缺點 43
第3章 研究目的與動機 45
第4章 實驗步驟 47
4.1 材料 47
4.1.1 化學藥品清單 47
4.1.2 分析儀器設備 48
4.2 檢量線及滯留時間 49
4.2.1 高性能液相層析儀分析(HPLC) 49
4.2.2 氣相層析儀-質譜儀(GC-MS) 50
4.3 計算方法及定義 54
4.4 固體催化劑合成 55
4.4.1 中孔洞二氧化矽奈米粒子(Mesoporous Silica Nanocatalyst, MSN)合成 55
4.4.2 中孔洞二氧化矽奈米粒子之表面官能化─嫁接磺酸官能基(S-MSN) 55
4.4.3 中孔洞二氧化矽奈米粒子之表面官能化─嫁接羧酸官能基(C-MSN) 56
4.4.4 中孔洞二氧化矽奈米粒子之表面官能化─嫁接亞磷酸官能基(P-MSN) 58
4.4.5 中孔洞二氧化矽奈米粒子之表面官能化─嫁接雙官能基(Bif.-MSN) 59
4.5 反應操作 60
4.5.1 果糖至5-羥甲基糠醛之轉換 60
4.5.2 5-羥甲基糠醛至2,5-二甲基呋喃之轉換 60
4.5.3 中間產物之轉換 61
4.5.4 果糖至2,5-二甲基呋喃(DMF)之序列式轉換 62
4.6 材料之回收性及穩定性測試 63
4.7 材料之酸強度及酸量測試 63
第5章 結果與討論 64
5.1 材料鑑定 64
5.1.1 中孔洞二氧化矽奈米粒子之形貌 64
5.1.2 中孔洞二氧化矽奈米粒子之孔洞特性 66
5.1.3 中孔洞二氧化矽奈米粒子之官能基鍵結定性及定量 67
5.1.4 中孔洞二氧化矽奈米粒子之酸強度及酸量 72
5.2 反應 74
5.2.1 5-羥甲基糠醛(HMF)之轉換至2,5-二甲基呋喃(DMF)之轉換 74
5.2.2 果糖至5-羥甲基糠醛(HMF) 78
5.2.3 果糖至2,5-二甲基呋喃(DMF)之序列式轉換 83
5.3 反應路徑探討──中間產物之轉換 85
5.3.1 不同反應時間下之DMF (2,5-dimethylfuran)轉化反應 87
5.3.2 不同反應時間下之MFM (5-methylfurfuryl alcohol)轉化反應 88
5.3.3 不同反應時間下之BHMF (2,5-bis(hydroxymethyl)furan)轉化反應 89
5.3.4 不同反應時間下之MFAD (5-methyl-2-furancarboxaldehyde)轉化反應 91
5.3.5 不同反應時間下之DFF (2,5-furandicarboxaldehyde)轉化反應 92
5.3.6 不同反應時間下之AMF (5-acetoxymethyl-2-furaldehyde)轉化反應 93
5.3.7 HMF (5-hydroxymethyl furfural)之反應路徑 94
第6章 結論 96
第7章 未來展望 97
第8章 參考文獻 98
附錄 103
附錄一、酸強度測試之指示劑 103
附錄二、化合物縮寫對照表 103
附錄三、化合物之HPLC檢量線 104
附錄四、化合物之GC-MS圖譜 105
附錄五、化合物之GC-MS檢量線 109
附錄六、官能化中孔洞二氧化矽奈米粒子之SAXS圖 112
附錄七、中孔洞二氧化矽奈米粒子之31P固態核磁共振光譜 112
附錄八、反應路徑探討之反應結果數據 113
附錄九、雙官能化中孔洞二氧化矽奈米粒子之果糖轉換─ ONE-POT REACTION 114
附錄十、果糖至2,5-二甲基呋喃(DMF)之一步驟轉換(ONE-POT) 119
dc.language.isozh-TW
dc.title"合成酸官能化中孔洞二氧化矽奈米粒子做為可回收式固體催化劑應用於果糖-5-羥甲基糠醛(HMF)-2,5-二甲基呋喃(DMF)的序列式生質轉換"zh_TW
dc.titleEfficient and Subsequent Production of 2,5-dimethylfuran (DMF) from Fructose and 5-Hydroxymethyl furfural (HMF) Using Acid-Functionalized Mesoporous Silica Nanocatalystsen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭淑芬(Shu-Fen Chen),蔡振章(Chen-Chang Tsai),張根源(Ken-Yuan Chang),陳文華(Wen-Hua Chen)
dc.subject.keyword中孔洞二氧化矽奈米粒子,2,5-二甲基?喃,5-羥甲基糠醛,果糖,官能化,生質燃料,zh_TW
dc.subject.keywordMesoporous silica nanoparticles,2,5-dimethylfuran (DMF),5-hydroxymethylfurfural (5-HMF),fructose,functionalization,biofuel,en
dc.relation.page120
dc.rights.note未授權
dc.date.accepted2014-07-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
8.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved