請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16690
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛人愷 | |
dc.contributor.author | Cheng-Yen Wang | en |
dc.contributor.author | 王正彥 | zh_TW |
dc.date.accessioned | 2021-06-07T23:43:44Z | - |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-16 | |
dc.identifier.citation | 1. M. M. Schwartz, ASM Handbook, Vol.6, , Introduction to Brazing and Soldering, pp.114-125, pp.924-930, ASM International, 1993.
2. W.F. Smith, Structure and Properties of Engineering Alloys 1993: McGraw-Hill Science/Engineering/Math. 3. C.H Hsu, H.W. Hsu, T.Y. Yeh, R. K. Shiue, Developing Corrosion-resistant Joints Applied in the Plate Heat Exchanger, Advantace Material Resarch, Vol. 410, 2012, pp. 191-195. 4. M. Schwartz, Brazing. 2nd ed. 2003: ASM International. 5. G. Humpston and D.M. Jacobson, Principles of Soldering and Brazing. 1993, Materials Park, OH: ASM International. 6. R. D. Milner, A Survey of the Scientific Principles Related to Wetting and Spreading, Br. Weld. J., Vol. 5, 1958, pp.90-105. 7. D. L. Olson et. Al., Metals Handbook, 10th ed., ASM International Vol.6, 1990, Welding Brazing and Soldering. 8. X. Yuan, C. Yun Kang, and M.B. Kim, Microstructure and XRD analysis of brazing joint for duplex stainless steel using a Ni–Si–B filler metal. Materials Characterization, 2009. 60(9): p. 923-931. 9. F. Jalilian, M. Jahazi, and R.A.L. Drew, Microstructural evolution during transient liquid phase bonding of Inconel 617 using Ni–Si–B filler metal. Materials Science and Engineering: A, 2006. 423(1–2): p. 269-281. 10. Annual Book of ASTM Standards Section 3, Metals Test Methods & Analytical Procedures, West Conshohocken, Pa., ASTM International, 2004. 11. T. Wang, et al., Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with copper interlayer sheet. Transactions of Nonferrous Metals Society of China, 2010. 20(10): p. 1829-1834. 12. S. Wang and X. Wu, Investigation on the microstructure and mechanical properties of Ti–6Al–4V alloy joints with electron beam welding. Materials & Design, 2012. 36(0): p. 663-670. 13. Y. Peng, et al., Beam quality test technology and devices of electron beam welding. Vacuum, 2011. 86(3): p. 261-266. 14. S. Yan, et al., CW/PW dual-beam YAG laser welding of steel/aluminum alloy sheets. Optics and Lasers in Engineering, 2010. 48(7–8): p. 732-736. 15. G. Padmanaban and V. Balasubramanian, Effects of laser beam welding parameters on mechanical properties and microstructure of AZ31B magnesium alloy. Transactions of Nonferrous Metals Society of China, 2011. 21(9): p. 1917-1924. 16. R. Li, et al., A comparative study of laser beam welding and laser–MIG hybrid welding of Ti–Al–Zr–Fe titanium alloy. Materials Science and Engineering: A, 2011. 528(3): p. 1138-1142. 17. C.S. Wu, H.L. Wang, and Y.M. Zhang, Numerical analysis of the temperature profiles and weld dimension in high power direct-diode laser welding. Computational Materials Science, 2009. 46(1): p. 49-56. 18. C.-H. Lee and K.-H. Chang, Three-dimensional finite element simulation of residual stresses in circumferential welds of steel pipe including pipe diameter effects. Materials Science and Engineering: A, 2008. 487(1–2): p. 210-218. 19. C.D. Elcoate, et al., Three dimensional multi-pass repair weld simulations. International Journal of Pressure Vessels and Piping, 2005. 82(4): p. 244-257. 20. C. Sharma, D.K. Dwivedi, and P. Kumar, Effect of post weld heat treatments on microstructure and mechanical properties of friction stir welded joints of Al–Zn–Mg alloy AA7039. Materials & Design, 2013. 43(0): p. 134-143. 21. S.J. Yuan, Z.L. Hu, and X.S. Wang, Formability and microstructural stability of friction stir welded Al alloy tube during subsequent spinning and post weld heat treatment. Materials Science and Engineering: A, 2012. 558(0): p. 586-591. 22. P. Villars, A. Prince, and H. Okamoto, Handbook of Ternary Alloy Phase Diagrams. 1995, Materials Park: ASM International. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16690 | - |
dc.description.abstract | In this research, both copper foil and Ni-based V2177 foil are applied in brazing IN-800 substrate. Analyses of the microstructural evolution of the joint by controlling brazing temperature, time and the thickness of foil were performed. Selected specimens were applied in shear test in order to evaluate the effect of microstructure on the brazed joint. First, IN-800/Cu/IN-800 brazed joints show no precipitate, and their shear strengths do not change with the brazing temperature and thickness of the filler foil. The crack is originated from Cu-rich matrix based on SEM microstructure analysis of the fractured surface. IN-800/VZ2177/IN-800 brazed joints include two types of precipitates, B2Cr5P and Cr4Ni3P4, in the Ni-based matrix, and both are coarsened with increasing brazing temperature and/or time. However, B2Cr5P phase is coarsened more prominent than Cr4Ni3P4 at higher temperature due to enhanced diffusion rate of boron at higher temperature. Coarsening of B2Cr5P phase is also enhanced by increasing the thickness of filler foil. Based on the result of SEM microstructural examination and XRD analyses of the fractured surfaces, the crack are originated from B2Cr5P phases, and the shear strength is decreased with the coarsened B2Cr5P phase. Optimized conditions are brazed between 1050℃ and 1080℃ for 10 ~ 20 min and using the foil with 40 μm in thickness. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:43:44Z (GMT). No. of bitstreams: 1 ntu-103-R01527065-1.pdf: 4790985 bytes, checksum: 0b698062d7ea31d5d45ea76e48c8e6d8 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目 錄 IV 圖目錄 VI 表目錄 IX 第一章 前言 1 第二章 文獻回顧 2 2-1 基材簡介 2 2-1-1 Incoloy 800 2 2-1-2 純銅 2 2-2 接合製程 2 2-2-1 硬銲接合製程[4, 5] 3 2-2-2 影響硬銲接合強度因素 4 2-3 爐體硬銲簡介[10] 5 2-4 接合研究發展概況 6 第三章 實驗方法與步驟 16 3-1 IN-800基材與純CU和VZ2177兩種硬銲填料接合製程 16 3-2 剪力試驗 16 3-3 SEM顯微組織分析 17 3-4 EPMA定量分析 17 3-5 X光繞射(X-RAY DIFFRACTION, XRD)分析 17 第四章 使用純CU填料硬銲接合IN-800合金 21 4-1 IN-800/CU/IN-800 硬銲接合 21 4-1-1 IN-800/Cu/IN-800硬銲接合於1120℃ 21 4-1-2 IN-800/Cu/IN-800硬銲接合於1160℃ 22 4-1-3 IN-800/Cu/IN-800硬銲接合於1200℃ 22 4-1-4 IN-800/Cu(100 μm)/IN-800 硬銲於 1120℃、1160℃、1200℃ 22 4-1-5 IN-800/Cu/IN-800 成分擴散深度分析 23 4-1-6 IN-800/Cu(50 μm)/IN-800 銲點剪力試驗 24 4-1-7 IN-800/Cu(100 μm)/IN-800 銲點剪力試驗 25 第五章 使用VZ2177填料硬銲接合IN-800合金 40 5-1 IN-800/VZ2177/IN-800 硬銲接合 40 5-1-1 IN-800/VZ2177/IN-800 硬銲於 1050℃ 40 5-1-2 IN-800/VZ2177/IN-800 硬銲於 1080℃ 41 5-1-3 IN-800/VZ2177/IN-800 硬銲於 1110℃ 41 5-1-4 IN-800/VZ2177(80 μm)/IN-800 硬銲於1080℃ 42 5-1-5 IN-800/VZ2177(40 μm)/IN-800 銲點剪力試驗 42 5-1-6 IN-800/VZ2177(80 μm)/IN-800 銲點剪力試驗 44 第六章 結 論 60 6-1 IN-800 與 CU 硬銲填料接合製程 60 6-2 IN-800 與 VZ2177 硬銲填料接合製程 60 參考文獻 62 | |
dc.language.iso | zh-TW | |
dc.title | 使用兩種填料真空硬銲Incoloy 800之研究 | zh_TW |
dc.title | The Study of Vacuum Brazing Incoloy 800 Using Two Fillers | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭東昊,蔡履文 | |
dc.subject.keyword | 鎳基填料,銅填料,鎳基合金,顯微結構組織,剪力強度, | zh_TW |
dc.subject.keyword | Ni-based filler,Copper filler,Ni-based alloy,Microstructure,Shear strength, | en |
dc.relation.page | 63 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-07-16 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 材料科學與工程學研究所 | zh_TW |
顯示於系所單位: | 材料科學與工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 4.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。