請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16673
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉懷勝 | |
dc.contributor.author | Yun Yeh | en |
dc.contributor.author | 葉芸 | zh_TW |
dc.date.accessioned | 2021-06-07T23:43:20Z | - |
dc.date.copyright | 2014-07-29 | |
dc.date.issued | 2014 | |
dc.date.submitted | 2014-07-18 | |
dc.identifier.citation | Abigor RD, Uadia PO, Foglia TA, Hass MJ, Jones, KC, Okpefa, Obibuzor, JU and Bafor, ME. 2000. Lipase catalyzed production of biodiesel fuel from some Nigerian lauric oils. Biochem. Soc. Trans. 28: 979-981.
Alcantara R, Amores J and Canoira L. 2000. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenergy. 18:515-527. Aranda DAG, Santos RTP, Tapanes NCO, Ramos ALD and Antunes OAC. 2008. Acid-catalyzed homogeneous esterification reaction for biodiesel production from palm fatty acids. Catalysis Letters 122(1-2): 20-25. Azcan N and Danisman A. 2008. Microwave assisted transesterification of rapeseed oil. Fuel 87(10-11): 1781-1788. Bajpai D and Tyagi VK. 2006. Biodiesel: source, production, composition, properties and its benefits. Journal of Oleo Science 55 (10):487-502. Bambase ME, Nakamura N, Tanaka J and Matsumura M. 2007. Kinetics of hydroxide-catalyzed methanolysis of crude sunflower oil for the production of fuel-grade methyl esters. J. Chem. Technol. Biotechnol. 82(3): 273-280. Banerjee A, Sharma R, Chisti Y, Banerjee UC. 2002. Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Critical Reviews in Biotechnology 22(3):245-279. Becker EW. 1994. Microalgae: biotechnology and microbiology. Cambridge University Press. UK. p.1. Berrios M, Siles J, Martin MA and Martin A. 2007. A kinetic study of the esterification of free fatty acids (FFA) in sunflower oil. Fuel 86(15): 2383-2388. Borowitzka MA. 1999. Pharmaceuticals and agrochemicals from microalgae. In: Chemicals from microalgae. Cohen Z, editor. Taylor & Francis, London, pp. 313-352. Brown LM. 1996. Uptake of Carbon Dioxide from Flue Gas by Microalgae. Energy Conversion and Management 37(6-8): 1363-1367. Cao H, Zhang Z, Wu X and Miao X. 2013. Direct Biodiesel Production from Wet Microalgae Biomass of Chlorella pyrenoidosa through In Situ Transesterification. BioMed Research International 2013: Article ID 930686, 6 pages. doi:10.1155/2013/930686. Chisti Y. 1980. An unusual hydrocarbon. J. Ramsay soc 81: 27-28. Chisti Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25(3): 294-306. Chohji T, Tabata M and Hirai E. 1997. CO2 recovery from flue gas by an ecotechnological(environmentally friendly) system. Energy 22(2-3): 151-159. Darnoko D and Cheryan M. 2000. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 77(12): 1263-1267. Day JNE and Ingold CK. 1941. Mechanism and kinetics of carboxylic ester hydrolysis and carboxyl esterification. Trans. Faraday Soc. 37: 0686-0699. de-Bashan LE, Hernandez JP, Morey T and Bashan Y. 2004. Microalgae growth-promoting bacteria as 'helpers' for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res. 38(2): 466-474. Delaunay F, Marty Y, Moal J and Samain JF. 1993. The effect of monospecific algal diets on growth and fatty-acid composition of pecten maximus(L) larvae. J. Exp. Mar. Biol. Ecol. 173(2): 163-179. Demirbas A. 2007. Oily products from mosses and algae via pyrolysis. Energy sources, part A: Recovery, Utilization, and Environmental Effects 28:933-940. Durrett TP, Benning C and Ohlrogge J. 2008. Plant triacylglycerols as feedstocks for the production of biofuels. Plant Journal 54(4): 593-607. Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R and Bordado JM. 2006. Production of biodiesel from waste frying oil. Waste Management 26(5):487-494. Foglia TA, Nelson LA and Marmer WN. 1998. Production of biodiesel lubricant and fuel and lubricant additives. US patent 5743965 Folch J, Lees M,and Stanley GHS. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem., 226: 497-509. Freedman B, Butterfield RO and Pryde EH. 1986. Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc. 63(10): 1375-1380. Fukuda H, Kondo A, Noda H. 2001. Biodiesel fuel production by transesterification of oils. Journal of Bioscience and Bioengineering 92:405-416. Garbisu C, Gil JM, Bazin MJ, Hall DO and Serra JL. 1991. Removal of nitrate from water by foam-immobilized phormidium laminosum in batch and continuous-flow bioreactors. J. Appl. Phycol. 3(3): 221-234. Gavrilescu M and Chisti Y. 2005. Biotechnology-a sustainable alternative for chemical industry. Biotechnology Advances 23:471-499. Georgianna DR and Mayfield SP. 2012. Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488(7411): 329-335. Ghirardi ML, Zhang JP, Lee JW, Flynn T, Seibert M, Greenbaum E and Melis A. 2000. Microalgae: a green source of renewable H2. Trends in Biotechnology 18:506-11. Griffiths MJ, RP van Hille and Harrison STL. 2010. Selection of Direct Transesterification as the Preferred Method for Assay of Fatty Acid Content of Microalgae. Lipids 45:1053–1060. Grima EM, Camacho FG, Perez JAS, Sevilla JMF, Fernandez FGA and Gomez AC. 1994. A mathematical-model of microalgal frowth in light-limited chemostat culture. J. Chem. Technol. Biotechnol. 61(2): 167-173. Goering E, Schwab W, Daugherty J, Pryde H and Heakin J. 1982. Fuel properties of eleven vegetable oils. Transactions of the ASAE 25:1472-1483. Haas MJ and Wagner K. 2011. Simplifying biodiesel production: The direct or in situ transesterification of algal biomass. European Journal of Lipid Science and Technology 113(10): 1219-1229. Hidalgo P, Toro C, Ciudad G and Navia R. 2013. Advances in direct transesterification of microalgal biomass for biodiesel production. Reviews in Environmental Science and Bio-Technology 12(2): 179-199. Hideki F, Akihiko K and Hideo N. 2001. Biodiesel Fuel Production by Transesterification of Oils. Review. J. Biosci. Bioeng. 92: 405-461 Hoekman SK, Broch A, Robbins C, Ceniceros E and Natarajan M. 2012. Review of biodiesel composition, properties, and specifications. Renew. Sust. Energ. Rev. 16(1): 143-169. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) .2001. Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, UK. Hughes E, and Benemann JR. 1997. Biological fossil CO2 mitigation. Energy Conversion and Management 38:467-473. IEA (International Energy Agency). 2006. Energy balances of OECD countries—extended balances, and energy balances of non-OECD countries—extended balances. IEA, Statistics, Paris. Available from http://data.iea.org/ieastore/default.asp (accessed April 2007). IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Johnson MB and Wen Z. 2009. Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass. Energy Fuels 23: 5179–5183. Kapdan IK and Kargi F. 2006. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology 38:569-582. Karl, TR. and Trenberth KE. 2003. Modern global climate change. Science 302(5651): 1719-1723. Kay RA. 1991. Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition 30:555-73. Knothe G, Sharp CA, Ryan TW. 2006. Exhaust emissions of biodiesel, petrodiesel, neat methyl esters, and alkanes in a new technology engine. Energy and Fuels 20: 403-408. Kulkarni MG and Dalai AK. 2006. Waste cooking oil-an economical source for biodiesel: A review. Industrial & Engineering Chemistry research 45:2901-2913. Laurens LML, Quinn M, Van Wychen S, Templeton DW and Wolfrum EJ. 2012. Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl esters by in situ transesterification. Analytical and Bioanalytical Chemistry 403(1): 167-178. Lardon L, Hélias A, Sialve B, Steyer J and Bernard O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43: 6475–6481. Lepage G, Roy CC. 1986. Direct transesterification of all classes of lipids in a onestep reaction. J. Lipid Res. 27: 114–120. Lee SJ, Yoon BD and Oh HM. 1998. Rapid method for the determination of lipid from the green alga Botryococcus braunii. Biotechnology Techniques 12:553–556. Lewis T, Nichols PD, McMeekin, T.A. 2000. Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J. Microbiol. Methods 43: 107–116. Lin L, D Ying S Chaitep, and S. Vittayapadung. 2009. Biodiesel production from crude rice bran oil and properties as fuel. Applied Energy 86: 681-688. Liu Y, Lotero E and Goodwin JG, Jr. 2006. Effect of carbon chain length on esterification of carboxylic acids with methanol using acid catalysis. Journal of Catalysis 243(2): 221-228. Maeda K, Owada M Kimura N, Omata K and Karube I. 1995. CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Conversion and Management 36: 717-720. Matsunaga T, Takeyama H, Miyashita H and Yokouchi H. 2005. Marine Microalgae. Advances in Biochemical Engineering Biotechnology 96:165-188. Meher LC, Vidya Sagar D. and Naik SN. 2006. Technical aspects of biodiesel production by transesterification—a review. Renewable & Sustainable Energy Reviews 10:248-268. Melis A. 2002. Green alga hydrogen production: progress, challenges and prospects. International Journal of Hydrogen Energy 27:1217-28. Metting B, Pyne JW. 1986. Biologically-active compounds from microalgae. Enzyme and Microbial Technology 8:386-94. Miao XL, Wu QY and Yang CY. 2004. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis. 71(2): 855-863. Miao XL and Wu QY. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresour. Technol. 97(6): 841-846. Michiki H. 1995. Biological CO2 Fixation and utilization project. Energy Conversion and Management 36:701-705. Montes D'Oca MG, Viegas CV, Lemoes JS, Miyasaki EK, Moron-Villarreyes JA, Primel EG and Abreu PC. 2011. Production of FAMEs from several microalgal lipidic extracts and direct transesterification of the Chlorella pyrenoidosa. Biomass & Bioenergy 35(4): 1533-1538. Nakamura DN. 2006. Journally speaking: the mass appeal of biomass. Oil & Gas Journal 104:15. Noureddini H and Zhu D. 1997. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 74(11): 1457-1463. Pacala S, and Socolow R.2004. Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 305:968-972. Pahl G. 2005. Biodiesel: growing a new energy economy. Chelsea Green Publishing, White River Junction, Vermont. Palmer CM. 1962. Algae in water supplies of Ohio. Pin Koh L. 2007. Potential habitat and biodiversity losses from intensified biodiesel feedstock production. Conservation Biology 21(5): 1373-1375. Pisarello ML, Dalla Costa B, Mendow G and Querini CA. 2010. Esterification with ethanol to produce biodiesel from high acidity raw materials Kinetic studies and analysis of secondary reactions. Fuel Processing Technology 91(9): 1005-1014. Pryde EH. 1983. Vegetable oil as biodiesel fuel: Overview. J. Am.Oil Chem.Soc. 60: 1557-1558. Pryor RW, Hanna, MA, Schinstock JL and Bashford LL. 1982. Soybean oil fuel in a small diesel engine. Transactions of the ASAE 26:333-338. Radakovits R, Jinkerson RE, Darzins A and Posewitz MC. 2010. Genetic Engineering of Algae for Enhanced Biofuel Production. Eukaryotic Cell 9(4): 486-501. Ragauskas AJ , Williams CK, Davison BH, Britovsek G, Cairney J, Eckert CA, Frederick WJ, Hallett JP, Leak DJ, Liotta CL, Mielenz JR, Murphy R, Templer R, Tschaplinski T. 2006. The path forward for biofuels and biomaterials. Science 311:484-489. Ramadhas AS, S Jayaraj, and C Muraleeharan. 2005. Biodiesel production from high FFA rubber seed oil. Fuel 84: 335-340. Ratledge C. 2004. Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie 86(11): 807-815. Richmond A, and Grobbelaar JU. 1986. Factors affecting the output rate of Spirulina platensis with reference to mass cultivation. Biomass 10:253-264. Rodríguez-Ruiz J, Belarbi E, Sánchez JLG, Alonso DL. 1998. Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol. Tech. 12: 689–691. Saka S and Kusdiana D. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2): 225-231. Sathish A, Smith BR and Sims RC. 2014. Effect of moisture on in situ transesterification of microalgae for biodiesel production. J. Chem. Technol. Biotechnol 89(1): 137-142. Sawayama S, Inoue S, Dote Y, Yokoyama S-Y. 1995. CO2 fixation and oil production through microalga. Energy Conversion and Management 36:729-731. Schuchardt U, Sercheli R and Vargas RM. 1998. Transesterification of vegetable oils: a review. J. Braz. Chem. Soc 9(3): 199-210. Schwartz RE. 1990. Pharmaceuticals from cultured algae. Journal of Industrial Microbiology 5:113-23. Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. A look back at the U.S. Department of Energy's Aquatic Species Program—biodiesel from algae. National Renewable Energy Laboratory, Golden, CO. Report NREL/TP-580-24190. Shen Y, Pei Z, Yuan W and Mao E. 2009. Effect of nitrogen and extraction method on algae lipid yield. International Journal of Agricultural and Biological Engineering 2:51-57. Sivasamy A, Cheah KY, Fornasiero P, Kemausuor F, Zinoviev S and Miertus S. 2009. Catalytic Applications in the Production of Biodiesel from Vegetable Oils. Chemsuschem 2(4): 278-300. Speidel HK, Lightner RL and Ahmed I. 2000. Biodegradability of new engineered fuels compared to conventional petroleum fuels and alternative fuels in current use. Applied Biochemistry and Biotechnology 84-86: 879-897. Spolaore P, Joannis-Cassan C, Duran E and Isambert A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101:87-96. Srivastava A. and Prasad R. 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4:111-133. Sukenik A, Zmora O and Carmeli Y. 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition. II. Nannochloropsis sp. Aquaculture 117(3-4): 313-326. Suwannakarn K, Lotero E, Ngaosuwan K and Goodwin JG, Jr. 2009. Simultaneous Free Fatty Acid Esterification and Triglyceride Transesterification Using a Solid Acid Catalyst with in Situ Removal of Water and Unreacted Methanol. Industrial & Engineering Chemistry Research 48(6): 2810-2818. Takisawa K, Kanemoto K, Kartikawati M and Kitamura Y. 2013. Simultaneous hydrolysis-esterification of wet microalgal lipid using acid. Bioresour. Technol. 149: 16-21. Takisawa K, Kanemoto K, Miyazaki T and Kitamura Y. 2013. Hydrolysis for direct esterification of lipids from wet microalgae. Bioresour. Technol. 144: 38-43. Tam NFY and Wong YS. 2000. Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ. Pollut. 107(1): 145-151. Tanaka K, Konishi F, Himeno K, Taniguchi K and Nomoto K. 1984. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunol. Immunother. 17(2): 90-94. Tilman D, Hill J and Lehman C. 2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 314:1598-1600. U. S. Department of Agriculture. 2007. Oilseeds: World Markets and Trade. Circular Series FOP 09-09. Washington, DC: Foreign Agricultural Service, US Department of Agriculture. U. S. Department of Energy. 2001. Alternative fuel transportation program; biodiesel fuel use credit. Federal Register 66:2207-2211. U. S. Department of Energy. 2007. Annual Energy Outlook 2007. Report Number DOE;EIA-0383. Washington, DC: Energy Information Administration, US Department of Energy. Venkataraman NS. 2004. Agro based biodiesel-opportunities and constraints in developing countries like India. Chemical Industry Digest April: 77. Vicente G, Martinez M, Aracil J and Esteban A. 2005. Kinetics of sunflower oil methanolysis. Industrial & Engineering Chemistry Research 44(15): 5447-5454. Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S and Garre V. 2009. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 48: 22–27. Vitousek PM. 1994. Beyond Global Warming: Ecology and Global Change. Ecology 75:1861-1876. Vyas AP, Verma JL and Subrahmanyam N. 2010. A review on FAME production processes. Fuel 89(1): 1-9. Wahlen BD, Willis RM and Seefeldt LC. 2011. Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour. Technol. 102(3): 2724-2730. Walter TL, Purton S, Becker DK, Collet C. 2005. Microalgae as bioreactor. Plant Cell Reports 24:629-641. Wright HJ, Segur JB, Clark HV, Coburn SK, Langdon EE and DuPuis RN. 1944. A report on ester interchange. Oil Soap 21: 145-148 . Zendejas FJ, Benke PI, Lane PD, Simmons BA and Lane TW. 2012. Characterization of the acylglycerols and resulting biodiesel derived from vegetable oil and microalgae (Thalassiosira pseudonana and Phaeodactylum tricornutum). Biotechnology and Bioengineering 109(5): 1146-1154. Zhang Y, Dub MA, McLean DD, Kates M. 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour. Technol. 90:229-240. 陳怡真。2007。實驗設計法進行棕櫚油轉酯化生質柴油之因子設計分析及最佳 化。化學工程學系。中原大學 廖冠宇。2011。混凝過濾程序分離小球藻液。化學工程學系。國立台灣大學 葉俊良。2006。在光生化反應器中以二階段策略培養微藻生產油脂之研究。化學 工程學系。國立成功大學。 蔡迪洋。2010。反應曲面法應用於廢棄炸油產製生質柴油之最適預酯化製程探 討。生物產業機電工程學系。國立台灣大學。 蔡明達。2009。微藻養殖生產油脂並利用微藻油脂產製生質柴油之研究。生物科 技學系。國立交通大學。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16673 | - |
dc.description.abstract | 微藻是一種能行光合作用之單細胞植物,能快速生長同時累積大量油脂於細胞中,因此被認為是極具潛力的生質燃料來源。但由於微藻的收集、乾燥與油脂萃取不易,導致能量成本高,以至於目前微藻轉化之生質柴油仍難有商業價值。為使生產生質柴油更符合經濟與能源效益,設計適當微藻轉化為生質能源的程序乃是重要之課題。
本研究所使用小球藻(Chlorella sp. ESP-6)為原料,並以直接轉酯化反應將濕潤微藻中油脂轉化為生質柴油主要成分─脂肪酸甲酯,本研究將傳統製程上油脂萃取、純化與轉酯化三個單元合併成為二階段反應,先藉由鹼性甲醇溶液破碎微藻細胞、使細胞內油脂釋放到溶液中及加速轉酯化和皂化反應進行,再由酸性甲醇溶液將皂化反應產物轉化為脂肪酸甲酯。實驗結果顯示,二階段直接轉酯化反應所需反應程序時間為傳統製程的二十分之一,且容許進料含有相當的水量,使用濃縮藻液做為原料時的產率約為其他直接轉酯化的2 ~ 6倍。本研究分析反應中催化劑、溫度及甲醇與水的比例對系統的影響,並以二級不可逆反應良好地描述第一階段鹼性反應、以二級可逆反應描述第二階段酸性反應。 | zh_TW |
dc.description.abstract | Microalgae, a photosynthetic organism, has the ability of fast-growing and lipid accumulating, which makes it a highly potential source of biofuel. However, there are some current technical barriers, such as high energy and organic solvent consumption for harvest, drying and lipid extraction. To make the process of producing biofuel production from microalgae economically feasible, an innovative process was designed to convert lipid inside microalgae into biodiesel.
In this study, Chlorella sp. ESP-6 was used as the source of triglyceride. Direct transesterification (DT) is a method directly converting lipids within algae into biodiesel, fatty acid methyl esters (FAME). In this study, our DT first disrupted the cell wall of microalgae, extracted lipids and converted them by saponification and transesterification with alkali-methanol solution, then converted the product of saponification into FAME by esterification with acid methanol. Result showed that the reaction time of DT is about 1/20 of the traditional drying-extraction- transesterification process with comparable yield. More importantly, this 2 stage DT was insensitive to the water content of the raw material (up to 90%), and the yield was 2 ~ 6 times of other DT methods when using wet microalgae. Meanwhile, the effects of parameters including catalyst concentration, temperature and ratio of methanol and water were evaluated. A second order irreversible and a second order reversible reaction kinetic model were proposed to describe DT satisfactorily. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T23:43:20Z (GMT). No. of bitstreams: 1 ntu-103-R01524037-1.pdf: 7797129 bytes, checksum: 199616fae90bbc64d8a586784315e2f2 (MD5) Previous issue date: 2014 | en |
dc.description.tableofcontents | 摘要 I
Abstract II 目錄 III 圖目錄 VI 表目錄 X 第一章 緒論 1 第二章 文獻回顧 3 2-1 全球暖化與能源之利用 3 2-2 生質柴油 7 2-3 生質柴油原料 12 2-4 微藻 18 2-4.1 微藻作為生質柴油之原料 23 2-5 傳統生質柴油製成 27 2-5.1 轉酯化、酯化與皂化 28 2-5.2 反應機構 34 2-5.3 反應動力學 39 2-6 直接轉酯化 46 第三章 實驗設備與方法 50 3-1 實驗藻種與培養 50 3-1.1 培養裝置 52 3-1.2 培養基 54 3-2 乾藻粉末製備 56 3-3 微藻內油脂萃取 56 3-4 直接轉酯化反應 57 3-5 分析方法 60 3-5.1 微藻乾重及藻液密度 60 3-5.2 反應溶液中各成分之分析 60 3-5.3 脂肪酸組成分析 67 3-6 實驗藥品與儀器 70 3-6.1 實驗藥品 70 3-6.2 實驗儀器 71 第四章 實驗結果與討論 72 4-1 Chlorella sp. ESP-6脂肪酸組成與含油量 72 4-2 不同直接轉酯化反應與二階段直接轉酯化之比較 77 4-3 二階段直接轉酯化理論 81 4-4 第一階段反應 84 4-4.1 氫氧化鈉對系統的影響 89 4-4.2 溫度對系統的影響 94 4-4.3 甲醇與水的莫耳比對系統的影響 100 4-4.4 討論 105 4-5 第二階段反應 106 4-5.1 鹽酸濃度對第二階段反應的影響 111 4-5.2 溫度對第二階段反應的影響 117 4-5.3 甲醇與水之比例對第二階段反應的影響 123 4-5.4 討論 128 4-6 動力學模型 129 4-6.1 第一階段反應 129 4-6.2 第二階段反應 147 第五章 結論 168 參考文獻 171 化合物縮寫表 183 | |
dc.language.iso | zh-TW | |
dc.title | 以直接轉酯化反應轉化濕藻至被生質柴油及其動力學 | zh_TW |
dc.title | Biodiesel Production from Wet Microalgae by Direct Transesterification and its Kinetics | en |
dc.type | Thesis | |
dc.date.schoolyear | 102-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 許駿發,王孟菊,江佳穎 | |
dc.subject.keyword | 微藻,直接轉酯化,生質柴油,動力學, | zh_TW |
dc.subject.keyword | Microalgae,Direct Transesterification,Biodiesel,Kinetics, | en |
dc.relation.page | 183 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2014-07-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-103-1.pdf 目前未授權公開取用 | 7.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。