Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16687Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張正琪(Cheng-Chi Chang) | |
| dc.contributor.author | Tse-Hung Huang | en |
| dc.contributor.author | 黃紫虹 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:43:38Z | - |
| dc.date.copyright | 2014-10-09 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-16 | |
| dc.identifier.citation | [1] Yu CC, Chang YC. Enhancement of cancer stem-like and epithelial-mesenchymal transdifferentiation property in oral epithelial cells with long-term nicotine exposure: reversal by targeting SNAIL. Toxicology and applied pharmacology. 2013;266:459-69.
[2] Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA: a cancer journal for clinicians. 2013;63:11-30. [3] Divaris K, Olshan AF, Smith J, Bell ME, Weissler MC, Funkhouser WK, et al. Oral health and risk for head and neck squamous cell carcinoma: the Carolina Head and Neck Cancer Study. Cancer causes & control : CCC. 2010;21:567-75. [4] Muwonge R, Ramadas K, Sankila R, Thara S, Thomas G, Vinoda J, et al. Role of tobacco smoking, chewing and alcohol drinking in the risk of oral cancer in Trivandrum, India: a nested case-control design using incident cancer cases. Oral oncology. 2008;44:446-54. [5] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA: a cancer journal for clinicians. 2005;55:74-108. [6] Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral oncology. 2009;45:309-16. [7] Bagan J, Sarrion G, Jimenez Y. Oral cancer: clinical features. Oral oncology. 2010;46:414-7. [8] Bagan JV, Scully C. Recent advances in Oral Oncology 2007: epidemiology, aetiopathogenesis, diagnosis and prognostication. Oral oncology. 2008;44:103-8. [9] Patra KC, Wang Q, Bhaskar PT, Miller L, Wang Z, Wheaton W, et al. Hexokinase 2 is required for tumor initiation and maintenance and its systemic deletion is therapeutic in mouse models of cancer. Cancer cell. 2013;24:213-28. [10] Lunt SY, Vander Heiden MG. Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annual review of cell and developmental biology. 2011;27:441-64. [11] Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Thomas J, de Groot T, et al. Early restaging positron emission tomography with ( 18)F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin's lymphoma. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2002;13:1356-63. [12] Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clinical cancer research : an official journal of the American Association for Cancer Research. 2000;6:3837-44. [13] Kajita E, Moriwaki J, Yatsuki H, Hori K, Miura K, Hirai M, et al. Quantitative expression studies of aldolase A, B and C genes in developing embryos and adult tissues of Xenopus laevis. Mechanisms of development. 2001;102:283-7. [14] Penhoet E, Rajkumar T, Rutter WJ. Multiple forms of fructose diphosphate aldolase in mammalian tissues. Proceedings of the National Academy of Sciences of the United States of America. 1966;56:1275-82. [15] Buono P, Mancini FP, Izzo P, Salvatore F. Characterization of the transcription-initiation site and of the promoter region within the 5' flanking region of the human aldolase C gene. European journal of biochemistry / FEBS. 1990;192:805-11. [16] Ambatipudi S, Gerstung M, Pandey M, Samant T, Patil A, Kane S, et al. Genome-wide expression and copy number analysis identifies driver genes in gingivobuccal cancers. Genes, chromosomes & cancer. 2012;51:161-73. [17] Longmire TA, Ikonomou L, Hawkins F, Christodoulou C, Cao Y, Jean JC, et al. Efficient derivation of purified lung and thyroid progenitors from embryonic stem cells. Cell stem cell. 2012;10:398-411. [18] Yap LF, Jenei V, Robinson CM, Moutasim K, Benn TM, Threadgold SP, et al. Upregulation of Eps8 in oral squamous cell carcinoma promotes cell migration and invasion through integrin-dependent Rac1 activation. Oncogene. 2009;28:2524-34. [19] Lohavanichbutr P, Mendez E, Holsinger FC, Rue TC, Zhang Y, Houck J, et al. A 13-gene signature prognostic of HPV-negative OSCC: discovery and external validation. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19:1197-203. [20] Kroemer G, Pouyssegur J. Tumor cell metabolism: cancer's Achilles' heel. Cancer cell. 2008;13:472-82. [21] Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature reviews Cancer. 2004;4:891-9. [22] Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nature reviews Cancer. 2008;8:56-61. [23] Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74. [24] Arakaki TL, Pezza JA, Cronin MA, Hopkins CE, Zimmer DB, Tolan DR, et al. Structure of human brain fructose 1,6-(bis)phosphate aldolase: linking isozyme structure with function. Protein science : a publication of the Protein Society. 2004;13:3077-84. [25] Choi KH, Shi J, Hopkins CE, Tolan DR, Allen KN. Snapshots of catalysis: the structure of fructose-1,6-(bis)phosphate aldolase covalently bound to the substrate dihydroxyacetone phosphate. Biochemistry. 2001;40:13868-75. [26] Csibi A, Fendt SM, Li C, Poulogiannis G, Choo AY, Chapski DJ, et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell. 2013;153:840-54. [27] Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101-5. [28] Yang L, Moss T, Mangala LS, Marini J, Zhao H, Wahlig S, et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Molecular systems biology. 2014;10:728. [29] Kim DH, Wirtz D. Focal adhesion size uniquely predicts cell migration. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2013;27:1351-61. [30] Physical Sciences - Oncology Centers N, Agus DB, Alexander JF, Arap W, Ashili S, Aslan JE, et al. A physical sciences network characterization of non-tumorigenic and metastatic cells. Scientific reports. 2013;3:1449. [31] Graham NA, Tahmasian M, Kohli B, Komisopoulou E, Zhu M, Vivanco I, et al. Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular systems biology. 2012;8:589. [32] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029-33. [33] Rizwan A, Serganova I, Khanin R, Karabeber H, Ni X, Thakur S, et al. Relationships between LDH-A, lactate, and metastases in 4T1 breast tumors. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013;19:5158-69. [34] Yu YH, Chiou GY, Huang PI, Lo WL, Wang CY, Lu KH, et al. Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer. Scientific reports. 2012;2:584. [35] Pagliaro L, Taylor DL. Aldolase exists in both the fluid and solid phases of cytoplasm. The Journal of cell biology. 1988;107:981-91. [36] Pagliaro L, Taylor DL. 2-Deoxyglucose and cytochalasin D modulate aldolase mobility in living 3T3 cells. The Journal of cell biology. 1992;118:859-63. [37] Ishida A, Tada Y, Nimura T, Sueyoshi N, Katoh T, Takeuchi M, et al. Identification of major Ca(2+)/calmodulin-dependent protein kinase phosphatase-binding proteins in brain: biochemical analysis of the interaction. Archives of biochemistry and biophysics. 2005;435:134-46. [38] Kim JH, Lee S, Kim JH, Lee TG, Hirata M, Suh PG, et al. Phospholipase D2 directly interacts with aldolase via Its PH domain. Biochemistry. 2002;41:3414-21. [39] Kao AW, Noda Y, Johnson JH, Pessin JE, Saltiel AR. Aldolase mediates the association of F-actin with the insulin-responsive glucose transporter GLUT4. The Journal of biological chemistry. 1999;274:17742-7. [40] Lundmark R, Carlsson SR. Regulated membrane recruitment of dynamin-2 mediated by sorting nexin 9. The Journal of biological chemistry. 2004;279:42694-702. [41] Buscaglia CA, Penesetti D, Tao M, Nussenzweig V. Characterization of an aldolase-binding site in the Wiskott-Aldrich syndrome protein. The Journal of biological chemistry. 2006;281:1324-31. [42] Jewett TJ, Sibley LD. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Molecular cell. 2003;11:885-94. [43] Marks J, Hagan IM, Hyams JS. Growth polarity and cytokinesis in fission yeast: the role of the cytoskeleton. Journal of cell science Supplement. 1986;5:229-41. [44] Rottmann WH, Deselms KR, Niclas J, Camerato T, Holman PS, Green CJ, et al. The complete amino acid sequence of the human aldolase C isozyme derived from genomic clones. Biochimie. 1987;69:137-45. [45] Penhoet EE, Kochman M, Rutter WJ. Molecular and catalytic properties of aldolase C. Biochemistry. 1969;8:4396-402. [46] Pezza JA, Choi KH, Berardini TZ, Beernink PT, Allen KN, Tolan DR. Spatial clustering of isozyme-specific residues reveals unlikely determinants of isozyme specificity in fructose-1,6-bisphosphate aldolase. The Journal of biological chemistry. 2003;278:17307-13. [47] Du S, Guan Z, Hao L, Song Y, Wang L, Gong L, et al. Fructose-bisphosphate aldolase a is a potential metastasis-associated marker of lung squamous cell carcinoma and promotes lung cell tumorigenesis and migration. PloS one. 2014;9:e85804. [48] Penhoet EE. The structure, function and distribution of mammalian fructose diphosphate aldolases. PhD thesis. University of Washington, Seattle, WA. 1968. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16687 | - |
| dc.description.abstract | 目的:
糖解作用中的醣解酶表現異常會調控腫瘤細胞的行為。然而,醣解酶調控口腔鱗狀細胞癌進程之角色仍尚未釐清。 材料方法: 利用即時聚合酶鏈鎖反應檢測果醣二磷酸醛縮酶C之mRNA表現量與口腔癌病人檢體之關係。進一步利用抑制或過度表現果醣二磷酸醛縮酶C基因在口腔鱗狀細胞癌細胞株的方法證實細胞爬行或轉移的能力,並建立原位注射口腔癌的動物模型來研究果醣二磷酸醛縮酶C在動物模式內淋巴結轉移與存活率的結果。 結果: 我們首先確定了在惡性程度較高的細胞株,SAS及Ca9-22細胞中果醣二磷酸醛縮酶C的表現量顯著地較低。臨床資料顯示,在68個口腔癌病人中,果糖二磷酸醛縮酶C的表現量與淋巴結轉移和早期的病人檢體中呈負相關性。過度表現果醣二磷酸醛縮酶C顯著地抑制ATP和乳酸的生成,導致細胞爬行能力降低;抑制果醣二磷酸醛縮酶C可以回復細胞侵襲及爬行的能力。此外,催化糖解作用之位點Arg42和K146進行單點突變及雙突變,並將突變的果醣二磷酸醛縮酶C轉染至SAS內,可以回復其抑制細胞侵襲及爬行之能力。在動物模型中證實果醣二磷酸醛縮酶C過度表現顯著地降低淋巴結的轉移並延長動物的存活率。 結論: 果醣二磷酸醛縮酶C為一個口腔鱗狀細胞癌臨床診斷及預後標記的重要角色,其功能為抑制口腔鱗狀細胞癌侵襲及爬行之能力,而Arg42及Lys146為重要調控的位點。本論文顯示,果醣二磷酸醛縮酶C可能是潛在治療標靶以阻止口腔鱗狀細胞癌的進程。 | zh_TW |
| dc.description.abstract | Objectives:
Glycolysis machinery regulates cancer cell behavior. However, the role of these glycolysis enzyme in oral squamous cell carcinoma (OSCC) progression is still largely unknown. Materials and Methods: Fructose-bisphosphate aldolase C (ALDOC) expression in OSCC patients and cell lines was detected by real-time quantitative RT-PCR. The functions of ALDOC in migration and invasion ability of OSCC cells were determined by gain and loss function approaches. The orthotopic OSCC animal model was performed to investigate the effects of ALDOC on OSCC cell lymph node metastasis and tumorigensis in vivo. Results: ALDOC mRNA and protein expression was significantly decreased in advanced migratory cells including SAS and Ca9-22 cells. Clinical data revealed that ALDOC mRNA expression negatively correlated with lymph node metastasis and advanced tumor TNM stage in 68 OSCC patients. Overexpressed ALDOC block ATP generation and lactate production resulted in cell motility retardation. Transfected silenced ALDOC expression plasmid could restore OSCC cell migration and invasion. Furthermore, Transfection of ALDOC point mutation constructs of catalytic domain, Arg42 and K146 in SAS cells could functionally restore the ALDOC-inhibited cell migration and invasion. In vivo, ALDOC overexpressed significantly decreased lymph node metastasis and prolong mice survival. Conclusion: ALDOC plays as an OSCC prognosis marker clinically, and functions to suppressor OSCC cell migration and invasion, and the catalytic domain of Arg42 and K146 is crucial in this regulations machinery. ALDOC could be a potential therapeutic target to block OSCC progression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:43:38Z (GMT). No. of bitstreams: 1 ntu-103-R01450002-1.pdf: 1929493 bytes, checksum: d1e6c9a9091ca6a0913e394efd2ab59d (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | Introduction……………………………………………………………………………1
Materials and Methods………………………………………………………….…….4 Result…………………………………………………………………………………..13 1. ALDOC mRNA expression negatively correlated with TNM stage and lymph node metastasis in OSCC patients 2. ALDOC decreased invasion and migration ability in oral cancer cells 3. ALDOC rearranged cytoskeletal in oral cancer cells 4. ALDOC regulated cell invasion and migration through inhibited metabolic pathway 5. The catalytic domain of Arg42 and K146 sites play important roles in invasion and migration ability 6. ALDOC overexpression suppressed lymph node metastatic in vivo by xenograft models 7. Knockdown ALDOC enhanced lymph node metastatic in vivo by xenograft model Discussion…………………………………………………………………………...…20 Reference………………………………………………………………………………25 Figure…………………………………………………………………………………..33 | |
| dc.language.iso | en | |
| dc.subject | 糖解? | zh_TW |
| dc.subject | 口腔癌 | zh_TW |
| dc.subject | 轉移 | zh_TW |
| dc.subject | 果糖二磷酸醛縮?C | zh_TW |
| dc.subject | 代謝 | zh_TW |
| dc.subject | glycolysis enzyme | en |
| dc.subject | metabolism | en |
| dc.subject | oral cancer | en |
| dc.subject | migration | en |
| dc.subject | ALDOC | en |
| dc.title | 果糖二磷酸醛縮酶C於口腔鱗狀細胞癌進程之效應 | zh_TW |
| dc.title | The Effect of Fructose-bisphosphate Aldolase C in Oral Squamous Cell Carcinoma Progression | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 譚慶鼎(Ching-Ting Tan),郭彥彬(Yen-Ping Kuo),蕭宏昇(Michael Hsiao) | |
| dc.subject.keyword | 口腔癌,轉移,果糖二磷酸醛縮?C,糖解?,代謝, | zh_TW |
| dc.subject.keyword | oral cancer,migration,ALDOC,glycolysis enzyme,metabolism, | en |
| dc.relation.page | 47 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-16 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
| Appears in Collections: | 口腔生物科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-103-1.pdf Restricted Access | 1.88 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
