Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16665
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林恭如(Gong-Ru Lin)
dc.contributor.authorYu-Chuan Suen
dc.contributor.author蘇郁荃zh_TW
dc.date.accessioned2021-06-07T23:43:10Z-
dc.date.copyright2014-07-29
dc.date.issued2014
dc.date.submitted2014-07-21
dc.identifier.citation1. E. Wong, “Next-generation broadband access networks and technologies,” J. Lightwave Technol. 30, 597-608 (2012).
2. F.-Y. Shih, C.-H. Yeh, C.-W. Chow, C.-H. Wang, and S. Chi, “Utilization of self-injection Fabry–Perot laser diode for long-reach WDM-PON,” Opt. Fiber Technol. 16, 46-49 (2011).
3. H.-D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett. 12, 1067-1069 (2000).
4. P. Healey, P. Townsend, C. Ford, L. Johnston, P. Townley, I. Lealman, L. Rivers, S. Perrin, and R. Moore, “Spectral slicing WDM-PON using wavelength-seeded reflective SOAs,” Electron. Lett. 37, 1181-1182 (2001).
5. W. Lee, M.-Y Park, S.-H Cho, J. Lee, C. Kim, G. Jeong, and B.-W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460-2462 (2005).
6. H. Takesue and T. Sugie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” J. Lightwave Technol. 21, 2546-2556 (2003).
7. Z. Xu, Y.-J. Wen, W.-D. Zhong, M. Attygalle, X. Cheng, Y. Wang, T.-H. Cheng, and C. Lu, “WDM-PON architectures with a single shared interferometric filter for carrier-reuse upstream transmission,” J. Lightwave Technol. 25, 3669-3677 (2007).
8. H.-H. Lee, S.-H. Cho, E.-G. Lee, and S.-S. Lee, “Demonstration of RSOA-based 20 Gb/s linear bus WDM-PON with simple optical add-drop node structure,” ETRI J. 32, 248-254 (2010).
9. Y.-H. Lin, C.-J. Lin, G.-C. Lin, and G.-R. Lin, “Saturated signal-to-noise ratio of up-stream WRC-FPLD transmitter injection-locked by down-stream data-erased ASE carrier,” Opt. Express 19, 4067-4075 (2011).
10. B. Schrenk, F. Bonada, J. Lazaro, and J. Prat, “Remotely pumped long-reach hybrid PON with wavelength reuse in RSOA-based ONUs,” J. Lightwave Technol. 29, 635-641 (2011).
11. G.-R. Lin, Y.-H. Lin, C.-J. Lin, Y.-C. Chi, and G.-C. Lin, “Reusing a data-erased ASE carrier in a weak-resonant-cavity laser diode for noise-suppressed error-free transmission,” IEEE J. Quantum Electron. 47, 676-685 (2011).
12. U. R. Duarte, R. S. Penze, F. R. Pereira, F. F. Padela, J. B. Rosolem, and M. A. Romero, “Combined self-seeding and carrier remodulation scheme for WDM-PON,” J. Lightwave Technol. 31, 1323-1330 (2013).
13. H.-C. Ji, I. Yamashita, and K.-I. Kitayama, “Cost-effective colorless WDM-PON delivering up/down-stream data and broadcast services on a single wavelength using mutually injected Fabry-Perot laser diodes,” Opt. Express 16, 4520-4528 (2008).
14. S.-H. Yoo, S.-G. Mun, J.-Y. Kim, and C.-H. Lee, “1.25 Gb/s Broadcast signal transmission in WDM-PON based on mutually injected Fabry-Perot laser diodes,” J. Opt. Soc. Korea 16, 101-106 (2012).
15. G.-R. Lin, Y.-H. Lin, and Y.-C. Chang, “Theory and experiments of a mode-beating noise-suppressed and mutually injection-locked Fabry-Perot laser diode and erbium-doped fiber amplifier link,” IEEE J. Quantum Electron. 40, 1014-1022 (2004).
16. K.-M. Choi and C.-H. Lee, “A low-noise broadband light source for a WDM-PON based on mutually injected Fabry–Perot laser diodes with RF modulation,” IEEE Photon. Technol. Lett. 20, 2072-2074 (2008).
17. K.-M. Choi, J.-S. Baik, and C.-H. Lee, “Broad-band light source using mutually injected Fabry–Perot laser diodes for WDM-PON,” IEEE Photon. Technol. Lett. 17, 2529-2531 (2005).
18. Z. Xu, Y.-J Wen, W.-D Zhong, C.-J Chae, X.-F Cheng, Y. Wang, C. Lu, and J. Shankar, “High-speed WDM-PON using CW injection-locked Fabry-Perot laser diodes,” Opt. Express 15, 2953-2962 (2007).
19. G.-R. Lin, H.-L. Wang, G.-C. Lin, Y.-H. Huang, Y.-H. Lin, and T.-K. Cheng, “Comparison on injection-locked Fabry-Perot laser diode with front-facet reflectivity of 1% and 30% for optical data transmission in WDM-PON system,” J. Lightwave Technol. 27, 2779-2785 (2009).
20. X. Jin and S.-L. Chuang, “Bandwidth enhancement of Fabry-Perot quantum-well lasers by injection-locking,” Solid-State Electron. 50, 1141-1149 (2006).
21. Y.-S. Liao, H.-C. Kuo, Y.-J. Chen, and G.-R. Lin, “Side-mode transmission diagnosis of a multi-channel selectable injection-locked Fabry-Perot laser diode with anti-reflection coated front facet,” Opt. Express 17, 4859-4867 (2009).
22. G.-R. Lin, T.-K. Chen, Y.-C. Chi, G.-C. Lin, H.-L. Wang, and Y.-H. Lin, “200-GHz and 50-GHz AWG channelized linewidth dependent transmission of weak-resonant-cavity FPLD injection-locked by spectrally sliced ASE,” Opt. Express 17, 17739-17746 (2009).
23. G.-R. Lin, T.-K. Chen, Y.-H. Lin, G.-C. Lin, and H.-L. Wang, “A weak-resonant-cavity Fabry–Perot laser diode with injection-locking mode number-dependent transmission and noise performances,” J. Lightwave Technol. 28, 1349-1355 (2010).
24. H. Kim, H.-C. Ji, and C.-H. Kim, “Effects of intraband crosstalk on incoherent light using SOA-based noise suppression technique,” IEEE Photon. Technol. Lett. 18, 1542-1544 (2006).
25. A. D. McCoy, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Filtering effects in a spectrum-sliced WDM system using SOA-based noise reduction,” IEEE Photon. Technol. Lett. 16, 680-682 (2004).
26. S.-Y. Lin, Y.-C. Chi, Y.-C. Su, J.-W. Liao, H.-L. Wang, G.-C. Lin, and G.-R. Lin, “Coherent injection-locking of long-cavity colorless laser diodes with low front-facet reflectance for DWDM-PON transmission,” IEEE J. Sel. Top. Quantum Electron. 19, 1501011 (2013).
27. S.-Y. Lin, Y.-C. Su, Y.-C. Li, H.-L. Wang, G.-C. Lin, S.-M. Chen, and G.-R. Lin, “10-Gbit/s direct modulation of a TO-56-can packed 600-μm long laser diode with 2% front-facet reflectance,” Opt. Express, 21, 25197-25209 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16665-
dc.description.abstract為了突破高密度分波多工被動光纖網路(DWDM-PON)在降低成本與提高速率所面臨之瓶頸,我們將具有高成本效益之無色費比布洛雷射(colorless FPLD)運用於DWDM-PON分別做為參考注入源與上下行注入鎖定傳輸器,藉以提供較反射式半導體光放大器(RSOA)更高三倍以上之調變頻寬與遠大於傳統FPLD之增益光譜寬度與通道數量,同時以較長的弱共振腔提供較小的縱模間距使得在增益光譜範圍內的通道間距能滿足DWDM-PON之需求。無色費比布洛雷射不僅可作為上下行傳輸器外,也能扮演一寬光頻部分同調性之注入光源,當與高同調性與非同調性光源比較,注入光源同調性對於注入鎖定無色費比布洛雷射之調變頻寬、相對強度雜訊與傳輸開關鍵控(OOK)、正交分頻多工(OFDM)訊號有相當大的影響。高同調性的注入光源不僅可降低無色費比布洛雷射之相對強度雜訊(RIN)約18 dB,同時可延展其頻率響應至8 GHz,而具部分同調特性之無色費比布洛雷射作為注入光源則因為可同時對多個傳輸器進行主對從注入鎖定而具有高成本效益,並能提供與高同調性注入光源相當之雜訊抑制與頻寬延展效果,分別可達到誤碼率為零的8-Gbit/s OOK傳輸與誤碼率僅為5.6x10-12之12.5-Gbit/s OFDM傳輸。
在用戶端若利用基於布拉格光纖光柵(fiber Bragg grating)之選模自我反射架構對無色費比布洛雷射進行自回饋注入,此架構不需要由局端提供額外注入光源即可在用戶端對傳輸器進行波長控制,並成功避免傳統的自回饋注入系統因為將反射元件設置在遠端(remote-node)所造成的模態拍頻雜訊(mode-beating noise)。如此設計可使上行2.5-Gbit/s訊號在接收功率僅為-30.5 dBm時,即可達到零誤碼率之25-km單模光纖傳輸。為了抑制串音效應而進一步提高傳輸速率,我們加入增益飽和半導體光放大器作為訊號抹除器並外加光纖迴路增強訊號抹除能力,藉由抹除反饋載波上之訊號能有效地降低上傳訊號之強度雜訊並突破目前以RSOA或FPLD進行自回饋注入所能達到的最高傳輸速率至5 Gbit/s,同時可提供23個以上的傳輸通道及展現良好的溫度穩定性。
最後,我們首度發現此一新型無色費比布洛雷射傳輸器亦能在其內部有效地對外部注入之光訊號進行格式抹除,將原先消光比高達15 dB之OOK光訊號注入此上行傳輸器後可抑制其消光比至低於2 dB,其雷射同調特性更是大大的降低一般使用SOA或RSOA作為訊號抹除器時所伴隨之強度雜訊,因此可直接再利用攜帶下行訊號的光載波進行同步訊號抹除與波長注入鎖定。基於此無色費比布洛雷射傳輸器具備低雜訊、高壓縮比之自我訊號抹除特性進行上傳時將可提供高達10 Gbit/s之OOK訊號傳輸。我們將此無色費比布洛雷射運用於全雙工載波複用之網路系統中,在局端我們以參考無色費比布洛雷射注入隨從無色費比布洛雷射之主對從注入架構傳輸10-Gbit/s下行訊號,經25公里光纖傳輸後,在接收功率為-13.5 dBm時即已達到零誤碼率傳輸。而在用戶端之隨從無色費比布洛雷射則對下行訊號進行當場格式抹除,並複用此載波達注入鎖定以上傳10-Gbit/s OOK訊號,在接收功率為-9 dBm時可達25公里零誤碼率傳輸。由於此系統僅使用具高成本效益之無色費比布洛雷射,完全不需要任何昂貴的高同調性注入光源、單模傳輸器、光或電的等化器(electrical or optical equalizer)與訊號抹除器,即可成功地突破將現有載波複用架構所能提供之傳輸速率從2.5 Gbit/s提升至10 Gbit/s,因此,無色費比布洛雷射將會是未來實現一高速且低成本之全雙工DWDM-PON所需的優選傳輸光源之一。
zh_TW
dc.description.abstractRecently, a promising transmitter of specially designed Febry-Perot laser diode (FPLD) with reflectance of lower than 1% and cavity length of longer than 600 um was proposed to provide a dense longitudinal-mode and wide gain spectrum with colorless feature for the dense wavelength-division-multiplex passive optical network unit (DWDM-PON). In this work, the colorless FPLD served as a universal transmitter with optical injection-locking control is respectively demonstrated by the external injection-locking, self-feedback and carrier-reusing schemes for DWDM-PON.
With the external injection-locking scheme, the colorless FPLD injection-locked by three master sources with different degrees of coherence for on-off keying (OOK) and orthogonal frequency division multiplexing (OFDM) transmission are discussed first. The coherence of injection master shows impacts on noise, bandwidth and modulation performances of the colorless FPLD transmitter. By using the highly coherent master, the injection-locked colorless FPLD reduces its relative intensity noise peak at 5 GHz by 18 dB and increases its throughput frequency response by 5 dB. This enables the error-free OOK transmission at 10 Gbit/s and the 12.5-Gbit/s OFDM transmission with the lowest bit-error-rate (BER) of 1.6x10-13. In comparison, the master-to-slave injection-locked colorless FPLD pair with partial coherence can also provide an OOK transmission at 8 Gbit/s with a BER of 10-9. Such a cost-effective colorless source also supports a 16-QAM OFDM transmission at 12.5 Gbit/s with a BER of 5.6x10-12 to serve multi-channel PON in next generation.
For optical network unit (ONU), a remote-control-free self-feedback colorless FPLD transmitter single-mode controlled with a fiber Bragg grating reflector based self-feedback block in ONU is successfully demonstrated and optimized for 2.5-5 Gbit/s DWDM-PON transmissions. The maximal power budget of such a single-mode lasing colorless FPLD at 2.5-Gbit/s transmission is determined as 25 dB under the feedback ratio of 90%. Between the bias of 38 and 42 mA (2-2.25 times of Ith), the trade-off between injection efficiency and the mode extinction is compromised, and the self-feedback colorless FPLD can perform a 2.5-Gbit/s error-free transmission with a receiving power sensitivity of -30.5 dBm after 25-km single-mode fiber (SMF). With the aid of a gain-saturated semiconductor optical amplifier (SOA) fiber loop inserted in the self-feedback block to enhance the data-erasing, the self-feedback single-mode colorless FPLD successfully provides an error-free transmission of up to 5 Gbit/s after 25-km SMF.
The colorless FPLDs with in-situ down-stream data-erasing and carrier reusing functions are employed as down- and up-stream transmitters to demonstrate the 10-Gbit/s full-duplex on-off-keying transmission in a DWDM-PON system without using any high-coherent injection master and slave transmitters. Even with the intense injection of optical down-stream data into the up-stream slave colorless FPLD, the injection-locked up-stream slave colorless FPLD can suppress the on/off extinction ratio of the down-stream data from 15 dB to < 2 dB so as to reuse the down-stream carrier for injection-locking wavelength control without the need of data-eraser. The use of a broadband colorless FPLD master can essentially make the down-stream slave colorless FPLD approaching an error-free transmission after transmitting over 25-km fiber at a receiving power sensitivity of < -13.5 dBm. Under the down-stream data-erasing and carrier-reusing scheme, the single-mode controlled up-stream slave colorless FPLD can also provide an error-free transmission after propagating over 25 km.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T23:43:10Z (GMT). No. of bitstreams: 1
ntu-103-R01941048-1.pdf: 7488936 bytes, checksum: 7b7ec22a49c0b3be3d848a617e9e46cd (MD5)
Previous issue date: 2014
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
Chapter 1 Introduction 1
1.1 Overview of injection-locking colorless transmitters for DWDM-PON 1
1.1.1 Historical review on the roadmap 1
1.1.2 Development of a promising universal transmitter for colorless operation in DWDM-PON 3
1.2 Motivation 5
1.2.1 Externally injection-locking scheme with a cost and performance compromised injection master 5
1.2.2 Self-feedback scheme without mode-beating noise 7
1.2.3 Low-noise and high-speed carrier-reusing scheme 9
1.3 Thesis architecture 11
Chapter 2 Effect of Injection Coherence on Noises and Modulation Bandwidth of Colorless FPLD for OOK/OFDM Transmission in DWDM-PON 13
2.1 Introduction 13
2.2 Experimental setup of externally injection-locking scheme 14
2.3 Results and discussions 15
2.3.1 Effect of injection coherence on spectrum, noise and frequency response of injection-locked colorless FPLD 15
2.3.2 Eye-diagram simulation of injection-locked colorless FPLD with different injection coherences 22
2.3.3 Effect of injection coherence on NRZ-OOK data transmission 24
2.3.4 Effect of injection coherence on 16-QAM OFDM transmission 29
2.3.5 Comparing the effect of injection coherence on OOK/OFDM transmission 37
2.4 Summary 38
Chapter 3 Using Self-Feedback Controlled Colorless Fabry-Perot Laser Diode for Remote Control Free Single-Mode DWDM-PON Transmission 40
3.1 Introduction 40
3.2 Experimental setup of self-feedback scheme 41
3.3 Results and discussion 43
3.3.1 Optimization on self-feedback block 43
3.3.2 Effect of feedback ratio on transmission and power budget 47
3.3.3 Effect of biased current on MPN and transmission 51
3.3.4 Achievable data rate of self-feedback colorless FPLD 58
3.3.5 Temperature and wavelength dependent transmission 62
3.4 Summary 64
Chapter 4 All-in-one Colorless FPLD Transmitter with Data-erasing and Carrier-reusing Functionalities for Full-duplex DWDM-PON 66
4.1 Introduction 66
4.2 Experimental setup of demonstrating data-erasing by colorless FPLD 67
4.3 Working principle of unique data-erasing effect 70
4.4 Results and Discussions 72
4.4.1 Down-stream data-erasing in colorless FPLD 72
4.4.2 Effect of bias and injection power on data-suppression 79
4.4.3 Influence of bias and injection power on SMSR, MPN and RIN of colorless FPLD 82
4.4.4 Colorless FPLD based 10-Gbit/s full-duplex carrier reusing transmission 88
4.5 Summary 93
Chapter 5 Conclusion 95
REFERENCE 97
dc.language.isoen
dc.title以主對從/自回饋/載波複用注入鎖定半同調無色二極體雷射於分波多工被動光纖網路之分析zh_TW
dc.titleInjection-locking the Partially Coherent Colorless FPLD with Master-to-slave/Self-feedback/Carrier-reusing Schemes for DWDM-PONen
dc.typeThesis
dc.date.schoolyear102-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄒志偉(Chi-Wai Chow),林俊廷(Jin-Ting Lin),魏嘉建(Chia-Chien Wei)
dc.subject.keyword無色二極體雷射,高密度分波多工被動光纖網路,注入鎖定,注入同調性,自回饋,載波複用,zh_TW
dc.subject.keywordColorless FPLD,DWDM-PON,Injection-locking,Injection coherence,Self-feedback,Carrier-reusing,en
dc.relation.page109
dc.rights.note未授權
dc.date.accepted2014-07-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-103-1.pdf
  目前未授權公開取用
7.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved