Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16588
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣穆(Hsin-Mu Tsai)
dc.contributor.authorJing Longen
dc.contributor.author龍晶zh_TW
dc.date.accessioned2021-06-07T18:22:20Z-
dc.date.copyright2012-01-17
dc.date.issued2011
dc.date.submitted2011-11-10
dc.identifier.citation參考文獻
[1] 許義宏,巨觀混合車流模型構建之研究,巨觀混合車流模型構建之研究碩士論文,民國96年6月。
[2] 交通部統計處(http://www.motc.gov.tw/)
[3] 卓訓榮、傅昱瑄,車流動力學模型,運輸計劃季刊第三十七卷,民國97年3月。
[4] 內政部營建署,「市區道路工程規劃及設計規範之研究」,民國90年12月。
[5] L. W. Lan, C. W. Chang, “Inhomogeneous cellular automata modeling for mixed traffic with cars and motorcycles,” Journal of Advanced Transportation, vol. 39, no. 3, pp. 323-349, December 2004.
[6] L. W. Lan, Y.-C. Chiou, Z.-S. Lin, C.-C. Hsu, “A refined cellular automaton model to rectify impractical vehicular movement behavior,” Physica A, vol. 388, pp. 3917-3930, September 2009.
[7] L. W. Lan, Y.-C. Chiou, Z.-S. Lin, C.-C. Hsu, “Cellular automaton simulations for mixed traffic with erratic motorcycles’ behaviours,” Physica A, vol. 389, pp. 2077-2089, May 2010.
[8] S. Panwai, H. Dia, “Comparative evaluation of microscopic car following behavior,” in IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp. 314-325, September 2005.
[9] D. H. Hoefs, “Untersuchung des Fahrverhaltens in Fahrzeugkolonnen,” Forschungsberichte des Institut fur Verkehrswesen, Heft 140, Universitat Kalsruhe, 1972.
[10] L. Wiedemann, “Introduction to the Theory of Traffic Flow,” Springer-Verlag New York, February 1988.
[11] L. A. Pipes, “An operational analysis of traffic dynamics,” Journal of Applied Physics, vol. 24, pp. 271-281, March 1953.
[12] R. M. Lewis, H. L. Michael, “The simulation of traffic flow to obtain
volume warrants for intersection control:technical paper,” Joint Transportation Research Program, no. 15, pp. 1-43, January 1963.
[13] R. E. Chandler, R. Herman, E. W. Montroll, “Traffic dynamics:
studies in car following,” Operations Research, vol. 6, no. 2, pp. 165-184, 1958.
[14] O. Shih, H.-M. Tsai, H.-M. Lin, A.-C. Pang, “A rule-based mixed mobility model for cars and scooters,” IEEE Vehicular Networking Conference, October 2011.
[15] M. Cremer, J. Ludwig , “A fast simulation model for traffic flow on the basis of Boolean operations,” Mathematics and Computers in Simulation, vol. 28, pp. 297-230, 1986.
[16] K. Nagel, M. Schreckenberg, “A cellular automaton model for freeway traffic,” Journal De Physique I, vol. 2, pp. 2221-2229, December 1992.
[17] S. Feng, G. Gu, S. Dai, “Effect of traffic lights on cA traffic model,” Communications in Nonlinear Science & Numerical Simualtion, vol. 2, no. 2, p. 70, May 1997.
[18] M. S. Watanabe, “Dynamical behavior of a two-dimensional cellular automaton with signal processing,” Physica A, vol. 324, p. 707, 2003.
[19] K. Nagel, “Particle hopping models and traffic flow theory,” Physical Review E, vol. 53, no. 5, p. 4655, 1996.
[20] K. Nagel, D. E. Wolf, P. Wagner, P. Simon, “Two-lane traffic rules for cellular automata: A systematic approach,” Physical Review E, vol. 58, no. 2, p. 1425, August 1998.
[21] R. Barlovic, L. Santen, A. Schadschneider, M. Schreckenberg, “Metastable states in cellular automata for traffic flow,” The European Physical Journal B, vol. 5, pp. 793-800, April 1998.
[22] W. Knospe, L. Santen, A. Schadschneider, M. Schreckenberg, “Towards a realistic microscopic description of highway traffic,” Journal of Physics A:Mathematical and General, vol. 33, pp. L477-L485, October 2000.
[23] G. H. Bham, R. F. Benekohal, “A high fidelity traffic simulation model based on cellular automata and car-following concepts,” Transportation Research Part C, vol. 12, p. 1, 2004.
[24] J. P. Meng, H. Q. Dai, L. Y. Dong, J. F. Zhang, “Cellular automaton model for mixed traffic flow with motorcycles,” Physica A, vol. 380, pp. 470-480, March 2007.
[25] O. K. Tonguz, W. Viriyasitavat, F. Bai, “Modeling urban traffic:A cellular automata approach,” IEEE Communication Magazine, vol. 47, no. 5, pp. 142-150, May 2009.
[26] R. Meireles, M. Bohan, P. Steenkiste, O. Tonguz, J. Barros, “Experimental study on the impact of vehicular obstructions in VANETs,” IEEE Vehicular Networking Conference, pp. 338-345, December 2010.
[27] M. Bohan, T. T. V. Vinhoza, M. Ferreira, J. Barros, O. K. Tonguz, “Impact of vehicles as obstacles in vehicular ad hoc networks,” IEEE Journal on Selected Areas in Communications, vol.29, no. 1, p. 15-28, January 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16588-
dc.description.abstract近年來,隨著車輛隨意網路Vehicle Ad-hoc Networks (VANETs)的發展,使得駕駛者能透過VANETs得到很多行車的資訊,進而增加行車安全與交通效率。其中車輛的準確位置、速度與駕駛行為,與VANETs中應用程式習習相關。因此,為了得到準確的車輛移動模式,本論文以蜂巢自動機(Cellular Automaton , CA)車流模式研究混合式車流。過去有學者透過蜂巢自動機研究純汽車、純機車、混合式車流,但僅侷限於直線路段之研究。目前尚無研究使用CA車流模式,研究模擬十字路口的混合式車流之行為。
蜂巢自動機被用於許多領域如交通流模式、物理學、生物學等。在交通流模式多侷限於純小客車流之探討,亦有研究混合式汽機車的模擬,但模擬結果多未符合真實的車流狀況。本論文則是考慮到駕駛者的反應狀況,採用不同實體大小及動態(指機車及小客車)之探討。在本論文中,利用決定每一時間點汽、機車同步縱向前進及橫向位移位置及速率,來模擬汽車與機車在混合車流中的移動行為。為了証明本論文車流模型的可信度,除模擬器之實作外,我們亦實際於現場勘察與蒐集車輛移動資料,並且進行分析。分析結果顯示,使用本論文車流模型之模擬器產生之跟車狀況、換車道狀況、紅綠燈時汽機車行駛的狀況、及轉彎軌跡都符合實際車輛行駛的行為。
研究顯示在VANETs中,若傳輸之車輛與接收之車輛傳輸路徑中有其它車輛阻擋訊號傳輸,路徑之無線訊號能量衰減會大幅增加,因而對傳輸品質會造成很大的影響。於本論文中我們亦發展一套高效能之演算法,於車輛移動模型中計算兩台車之間是否有其它車輛阻擋。此為本論文所提出之車輛移動模型之應用之一。另外,統計資料顯示十字路口是最容易發生碰撞的地方。本論文應用車輛移動模式,另提出一套可預測於十字路口可能產生碰撞的區域及時間之演算法。此演算法可應用於未來的車輛防撞系統上,減少車禍的發生的機率。此為本論文所提出之車輛移動模型之應用之二。
zh_TW
dc.description.abstractIn recent years, with the development of Vehicular Ad Hoc Networks (VANETs) it is possible for the drivers to obtain lots of traffic information while they drive, and in turn both the driving safety and the traffic efficiency are enhanced. It has been shown that the performance of VANET applications is highly correlated to the vehicle’s positions, speed, and driving behaviors. In this thesis, we use the cellular automaton (CA) to accurately model the mixed traffic flows of both cars and scooters. There have been some similar studies in the literature which also utilize the CA to model car-only, scooter-only, or mixed traffic flows on the road; however, in these studies the traffic flows modeled are only for 1-dimensional road segments rather than for the more realistic 2-dimensional road topology with intersections.
The CA is utilized in many fields such as vehicle mobility models, physics, and biology. For vehicle mobility models, it has usually been limited to model car-only scenarios. Some do consider mixed scenarios with both cars and scooters; however, the proposed models usually do not capture the nature of the actual traffic flows realistically. In this thesis, to address this problem we take the driver’s reactions into account and differentiate the physical dimensions and the acceleration and deceleration capabilities of cars and scooters. In the proposed model, the movements of cars and scooters in the mixed traffic flow are represented by the X-axis (parallel to the long side of the road) and the Y-axis (perpendicular to the long side of the road) velocities and locations at each time step. To show that our proposed model can generate realistic traffic flows, we also collect real-life traffic flow data from the roads using the LIDAR; comparison of the collected data and the simulator-generated traffic flows shows that car-following and lane-switching behaviors, how the vehicles react to traffic lights, and the turning trajectories of vehicles of both match well with each other.
It has been shown that in VANETs, there will be significant additional signal attenuation when the propagation path between the transmitting vehicle and the receiving vehicle is blocked by any other vehicle; the link quality will be significantly lower. In this thesis, we propose two applications to utilize the proposed vehicle traffic mobility model. First, we propose a fast algorithm to calculate if there is any other vehicle blocking the propagation path between two vehicles. Second, statistics show that intersections are the most likely place where the collision can occur. We therefore propose an algorithm to predict the time and area of possible collisions at intersections. The algorithm can be utilized in future vehicle collision avoidance systems to lower the probability of accidents.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:22:20Z (GMT). No. of bitstreams: 1
ntu-100-R98922153-1.pdf: 3099717 bytes, checksum: 79342eb2ce2718a20a5dd64747afbff2 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目 錄
第一章 緒論.................................................1
1.1 研究背景與動機...........................................1
1.2 研究目的................................................2
1.3 研究方法................................................2
1.4 研究流程................................................2
1.5 預期成果................................................3
第二章 文獻回顧..............................................4
2.1 車流理論................................................5
2.1.1 四大限制方程式(Four Limit Equations)...................6
2.1.2 刺激-反應方程式(Stimulus-Response Equation)............7
2.1.3 行為門檻模式(Behavioural Threshold Model)..............9
2.2 蜂巢自動機模式(Cellular Automaton,CA模式)...............10
2.3 探討混合式汽機車行為模式..................................13
2.4 直線路徑數學模式.........................................17
2.5 變換車道模式............................................20
2.6 小結..................................................22
第三章 車輛移動模式設計.......................................23
3.1 基於行為規則之2D移動模式..................................23
3.2 路徑變化模式分析.........................................26
3.2.1 號誌燈的變化狀態.......................................27
3.2.2 轉彎的加減速..........................................32
3.3 轉彎路徑軌跡模式.........................................33
3.3.1 十字路口汽機車右轉及左轉................................34
3.3.2 十字路口車輛迴轉(U-turn)...............................36
3.4 轉彎軌跡資料收集.........................................37
3.5 車輛障礙偵測應用.........................................42
3.6 車輛碰撞偵測應用.........................................44
3.6.1 橫向車輛直行與縱向車輛直行碰撞偵測演算法...................44
3.6.2 橫向車輛直行與縱向車輛右轉碰撞偵測演算法...................48
3.6.3 橫向車輛直行與縱向車輛左轉碰撞偵測演算法...................51
第四章 駕駛模擬系統實驗.......................................55
4.1 模擬器.................................................55
4.2 轉彎之理論模型與跟模擬器產生之軌跡比較.......................57
4.3 轉彎之理論模型跟實際車輛轉彎軌跡比較........................59
第五章 結論與未來展望........................................64
5.1 結論..................................................64
5.2 未來展望...............................................64
參考文獻
dc.language.isozh-TW
dc.subject車輛移動模型zh_TW
dc.subject CA)zh_TW
dc.subject蜂巢自動機模式(Cellular Automatonzh_TW
dc.subject車輛隨意網路zh_TW
dc.subjectvehicle mobility modelen
dc.subjectVehicular ad hoc networks (VANETs)en
dc.subjectCellular Automaton (CA)en
dc.title使用蜂巢自動機之車輛移動模型:設計與應用zh_TW
dc.titleA Vehicle Mobility Model Using Cellular Automaton : Design and Applicationen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee逄愛君(Ai-Chun Pang),王傑智(Chieh-Chih Wang),蘇雅韻(Ya-Yunn SU)
dc.subject.keyword蜂巢自動機模式(Cellular Automaton, CA),車輛移動模型,車輛隨意網路,zh_TW
dc.subject.keywordCellular Automaton (CA),vehicle mobility model,Vehicular ad hoc networks (VANETs),en
dc.relation.page67
dc.rights.note未授權
dc.date.accepted2011-11-10
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
3.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved