請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16639完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林?輝(Feng-Huei Lin) | |
| dc.contributor.author | Pei-Leun Kang | en |
| dc.contributor.author | 康沛倫 | zh_TW |
| dc.date.accessioned | 2021-06-07T23:42:37Z | - |
| dc.date.copyright | 2014-07-29 | |
| dc.date.issued | 2014 | |
| dc.date.submitted | 2014-07-24 | |
| dc.identifier.citation | 1. AHA Scientific Statement, Contemporary Definitions and Classification of the Cardiomyopathies. Circulation. 2006; 113: 1807-1816.
2. New Drugs and Technologies Mechanical Device–Based Methods of Managing and Treating Heart Failure. Donna Mancini, Daniel Burkhoff. Circulation. 2005; 112: 438-448. 3. Barnard CN: A human cardiac transplant. An interim report of a successful operation performed at Groote schuur hospital, Cape Town. S Town. S Afr Med J 1967;41:1271-4. 4. Mann FC, Priestley JT, Markowitz J, et al: Transplantation of the intact mammalian heart. Arch surg 1933;26:219-25. 5. Stinson EB, Doring E Jr., Shumway NE: Experimental and clinical cardiac transplantation. Postgraduate Med l969;170:588-92. 6. Bunzd B, Grundbock A, Laczkovics A, Holzinger C, Teufelsbauer H. Quality of life after orthotopic heart transplantation. J Heart Lung Transplant.1991;10:455-9. 7. Grady kL, Jalowiec A, White-Williams C. Improvement in quality of life in patients with heart failure who undergo transplantation. Heart Lung Transplant.1996;15:749-57. 8. DeCampli WM, Luikart H, Hunt S, Stinson EB. Characteristics of patients surviving more than ten years after cardiac transplantation. J Thorac Cardiovasc Surg. 1995;109:1103-15. 9. XiaoHong Li, XiYong Yu , QiuXiong Lin, ChunYu Deng, ZhiXin Shan, Min Yang, ShuGuang Lin, Bone marrow mesenchymal stem cells differentiate into functional cardiac phenotypes by cardiac microenvironment, Journal of Molecular and Cellular Cardiology 42 (2007) 295–303. 10. Moscoso I, Centeno A, Lopez E, Rodriguez-Barbosa JI, Santamarina I, Filgueira P, et al. Differentiation “in vitro” of primary and immortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation. Transplant Proc 2005;37:481–2. 11. Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, et al. Adultcardiac stem cells are multipotent and support myocardial regeneration. Cell.114:763–76, 2003. 12. Hedeer Jawad, Alex R. Lyon, Sian E. Harding, Nadire N. Ali and Aldo R. Boccaccini, Myocardial tissue engineering. British Medical Bulletin. 87(1):31-47, 2008. 13. Siepe, M., Heilmann, C., von Samson, P., Menasche, P. & Beyersdorf, F. Stem cell research and cell transplantation for myocardial regeneration. Eur J Cardiothorac Surg. 2005;28(2):318-24. 14. Naofumi Takehara , Hiroaki Matsubara, Cardiac regeneration therapy: connections to cardiac physiology. American Journal of Physiology - Heart and Circulatory Physiology. 2011; 301, H2169-H2180. 15. Bader, D., and Oberpriller, J.O.. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens). J Morphol 1978;155:349. 16. Jockusch, H., fuchtbauer, E.M., Fuchtbauer, A., Leer, J.J., Leger, J., Maldonado, C.A., and Forssmann, W.G. 1986. Long-term expression of isomyosins and myoendocrine functions in ectopic grafts of atrial tissue. Proc Natl Acad Sci USA 83:7325. 17. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A. & Anversa, P. Bone marrow cells regenerate infarcted myocardium. Nature 2001;410:701-705. 18. Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., Pasumarthi, K. B., Virag, J. I., Bartelmez, S. H., Poppa, V., Bradford, G., Dowell, J. D., Williams, D. A. & Field, L. J. Haematopoietic stem cells do not transdifferentiate into cardiacmyocytes in myocardial infarcts. Nature 2004;428:664-668. 19. Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L. & Robbins, R. C. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 2004;428:668-673. 20. Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., Taneera, J., Fleischmann, B. K. & Jacobsen, S. E. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med. 2004;10(5):494-501. 21. Yoon, Y. S., Wecker, A., Heyd, L., Park, J. S., Tkebuchava, T., Kusano, K., Hanley, A., Scadova, H., Qin, G., Cha, D. H., Johnson, K. L., Aikawa, R., Asahara, T. & Losordo, D. W. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J Clin Invest. 2005; 115(2):326-338. 22. Asahara, T. & Kawamoto, A. Endothelial progenitor cells for postnatal vasculogenesis. Am J Physiol Cell Physiol. 2004;287(3):C572-579. 23. Rehman J, Li J, Orschell CM, March KL. Peripheral blood 'endothelial progenitor cells' are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 2003;107(8):1164-1169. 24. Urbich, C. & Dimmeler, S. Endothelial progenitor cells: characterization and role in vascular biology. Circ Res. 2004;95(4):343-353. 25. Losordo, D. W. & Dimmeler, S. Therapeutic angiogenesis and vasculogenesis for ischemic disease: part II: cell-based therapies. Circulation 2004;109(22):2692-2697. 26. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A. & Finkel, T. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med. 2003;348(7):593-600. 27. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A. M. & Dimmeler, S. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res. 2001;89(1):E1-7. 28. Makino, S., Fukuda, K., Miyoshi, S., Konishi, F., Kodama, H., Pan, J., Sano, M., Takahashi, T., Hori, S., Abe, H., Hata, J., Umezawa, A. & Ogawa, S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest. 1999;103(5):697-705. 29. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J. & Kessler, P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002;105(1):93-98. 30. Bittira, B., Kuang, J. Q., Al-Khaldi, A., Shum-Tim, D. & Chiu, R. C. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann Thorac Surg. 74(4):1154-1159; discussion 2002;1159-1160. 31. Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., Pittenger, M. F. & Martin, B. J. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg. 2002;73(6):1919-1925; discussion 1926. 32. Ma, J., Ge, J., Zhang, S., Sun, A., Shen, J., Chen, L., Wang, K. & Zou, Y. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res Cardiol. 2005;100(3):217-223. 33. Dowell, J. D., Rubart, M., Pasumarthi, K. B., Soonpaa, M. H. & Field, L. J. Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res. 2003;58(2):336-350. 34. Menasche, P. Skeletal myoblast transplantation for cardiac repair. Expert Rev Cardiovasc Ther. 2004;2(1):21-28. 35. Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., Kasahara, H., Rota, M., Musso, E., Urbanek, K., Leri, A., Kajstura, J., Nadal-Ginard, B. & Anversa, P. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 2003;114(6):763-776. 36. Oh, H., Bradfute, S. B., Gallardo. T. D., Nakamura, T., Gaussin, V., Mishina, Y., Pocius, J., Michael, L. H., Behringer, R. R., Garry, D. J., Entman, M. L. & Schneider, M. D. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci USA 2003;100(21):12313-12318. 37. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154-156 (1981). 38. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78(12):7634-7638. 39. Doetschman, T. C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol. 1985;87:27-45. 40. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. & Jones, J. M. Embryonic stem cell lines derived from human blastocysts. Science 1998;282:1145-1147. 41. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitz-Eldor, J. & Gepstein, L. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest. 2001;108(3):407-414. 42. Kehat, I., Khimovich, L., Caspi, O., Gepstein, A., Shofti, R., Arbel, G., Huber, I., Satin, J., Itskovitz-Eldor, J. & Gepstein, L. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004;2(10):1282-1289. 43. Stem cell applications in military medicine. Gregory T Christopherson1, Leon J Nesti. Stem Cell Research & Therapy 2011, 2:40. 44. Jingbo Liu, Qingsong Hu, Zongli Wang, Chengsu Xu, Xiaohong Wang, Guangrong Gong, Abdul Mansoor, Joseph Lee, Mingxiao Hou, Lepeng Zeng, John R. Zhang, Michael Jerosch-Herold, Tao Guo, Robert J. Bache, Jianyi Zhang. Autologous stem cell transplantation for myocardial repair, Am J Physiol Heart Circ Physiol 2004;287, 501- 511. 45. Reffelmann, T., Dow, J.S., Dai, W., Hale, S.L., Simkhovich, B.Z., Kloner, R.A. Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium, J Mol Cell Cardiol 2003;35, 607- 613. 46. Scorsin, M., Hagege, A.A., Marotte, F., Mirochnik, N., Copin, H., Barnoux, M., Sabri, A., Samuel, J.L., Rappaport, L., Menasche, P. Does transplantation of cardiomyocytes improve function of infarcted myocardium, Circulation 1997; 96,188- 193. 47. Taylor, S.M., Jones, P.A.. Changes in phenotypic expression in embryonic and adult cells treated with 5-azacytidine. Journal of Cellular Physiology 1982;111, 187-194. 48. Wakatani, S., Saito, T., Caplan, A.I. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve 1995;18;1417-26. 49. Phinney, D. G., Kopen, G., Isaacson, R. L., Prockop, D. J. Plastic adherent stromal cells from the bone marrow of commonly used strains of inbred mice: variations in yield, growth, and differentiation, Journal of Cellular Biochemistry 199;72, 570- 585. 50. Al-Khaldi, A., Al-Sabti, H., Galipeau, J., Lachapelle, K. Therapeutic angiogenesis using autologous bone marrow stromal cells: improved blood flow in a chronic limb ischemia model. The Annals of Thoracic Surgery, 2003;75, 204- 209. 51. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., Anversa, P. Bone marrow cells regenerate infarcted myocardium. Nature, 2001;410, 701- 705. 52. Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., Schumichen, C., Nienaber, C. A., Freund, M., Steinhoff, G. Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 2003; 361, 45-46. 53. Gussoni, E., Soneoka, Y., Strickland, C. D., Buzney, E. A., Khan, M. K., Flint, A. F., Kunkel, L. M., Mulligan, R. C. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature, 1999;401, 390- 394. 54. Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., Kessler, P. D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 2002;105,93-98. 55. Arman T Askari, Samuel Unzek, Zoran B Popovic, Corey K Goldman, Farhad Forudi, Matthew Kiedrowski, Aleksandr Rovner, Stephen G Ellis, James D Thomas, Paul E DiCorleto, Eric J Topol, Marc S Penn. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet, 2003; 362, 697-703. 56. Shinji Tomita, Donald A. G. Mickle, Richard D. Weisel, Zhi-Qiang Jia, Laura C. Tumiati, BSc, Yasmin Allidina, RTNM, Peter Liu, Ren-Ke Li. Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2002;123, 1132- 1140. 57. Doitsidou M, Reichman-Fried M, Stebler J, Koprunner M, Dorries J, Meyer D, Esguerra CV, Leung T, Raz E. Guidance of primordial germ cell migration by the chemokine SDF-1. Cell ,2002;111, 647-659. 58. Yamaguchi J, Kusano KF, Masuo 0, Kawamoto A, Silver M, Murasawa S, Bosch-Marce M, Masuda H, Losordo DW, Isner JM, Asahara T. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 2003;107,1322- 1328. 59. Tao-Sheng Li, Takahiro Komota, Mako Ohshima, Shu-Lan Qin, Masayuki Kubo, Kazuhiro Ueda, Kimikazu Hamano. TGF-b induces the differentiation of bone marrow stem cells into immature cardiomyocytes. Biochemical and Biophysical Research Communications, 2008; 366,1074-1080. 60. T.S. Li, M. Hayashi, H. Ito, A. Furutani, T. Murata, M. Matsuzaki, K. Hamano. Regeneration of infarcted myocardium by intramyocardial implantation of ex vivo transforming growth factor-betapreprogrammed bone marrow stem cells. Circulation, 2005; 111,2438- 2445. 61. Yao-Hua Song, Sebastian Gehmert, Sanga Sadat, Kai Pinkernell, Xiaowen Bai, Nadine Matthias, Eckhard Alt. VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochemical and Biophysical Research Communications, 2007;354, 999-1003. 62. Doble BW, Kardami E. Basic fibroblast growth factor stimulates connexin-43 expression and intercellular communication of cardiac fibroblasts. Mol Cell Biochem, 1995;143, 81-87. 63. Boudewijn P.T. Kruithof, Bram van Wijk, Semir Somi, Marianna Kruithof-de Julio, Jose Maria Perez Pomares, Frank Weesie, Andy Wessels, Antoon F.M. Moorman, Maurice J.B. van den Hoff. BMP and FGF regulate the differentiation of multipotential pericardia! mesoderm into the myocardial or epicardial lineage. Developmental Biology, 2006; 295, 507-522. 64. Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T. FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest, 2005;115, 1724-1733. 65. Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, Tanaka M, Weissman IL, Robbins RC. Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells, 2004;22,1239-1245. 66. Aberg ND, Blomstrand F, Aberg MA, Bjorklund U, Carlsson B, Carlsson-Skwirut C, Bang P, Ronnback L, Eriksson PS. Insulin-like growth factor-I increasesastrocyte intercellular gap junctional communication and connexin43 expression in vitro. J Neurosci Res, 2003;74,12-22. 67. Thaik CM, Calderone A, Takahashi N, Colucci WS. Interleukin-1 beta modulates the growth and phenotype of neonatal rat cardiac myocytes. J Clin Invest, 1995;96,1093-1099. 68. Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Rata J, Umezawa A, Ogawa S. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest, 1999;103, 697-705. 69. Sachinidis A, Fleischmann BK, Kolossov E, Wartenberg M, Sauer H, Hescheler J. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc Res, 2003;58, 278-291. 70. Saito T, Dennis JE, Lennon DP. Myogenic expression of mesenchymal stem cells within myotubes of mdx mice in vitro and in vivo. Tissue Eng 1995;1, 327-343. 71. Yu Liua, Jian Song, Weixin Liu, Yu Wan. Growth and differentiation of rat bone marrow stromal cells: does 5-azacytidine trigger their cardiomyogenic differentiation. Cardiovascular Research, 2003;58, 460-468. 72. Goldenthal MJ, Marin-Garcia J. Stem cells and cardiac disorders: an appraisal. Cardiovasc Res, 2003;58, 369-377. 73. Alexandrina Burlacu. Can 5-azacytidine convert the adult stem cells into cardiomyocytes? A brief overview, Archives of Physiology and Biochemistry, 2006;112, 260- 264. 74. Anna M. Wobus, Guan Kaomei, Jin Shan, Marie-Cecile Wellner, Ju•• rgen Rohwedel, Ji Guanju, Bernd Fleischmann, Hugo A. Katus, Ju•• rgen Hescheler Wolfgang-Michael Franz. Retinoic Acid Accelerates Embryonic Stem Cell-Derived Cardiac Differentiation and Enhances Development of Ventricular Cardiomyocytes. J Mol Cell Cardiol, 1997; 29, 1525- 1539. 75. V entura C, Maioli M. Opioid peptide gene expression primes cardiogenesis in embryonal pluripotent stem cells. Circ Res. Science, 2000;87, 189- 194. 76. S kerjanc IS, Petropoulos H, Ridgeway AG, Wilton S. Myocyte enhancer factor 2C and Nkx2-5 upregulate each other's expression and initiate cardiomyogenesis in P19 cells. J Biol Chern, 1998;273, 34904- 34910. 77. Takahashi T, Lord B, Schulze PC, Fryer RM, Sarang SS, Gullans SR, Lee RT. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 2003;107, 1912-1916. 78. Sarah Adle, Cristian Pellizzer, Lars Hareng, Thomas Hartung, Susanne Bremer. First steps in establishing a developmental toxicity test method based on human embryonic stem cells. Toxicology in Vitro 2008;22, 200-211. 79. Keiichi Fukuda. Development of Regenerative Cardiomyocytes from Mesenchymal Stem Cells for Cardiovascular Tissue Engineering. Artificial Organs 2001;25, 187-193. 80. Li Li, Zhang Fa-bao, Gao Ping-jin, Yang Huang-tian, Zhu Ding-liang. Rat Bone-marrow Mesenchymal Stem Cells Differentiate into Cardiomyocyte-like Cells under Diverse Conditions in vitro. Molecular Cardiology of China 2006;6, 153-156. 81. Wakitani S; Goto T; Pineda SJ ; Young RG ; Mansour JM ; Caplan AI; Goldberg VM, Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J Bone Joint Surg Am, 1994 Apr;76(4):579-592. 82. Cheng Rui, Wang Shiwen, Cao Feng, et al. Effect of different concentrations of 5-azacytidine on cells differentiation of swine bone marrow mesenchymal stem cells into cardiomyocyte-like cells in vitro. Chin J Mult Organ Dis Elderly. 4, 196-220, 2005. 83. Bram van Wijk, Antoon F.M. Moorman, Maurice J. B. van den Hoff. Role of bone morphogenetic proteins in cardiac differentiateon. Cardiovasc Res, 2007;74(2):244-255. 84. Xiaowen Bai, Kai Pinkernell, Yao-Hua Song, Christoph Nabzdyk, Jakob Reiser, Eckhard Alt. Genetically selected stem cells from human adipose tissue express cardiac markers. Biochemical and Biophysical Research Communications, 2007; 353, 665-671. 85. Sampsa Pikkarainen, Heikki Tokola, Theresa Majalahti-Palviainen, Risto Kerkela, Nina Hautala, Suparna S. Bhalla, Fre' de' ric Charron, Mona Nemer, Olli Vuolteenaho, and Heikki Ruskoaho. GATA-4 Is a Nuclear Mediator of Mechanical Stretch-activated Hypertrophic Program. The journal of biological chemistry, 2003; 278, 23807- 23816. 86. Paolo Spirito, Christine E. Seidman, William J. McKenna, Barry J. Maron. The Management of Hypertrophic Cardiomyopathy. The New England Journal of Medicine, 1997; 336, 775-785. 87. K Fukuda. Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplantaiton, 2003; 32:25-27. 88. Wei HJ, Chen SC, Chang Y, Hwang SM, Lin WW, Lai PH, Chiang HK, Hsu LF, Yang HH, Sung HW, (2006), Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model, Biomaterials, 27, 5409-5419. 89. http://www.abcam.co.jp/blog/index.cfm/Stem-Cells 90. http://www.york.ac.uk/res/bonefromblood/background/osteogenesis.html | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16639 | - |
| dc.description.abstract | 心肌細胞一般被認為是人體中最具代表性,無法增殖、再生、分化的細胞,一旦心肌細胞受損或壞死而失去功能時,成熟的心肌細胞難以再生。心臟功能的重建,除了心臟移植及心室輔助器兩種方式,還包括了以再生心肌細胞的方式來重建受損心肌細胞。
有不少研究採用五氮胞苷對間質幹細胞做化學的誘導,研究結果顯示五氮胞苷可用來誘導間質幹細胞分化成肌性細胞,誘導後可觀察到自發性的跳動並測出相類似於心肌細胞的動作電位。膠原蛋白為細胞外基質主要成分之一,俱有維持細胞形狀、調節組織形態並作為細胞貼附支架等功能,透明質酸對細胞的聚集、遷移、增生及分化有重大的影響,俱有極佳的生物相容性及生物可分解性,故常被用作組織工程支架。 本研究第一階段在製備研究不同分子量之透明質酸/膠原蛋白基材,未交聯之透明質酸/膠原蛋白基材浸於二次水中即無法成型,經過交聯後之透明質酸/膠原蛋白基材,於濕潤的環境下,仍可保持其原本形狀,其含水量皆可高達95%以上,孔隙率60~80%。透明質酸/膠原蛋白基材之機械性質結果表示,交聯後之複合材料在固定應力施加下,其伸長量及楊氏系數隨著透明質酸含量的增加而增加,顯示透明質酸濃添加越多,複合材料之機械強度越高,較易因應所承受之應力產生相當變形量以符合欲填補之組織缺陷。 本研究第二階段以膠原蛋白/透明質酸混合仿生材做為「支架」,以間質幹細胞為「細胞」,五氮胞苷則為刺激幹細胞分化之「訊息誘導因子」,利用此心補片植入動物心肌損傷區域進行心肌損傷修復評估,以期更加了解臨床試驗上之應用並有效的觀察細胞之分化。由結果發現種於基材中的細胞的心肌細胞特異基因(cTnIl、β-MHC、α-actin) 表現量在前期遠高於僅以五氮胞苷誘導之組別。隨著培養天數的增加,發現有未添加透明質酸之組別其cTnI、β-MHC、α-actin基因表現量驟降,但在添加透明質酸之組別,其cTnI、β-MHC、α-actin基因表現顯著高於其他組別,由此可看出透明質酸對細胞分化的重要性。 第三階段則為心肌梗塞動物模型的建立,採用結紮心臟左前降支血管來使左心室前璧尖端肌肉產生壞死現象。由組織切片可清楚觀察到術後之大白鼠左心室已有部分心肌被纖維細胞取代,細胞排列凌亂及細胞分布不密集,由此證明利用縫線結紮心臟左前降支,可對心肌造成損傷。將種植幹細胞之膠原蛋白/透明質酸基材經誘導後,植入於大鼠心肌梗塞處,植入4週後雖未達到完整修復之效果,然於靠近中心部分的心肌組織,已呈現出接近正常的心肌組織,同時細胞與細胞外基質排列較為緻密,且組織最外圍亦呈現平整結構,顯示膠原蛋白/透明質酸基材於心肌缺損修復上具有發展之潛力。 | zh_TW |
| dc.description.abstract | As well known, cardiomyocytes and neural cells are un-proliferative cells in human. Especially, when the cardiomyocytes damaged, necrotized and loosed its function, the heart is difficult to recover to its original function. To date, in clinical practice, the remedy of this damaged heart is by heart transplantation or heart assist devices. Besides, by implanting regenerative cardiomyocytes into the defect area is now acquiring more attentions from many recent researchers. 5-azacytidine is used to differentiate the mesenchymal stem cells (MSCs) to cardiomyocyte-like cells in these researches. These cardiomyoctye-like cells reveal the spontaneous heart-beat behaviors and with action potentials as normal cardiomyocytes. Type I collagen is the main composition of extracellular matrix. It provides many cellular functions, including providing scaffolds for cells adhesion, migration, differentiation and proliferation. Hyaluronic acid, also possesses biocompatible and biodegradable properties, and used to prepare cell-cultural substrates in tissue engineering applications. The aims (or works) of this study are to prepare 3-D mimetic scaffold (cardiopatch) which be able to provide a natural like micro environment for MSCs growth, to evaluate a chemical stimulant which act as a signal transduction factor, 5-azacytidine is added into the scaffold or medium to stimulate MSCs differentiate to the cardiomyocytes, and to establish animal model with myocardial injury. According to the analysis of water content, porosity and mechanical properties of collagen/hyaluronan composite scaffold, the group composite scaffold (collagen I : HA of 7:1.5) has the maximum elongation. The effect of 5-azacytidine used to induce differentiation of mesenchymal stem cells into cardiomyocyte was positively confirmed by real-time PCR. The results showed that mesenchymal stem cells seeded in composite scaffold expressed higher value of cardiomyocyte specific genes (such as cTnI, β-MHC and α-actin) than the group of cells without using any scaffold but only 5-azacytidine. During the buildup of animal model with myocardial damages, operation was performed to suture the left anterior descending artery and it resulted dark red color change on the distal end of myocardium, biopsy observation also reported that part of myocardium have been replaced with fibroblast with mesenchymal cells alignment or distribution. This proves that by suturing the left anterior descending artery can cause damages to myocardium. The animal study demonstrated that collagen/HA composite scaffolds have the potential for cardiac regeneration applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T23:42:37Z (GMT). No. of bitstreams: 1 ntu-103-F95548003-1.pdf: 8781335 bytes, checksum: f55ad1a65cb340ef60b4e8c8b8659a1e (MD5) Previous issue date: 2014 | en |
| dc.description.tableofcontents | 目錄
誌謝 2 中文摘要 4 英文摘要 6 目錄 8 圖目錄 10 表目錄 12 第一章 緒論 13 1.1 心臟衰竭 13 1.2 心肌組織工程 17 1.2.1 幹細胞來源 20 1.2.2 訊息因子 26 1.2.3 支架 28 1.3 心肌特異基因表現 31 1.4 研究背景與目的 33 第二章 實驗材料與儀器設備 35 2.1 實驗材料 35 2.2 儀器設備 37 第三章 研究方法 38 3.1 第一型膠原蛋白萃取及鑑定 38 3.1.1 第一型膠原蛋白萃取 38 3.1.2 第一型膠原蛋白之鑑定 38 3.1.3 第一型膠原蛋白濃度測定 39 3.2 基材製備 39 3.3 基材物理性質分析 40 3.3.1 含水量測試 40 3.3.2 孔隙率測試 40 3.3.3 機械性質測試 40 3.4 間質幹細胞之分離培養 41 3.4.1 間質幹細胞的萃取 41 3.4.2 間質幹細胞的培養 41 3.4.3 間質幹細胞於基材三維培養模式 41 3.4.4 反轉錄聚合酶鏈反應分析 42 3.5 動物實驗 44 3.5.1心肌損傷之動物模型建立 44 3.5.2 基材植入心肌損傷動物實驗 47 3.5.3 組織切片染色 48 第四章 結果與討論 49 4.1 第一型膠原蛋白濃度測定 49 4.2膠原蛋白/透明質酸複合基材分析 50 4.2.1微結構觀察 50 4.2.2含水量測試 51 4.2.3孔隙率測試 52 4.2.4機械性質測試 53 4.3 間質幹細胞萃取及鑑定分析 56 4-3-1 間質幹細胞分離培養 56 4.3.2 間質幹細胞鑑定分析 57 4.4反轉錄聚合酶鏈反應分析 59 4.5心肌梗塞動物模型 62 4.6動物植入實驗 64 第五章 結論 66 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 透明質酸 | zh_TW |
| dc.subject | 第一型膠原蛋白 | zh_TW |
| dc.subject | 五氮胞? | zh_TW |
| dc.subject | 心肌梗塞動物模型 | zh_TW |
| dc.subject | 間質幹細胞 | zh_TW |
| dc.subject | 心肌修護 | zh_TW |
| dc.subject | type I collagen | en |
| dc.subject | cardiac regeneration | en |
| dc.subject | animal mode | en |
| dc.subject | mesenchymal stem cells | en |
| dc.subject | 5-azacytidine | en |
| dc.subject | hyaluronic acid | en |
| dc.title | 透明質酸/膠原蛋白/間質幹細胞誘導之類心肌細胞補片於心肌修復之研究 | zh_TW |
| dc.title | Hyaluronic Acid/Collagen/Mesenchymal Stem Cells Cardiomyocyte-like Cells Cardiac Patch on the Restoration of Injured Myocardium | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 102-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 朱唯勤(Woei-Chyn Chu),施俊哲(Chun-Che Shih),蔡建松(Chien-Sung Tsai),姚俊旭(Chun-Hsu Yao),郭士民(Shyh-Ming Kuo) | |
| dc.subject.keyword | 間質幹細胞,五氮胞?,第一型膠原蛋白,透明質酸,心肌梗塞動物模型,心肌修護, | zh_TW |
| dc.subject.keyword | mesenchymal stem cells,5-azacytidine,type I collagen,hyaluronic acid,animal mode,cardiac regeneration, | en |
| dc.relation.page | 77 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2014-07-24 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-103-1.pdf 未授權公開取用 | 8.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
