Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16704
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張樹城
dc.contributor.authorShu-Ming Liuen
dc.contributor.author劉書銘zh_TW
dc.date.accessioned2021-06-07T23:44:02Z-
dc.date.copyright2014-07-16
dc.date.issued2014
dc.date.submitted2014-07-14
dc.identifier.citationF. Coda Marques and A. Neves, Min-max theory and the Willmore conjecture. To appear in Annals of Mathematics.
A. Ros, The Willmore conjecture in the real projective space, Math. Res. Lett. 6(1999),487-493.
P. Topping, Towards the Willmore conjecture, Calc. Var. Partial Differential Equations 11 (2000), 361-393.
F. Urbano, Minimal surfaces with low index in the three-dimensional sphere, Proc. Amer. Math. Soc. 108 (1990), 989-992.
L.Simon , Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, Canberra, (1983).
T. J. Willmore, Note on embedded surfaces, An. Sti. Univ. 'Al. I. Cuza' Iasi Sect. I a Mat. (N.S.) 11B (1965) 493-496.
T. J. Willmore, Riemannian Geometry, Oxford, England : Clarendon Press ; New York : Oxford University Press, 1993
M. Bauer and E. Kuwert, Existence of minimaizing Willmore surfaces of prescribed genus, Int. Math. Res. Not. (2003), 553-576.
B. Lawson, Complete minimal surfaces in S3, Ann. of Math. (2) 92 (1970).
E.Kuwert, Y.Li, and R. Schatzle, The large genus limit of the infimum of the Willmore energy, Amer. J. Math. 132 (2010), 37-51.
T. J. Willmore, Mean curvature of Riemannian immersions, J. London Math. Soc.(2) 3 1971 307-310.
K.Shiohama and R. Takagi, A characterization of a standard torus in E3, J. Differential Geometry 4 1970 477-485.
B-Y. Chen, On the total curvature of immersed manifolds. VI. Submanifolds of finite type and their applications, Bull. Inst. Math. Acad. Sinica 11 (1983), 309-328.
J. Langer and D. Singer, Curves in the hyperbolic plane and mean curvature of tori in 3-space, Bull. London Math. Soc. 16 (1984), 531-534.
P.Li and S-T. Yau , A new conformal invariant and its applications to the Wilmore conjecture and the first eigenvalue of compact surface , Invent. Math. 69(1982)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16704-
dc.description.abstract2012年,Fernando C.Marques和Andre Neves所著的論文:Min-max theory and Willmore conjecture成功地證明了1965年由Willmore所提出著名的猜想。他們使用了幾何測度論的方法並且應用Min-max theory給出一個漂亮的證明方法,其中特別的是如何造出能夠使用Min-max theory的canonical family,這個是整篇論文中最重要的部分;我們將會在本文中說明如何造出這樣的canonical family,此外也會將一些Willmore猜想相關的性質附上並且補上他們的證明。zh_TW
dc.description.abstractIn 2012, the thesis: Min-max theory and Willmore conjecture wrote by Fernando C.Marques and Andre Neves. Which successful proof the well-known Willmore conjecture.
They used the method of geometric measure theory and application of Min-max theory gives a nice proof, which is how to create a special ability to use Min-max theory of canonical family, this is the whole thesis is the most important part; we will explain how to create such a canonical family in this article; on the other hand, we will addition to some property of the Willmore conjecture and their proof.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:44:02Z (GMT). No. of bitstreams: 1
ntu-103-R00221001-1.pdf: 2068465 bytes, checksum: 262ce6dc3936d04d1fc3c4f044dda8f9 (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝………………………………………………………………………………… i
中文摘要………………………………………………………………………… ii
英文摘要………………………………………………………………………… iii
第一章 Introduction…………………………………………………………… 1
第二章 Some property of the Willmore energy……………………………… 3
第三章 Min-max theory……………………………………………………… 7
第四章 Construct the canonical family and Min-max theory………………… 9
第五章 Proof of the main theorem…………………………………………… 22
參考文獻………………………………………………………………………… 28
dc.language.isoen
dc.title探討由最小-最大定理證明威爾莫猜想zh_TW
dc.titleA survey on proof of Willmore conjecture by min-max theoryen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳瑞堂,吳進通
dc.subject.keyword威爾莫猜想,最小最大定理,極小曲面,zh_TW
dc.subject.keywordWillmore conjecture,min-max theory,minimal surface,en
dc.relation.page28
dc.rights.note未授權
dc.date.accepted2014-07-14
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
2.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved