請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16681
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊照彥 | |
dc.contributor.author | Ming-Fei Tsai | en |
dc.contributor.author | 蔡明霏 | zh_TW |
dc.date.accessioned | 2021-06-07T23:43:31Z | - |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-17 | |
dc.identifier.citation | [1] A. Cohen-Zur and B. Natan, 'Experimental investigation of a supersonic combustion solid fuel ramjet,' Journal of Propulsion and Power, vol. 14, pp. 880-889, 1998.
[2] M. Oevermann, 'Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling,' Aerospace Science and Technology, vol. 4, pp. 463-480, 2000. [3] C.-W. Shu, 'High order weighted essentially nonoscillatory schemes for convection dominated problems,' SIAM Review, vol. 51, pp. 82-126, 2009. [4] K. Pandey and A. Singh, 'Numerical Analysis of Supersonic Combustion by Strut Flat Duct Length with SA Turbulence Model,' IACSIT International Journal of Engineering and Technology, vol. 3, pp. 193-198, 2010. [5] K. Pandey and T. Sivasakthivel, 'CFD analysis of mixing and combustion of a scramjet combustor with a planer strut injector,' International Journal of Enviromental Science and Development, vol. 2, 2011. [6] P. SPALART and S. ALLMARAS, 'A one-equation turbulence model for aerodynamic flows,' Recherche Aerospatiale, No. 1, pp. 5-21, 1994. [7] S. Catris and B. Aupoix, 'Density corrections for turbulence models,' Aerospace Science and Technology, vol. 4, pp. 1-11, 2000. [8] J.-L. Montagne, H. C. Yee, and M. Vinokur, 'Comparative study of high-resolution shock-capturing schemes for a real gas,' AIAA Journal, vol. 27, pp. 1332-1346, 1989. [9] B. Koren, 'A robust upwind discretization method for advection, diffusion and source terms,' Centrum voor Wiskunde en Informatica Amsterdam, 1993. [10] S. Yoon and A. Jameson, 'Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations,' AIAA Journal, vol. 26, pp. 1025-1026, 1988. [11] E. Engman, 'Numerical simulation of scramjet combustion,' Master’s Degree. Sweden: Lulea University of Technology, 2008. [12] M. J. Wright, K. Sinha, J. Olejniczak, G. Candler, T. Magruder, and A. Smits, 'Numerical and experimental investigation of double-cone shock interactions,' AIAA Journal, vol. 38, pp. 2268-2276, 2000. [13] V. Viti, J. Schetz, and R. Neel, 'Comparison of first and second order turbulence models for a jet/3D ramp combination in supersonic flow,' in 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005. [14] T. R. Bussing and E. M. Murman, 'Finite-volume method for the calculation of compressible chemically reacting flows,' AIAA Journal, vol. 26, pp. 1070-1078, 1988. [15] C.-W. Shu, 'Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws,' Springer, 1998. [16] J. Olejniczak, M. J. Wright, and G. V. Candler, 'Numerical study of inviscid shock interactions on double-wedge geometries,' Journal of Fluid Mechanics, vol. 352, pp. 1-25, 1997. [17] J. J. Bertin and J. C. Hinkle, 'Experimental investigation of supersonic flow past double-wedge configurations,' AIAA Journal, vol. 13, pp. 897-901, 1975. [18] Z. Hu, R. Myong, C. Wang, T. Cho, and Z. Jiang, 'Numerical study of the oscillations induced by shock/shock interaction in hypersonic double-wedge flows,' Shock Waves, vol. 18, pp. 41-51, 2008. [19] O. Joseph, W. Michael, and C. Graham, 'Numerical study of shock interactions on double-wedge geometries,' in 34th Aerospace Sciences Meeting and Exhibit, ed: American Institute of Aeronautics and Astronautics, 1996. [20] C. Fureby, 'Large eddy simulation modelling of combustion for propulsion applications,' Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 367, pp. 2957-2969, 2009. [21] P. R. Spalart and C. L. Rumsey, 'Effective inflow conditions for turbulence models in aerodynamic calculations,' AIAA Journal, vol. 45, pp. 2544-2553, 2007. [22] S. R. Allmaras and F. T. Johnson, 'Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model,' in ICCFD7-1902, Seventh International Conference on Computational Fluid Dynamics, Big Island, Hawaii, 2012. [23] B. Aupoix and P. Spalart, 'Extensions of the Spalart–Allmaras turbulence model to account for wall roughness,' International Journal of Heat and Fluid Flow, vol. 24, pp. 454-462, 2003. [24] M. L. Shur, M. K. Strelets, A. K. Travin, and P. R. Spalart, 'Turbulence modeling in rotating and curved channels: Assessing the Spalart-Shur correction,' AIAA Journal, vol. 38, pp. 784-792, 2000. [25] J. Dacles‐Mariani, D. Kwak, and G. Zilliac, 'On numerical errors and turbulence modeling in tip vortex flow prediction,' International Journal for Numerical Methods in Fluids, vol. 30, pp. 65-82, 1999. [26] T. Rung, U. Bunge, M. Schatz, and F. Thiele, 'Restatement of the Spalart-Allmaras eddy-viscosity model in strain-adaptive formulation,' AIAA Journal, vol. 41, pp. 1396-1399, 2003. [27] R. Gardon and J. C. Akfirat, 'The role of turbulence in determining the heat-transfer characteristics of impinging jets,' International Journal of Heat and Mass Transfer, vol. 8, pp. 1261-1272, 1965. [28] C. A. Lind, 'Effect of geometry on the unsteady type-IV shock interaction,' Journal of Aircraft, vol. 34, pp. 64-71, 1997. [29] C. A. Lind and M. J. Lewis, 'Computational analysis of the unsteady type IV shock interaction of blunt body flows,' Journal of Propulsion and Power, vol. 12, pp. 127-133, 1996. [30] C.-M. Hung and P. G. Buning, 'Simulation of blunt-fin-induced shock-wave and turbulent boundary-layer interaction,' Journal of Fluid Mechanics, vol. 154, pp. 163-185, 1985. [31] B. E. EDNEY, 'Effects of shock impingement on the heat transfer around blunt bodies,' AIAA Journal, vol. 6, pp. 15-21, 1968. [32] M. Čada and M. Torrilhon, 'Compact third-order limiter functions for finite volume methods,' Journal of Computational Physics, vol. 228, pp. 4118-4145, 2009. [33] R. J. LeVeque, 'Finite volume methods for hyperbolic problems,' Cambridge university press, vol. 31, 2002. [34] A. Harten, S. Osher, B. Engquist, and S. R. Chakravarthy, 'Some results on uniformly high-order accurate essentially nonoscillatory schemes,' Applied Numerical Mathematics, vol. 2, pp. 347-377, 1986. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16681 | - |
dc.description.abstract | 本研究基於氣體動力學之理論基礎,以可壓縮Navier-Stokes方程式為統御方程,來求解超音速燃燒衝壓引擎的流場問題。在紊流模型的選擇上使用較好計算之Spalart-Allmaras單方程式模組,此模組在壁面與邊界層附近的流場問題能得到較好的結果。數值方法部分將以加權基本不震盪算則(WENO)計算,並搭配在穩態問題中可以較快收斂的LU-SGS隱式算則來模擬。藉由加權基本不震盪算則具有高階準確性以及在不連續點能不震盪地解析出不連續數值解的特性,可以將其應用在有許多震波交互作用的超音速流場問題中。本文將使用上述之模擬方法,先與參考文獻中的燃燒室模擬與雙圓錐進氣道模擬做驗證比較,確認此方法的準確性。接著再針對一個完整的超音速燃燒衝壓引擎之流場問題,以不同的初始條件進行模擬,得到其馬赫數、密度、溫度及壓力的分佈情形,並討論其結果。結果顯示,加權基本不震盪算則不僅可以成功地模擬超音速流場問題,即便是在兩震波相當接近的情況下,也能解析出更準確的結果。 | zh_TW |
dc.description.abstract | This study is based on the theory of gas dynamics and uses the Navier-Stokes equations as the governing equations to solve the fluid flow field problems of the scramjet. For the turbulent flow, we use the simple Spalart-Allmaras one equation turbulence model (S-A model) which produces better results for near wall and boundary layer flow field problems. The lower-upper symmetric Gauss-Seidel (LU-SGS) implicit scheme, whose results converge efficiently under steady state conditions, is combined with the Weighted Essentially Non-Oscillatory (WENO) scheme to construct a numerical model of the scramjet. Using the WENO scheme’s high-order accuracy and its non-oscillatory solution at discontinuous areas, we can solve supersonic flow field problems with multiple shock wave interactions. This simulation procedure is verified against two partial examples from literature to ensure its accuracy, and is then applied to a complete geometric model of a scramjet with different initial conditions for a full flow field analysis. The Mach number, density, static temperature and pressure are found and the results discussed. It is found that even when the shock waves are very close to each other, the WENO scheme produces better simulation results than other numerical approaches. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:43:31Z (GMT). No. of bitstreams: 1 ntu-103-R01543083-1.pdf: 5613581 bytes, checksum: 3f297a546742af12b9fca72c9568e4ec (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 參考文獻 3 1.4 本文架構 5 第二章 理論基礎 6 2.1 質量守恆方程式 6 2.2 動量守恆方程式 7 2.3 能量守恆方程式 8 2.4 氣體動力學理論 9 2.5 紊流模型 12 2.6 二維NAVIER-STOKES方程式之矩陣形式 13 第三章 數值模擬 17 3.1 計算流體力學 17 3.2 數值離散方法 18 3.2.1 有限差分法 18 3.2.2 有限元素法 19 3.2.3 有限體積法 19 3.3 空間離散 20 3.3.1 加權基本不震盪算則(WENO) 21 3.3.2 單調迎風中央差分法守恆律算則(MUSCL) 27 3.4 時間離散 30 3.4.1 下上三角矩陣對稱高斯-賽德爾迭代法(LU-SGS) 31 第四章 超音速流場模擬及驗證 35 4.1 二維超音速引擎燃燒室流場模擬 35 4.1.1 網格與邊界條件設定 35 4.1.2 結果比較與討論 36 4.2 超音速雙圓錐進氣道流場模擬 37 第五章 超燃衝壓引擎進氣道流場模擬結果 66 5.1 網格與邊界條件設定 66 5.2 模擬結果與討論 66 第六章 結論及未來展望 82 6.1 結論 82 6.2 未來展望 83 參考文獻 84 | |
dc.language.iso | zh-TW | |
dc.title | 使用加權基本不震盪算則之超音速衝壓引擎流場模擬分析 | zh_TW |
dc.title | Numerical Computations of Scramjet Flow Fields Using Weighted Essentially Non-Oscillatory Method | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭正山,莊哲俊,賴祐炫 | |
dc.subject.keyword | 超音速空氣動力學,超音速燃燒衝壓引擎,加權基本不震盪算則,計算流體力學,Spalart-Allmaras紊流模型,Navier-Stokes方程式, | zh_TW |
dc.subject.keyword | Supersonic Aerodynamics,Scramjet,WENO Scheme,Computational fluid dynamics,Spalart-Allmaras turbulent model,Navier-Stokes equations, | en |
dc.relation.page | 86 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-07-17 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 5.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。