請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16582
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳昭瑩 | |
dc.contributor.author | Ming-Wei Chang | en |
dc.contributor.author | 張明偉 | zh_TW |
dc.date.accessioned | 2021-06-07T18:22:00Z | - |
dc.date.copyright | 2012-01-16 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-11-17 | |
dc.identifier.citation | 1. 侯秉賦。2002。灰黴病菌與百合之交互作用。國立臺灣大學植物病理研究所碩士論文。
2. 路幼妍。2003。葵百合誘導抗病性之研究。國立臺灣大學植物病理研究所博士論文。 3. 鍾文全、黃振文。1992。兩種十字花科蔬菜黑斑病菌的生物特性比較。植保會刊 34:341。 4. Aerts, A. M., Francois, I. E., Meert, E. M., Li, Q., Cammue, B., and Thevissen, K. 2007. The antifungal activity of RsAFP2, a plant defensin from Raphanus sativus , involves the induction of reactive oxygen species in Candida albicans. J. Mol. Microbiol. Biotechnol. 13:243-247. 5. Alves, C. S., Melo, M. N., Franquelim, H. G., Ferre, R., Planas, M., Feliu, L., Bardaji, E., Kowalczyk, W., Andreu, D., Santos, N. C., Fernandes, M. X., and Castanho, M. A. R. B. 2010. Escherichia coli cell surface perturbation and disruption induced by antimicrobial peptides, BP100 and pepR. J. Biol. Chem. 285:27536-27544. 6. Arzese, A., Trani, G., Riul, L., and Botta, G.. A. 1995. Rapid polymerase chain reaction method for specific detection of toxigenic Clostridium difficile. Eur. J. Clin. Microbiol. Infect. Dis. 14:716-719. 7. Baroni, A., Donnarumma, G., Paoletti, I., Longanesi-Cattani, I., Bifulco, K., Tufano, M. A., and Carriero, M. V. 2009. Antimicrobial human beta-defensin-2 stimulates migration, proliferation and tube formation of human umbilica vein endothelial cells. Peptides 30:267-272. 8. Bagella, L., Scocchi, M., and Zanetti, M. 1995. cDNA sequences of three sheep myeloid cathelicidins. FEBS Lett. 376:225–228. 9. Biragyn, A., Ruffini, P. A., Leifer, C. A., Klyushnenkova, E., Shakhov, A., Chertov, O., Shirakawa, A. K., Farber, J. M., Segal, D. M., Oppenheim, J. J., and Kwak, L. W. 2002. Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025-1029. 10. Birnboim, H. C., and Doly, J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucl. Acids. Res. 7:1513-1523. 11. Brenner, D. J., Krieg, N. R., Garrity, G. M., and Staley, J. T. 2005. Bergey's Manual of Systematic Bacteriology, Volume 1. Baltimore: Williams & Wilkins. 12. Broekaert, W. F., Mariën, W., Terras, F. R., De Bolle, M. F., Proost, P., Van Damme, J., Dillen, L., Claeys, M., Rees, S. B., and Vanderleyden, J. 1992. Antimicrobial peptides from Amaranthus caudatus seeds with sequence homology to the cysteine/glycine-rich domain of chitin-binding proteins. Biochemistry 31: 4308-4314. 13. Brogden, K. A. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria. Nat. Rev. Microbiol. 3:238-250. 14. Brown, K. L., and Hancock, R. E. 2006. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18:24-30. 15. Campos, M. A., Vargas, M. A., Regueiro, V., Llompart, C. M., Alberti, S., and Bengoechea, J. A. 2004. Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect. Immun. 72:7107–7114. 16. Chalutz, E., and Wilson, C. L. 1990. Postharvest biocontrol of green and blue mold and sour rot of citrus fruit by Debaryomyces hansenii. Plant Dis. 74:134-137. 17. Chan, D. I., Prenner, E. J., and Vogel, H. J. 2006. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim. Biophys. Acta 175:1184-1202. 18. Chand-Goyal, T. and Spotts, R. A. 1996. Control of postharvest pear diseases using natural saprophytic yeast colonists and their combination with low dosage of thiabendazole. Postharvest Biol. Technol. 7:51-64. 19. Chen, L. Y., Cheng, C. W., Lin, J. J., and Chen, W. Y. 2007. Exploring the effect of cholesterol in lipid bilayer membrane on the melittin penetration mechanism. Anal. Biochem. 367:49-55. 20. China, B., N'guyen, B. T., De Bruyere, M., and Cornelis, G. R. 1994. Role of YadA in resistance of Yersinia enterocolitica to phagocytosis by human polymorphonuclear leukocytes. Infect. Immun. 62:1275–1281. 21. Choudhary, D. K., and Johri, B. N. 2009. Interactions of Bacillus spp. and plants--with special reference to induced systemic resistance (ISR). Microbiol Res. 164:493-513. 22. Cleaves, G. R. 1985. Identification of dengue type 2 virus-specific high molecular weight proteins in virus-infected BHK cells. J. Gen. Virol. 66:2767-71. 23. Denning, D. W. 1997. Echinocandins and pneumocandins--a new antifungal class with a novel mode of action. J. Antimicrob. Chemother. 40:611-614. 24. Droby, S., Cohen, L., Daus, A., Weiss, B., Horev, B., Chalutz, E., Katz, H., Keren-Tzur, M., and Shachnai, A. 1998. Commercial testing of Aspire: A yeast preparation for the biological control of postharvest decay of citrus. Biol. Control 12:97-101. 25. Edreva, A. 2005. Pathogenesis-related proteins: research progress in the last 15 years. Gen. Appl. Physiol. 31:105-124. 26. Egorov, T. A., Odintsova, T. I., Pukhalsky, V. A., and Grishin, E. V. 2005. Diversity of wheat anti-microbial peptides. Peptides 26:2064–2073. 27. El-Neshawy, S. M., and Wilson, C. L. 1997. Nisin enhancement of biocontrol of postharvest diseases of apple with Candida oleophila. Postharvest Biol. Technol. 10:9-14. 28. Ferre, R., Badosa, E., Feliu, L., Montesinos, E., and Bardaji, E. 2006. Inhibition of plant-pathogenic bacteria by short synthetic cecropin A-melittin hybrid peptides. Appl. Environ. Microbiol. 72:3302-3308. 29. Florack, D. E. A., Stiekema, W. J., and Bosch, D. 1996. Toxicity of peptides to bacteria present in the vase water of cut roses. Postharvest Biol. Technol. 8: 285-291. 30. Ganz, T. 2003. Defensins: antimicrobial peptides of innate immunity. Nature Rev. Immunol. 3:710–720. 31. Ganz, T. 2004. Antimicrobial polypeptides. J. Leukoc. Biol. 75:34-38. 32. Gennaro, R., and Zanetti, M. 2000. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides. Biopolymers. 55:31-49. 33. Gentilucci, L., Tolomelli, A., and Squassabia, F. 2006. Peptides and peptidomimetics in medicine, surgery and biotechnology. Curr. Med. Chem. 13: 2449-2466. 34. Guaní-Guerra, E., Santos-Mendoza, T., Lugo-Reyes, S. O., and Terán, L. M. 2010. Antimicrobial peptides: general overview and clinical implications in human health and disease. Clin. Immunol. 135:1-11. 35. Hancock, R. E. 1997. Peptide antibiotics. Lancet. 349:418-422. 36. Hancock, R. E., and Diamond, G. 2000. The role of cationic antimicrobial peptides in innate host defences. Trends Microbial. 8:402-410. 37. Hamad, M., 2008. Antifungal immunotherapy and immunomodulation: a double-hitter approach to deal with invasive fungal infections. Scand. J. Immunol. 67:533-543. 38. Hartmann, M., Hartmann, M., Hawecker, J., Ardakani, M. F., Gerthsen, D., and Ulrich, A. S. 2010. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother. 54:3132-42. 39. Henrik, U. S., Spence, B., and Wang, Y. 2009. A defensin from tomato with dual function in defense and development. Plant Mol. Biol. 71:131-143. 40. Hirano, S. S., and Upper, C. D. 1990. Population biology and epidemiology of Pseudomonas syringae. Annu. Rev. Phytopathol. 28:155-177. 41. Izadpanah, A., and Gallo, R., L. 2005. Antimicrobial peptides. J. Am. Acad. Dermatol. 52:381-390. 42. Jones, R. W., and Prusky, D. 2002. Expression of an antifungal peptide in Saccharomyces: a new approach for biological control of the postharvest disease caused by Colletotrichum coccodes. Phytopathology 92:33-37. 43. Kalfa, V., C., Jia, H., P., Kunkle, R., A., McCray, Jr., P., B., Tack, B., F., and Brogden, K., A. 2001. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob. Agents Chemother. 45: 3256-3261. 44. Kapat, A., Zimand, G., and Elad, Y. 1998. Biosynthesis of pathogenicity hydrolytic enzymes by Botrytis cinerea during infection of bean leaves and in vitro. Mycol. Res. 102:1017-1024. 45. Kessmann, H., Staub, T., Hofmann, C., Maetzke, T., Herzog, J., Ward, E., Uknes, S., and Ryals, J. 1994. Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 32:439-459. 46. Keymanesh, K., Soltani, S., and Sardari, S. 2009. Application of antimicrobial peptides in agriculture and food industry. World J. Microbiol. Biotechnol. 25: 933-944. 47. Kuc, J. 1982. induced immunity to plant disease. Bioscience 32:854-860. 48. Lay, F. T., Brugliera, F., and Anderson, M. A. 2003. Isolation and properties of floral defensins from ornamental tobacco and petunia. Plant Physiol. 131: 1283-1293. 49. Lee, D. G., Kim, P. I., Park, Y., Park, S. C., Woo, E. R., and Hahm, K. S. 2002. Antifungal mechanism of SMAP-29 (1-18) isolated from sheep myeloid mRNA against Trichosporon beigelii. Biochem. Biophys. Res. Commun. 295:591-596. 50. Liu, X., Wang, J., Gou, P., Mao, C., Zhu, Z., and Li, H. 2007. In vitro inhibition of postharvest pathogens of fruit and control of gray mold of strawberry and green mold of citrus by aureobasidin A. Int. J. Food Microbiol. 119:223-229. 51. Liu , Z., Zeng, M., Dong, S., Xu, J., Song, H., and Zhao, Y. 2007. Effect of an antifungal peptide from oyster enzymatic hydrolysates for control of gray mold (Botrytis cinerea) on harvested strawberries. Postharvest Biol. Technol. 46:95-98. 52. López-García, B., González-Candelas, L., Pérez-Payá. E., and Marcos, J. F. 2000. Identification and characterization of a hexapeptide with activity against phytopathogenic fungi that cause postharvest decay in fruits. Mol. Plant Microbe Interact. 3:837-846. 53. Lopez-Garcia, B., Veyrat, A., Perez-Paya, E., Gonzalez-Candelas, L., and Marcos, J. F. 2003. Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int. J. Food Microbiol. 89:163-170. 54. Lu, Y. Y., and Chen, C. Y. 2005. Molecular analysis of lily leaves in response to salicylic acid effective towards protection against Botrytis elliptica. Plant Sci. 169: 1-9. 55. Mangeon, A., Junqueira, R. M., and Sachetto-Martins, G. 2010. Functional diversity of the plant glycine-rich proteins superfamily. Plant Signal Behav. 5: 99-104. 56. Merritt, E. A., and Bacon, D. J. 1997. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277:505–524. 57. Morel, J. B., and Dangl, J. L. 1997. The hypersensitive response and the induction of cell death in plants. Cell Death Differ. 4:671-683. 58. Mousavi, A., and Hotta, Y. 2005. Glycine-rich proteins: a class of novel proteins. Appl. Biochem. Biotechnol. 120:169-174. 59. Nagle, J. F., and Tristram-Nagle, S. 2000. Structure of lipid bilayers. Biochim. Biophys. Acta. 1469:159-195. 60. Palffy, R., Gardlik, R., Behuliak, M., Kadasi, L., Turna, J., and Celec, P. 2009. On the physiology and pathophysiology of antimicrobial peptides. Mol. Med. 15: 51-59. 61. Pearce, G.., Moura, D. S., Stratmann, J., and Ryan, C. A. 2001. Production of multiple plant hormones from a single polyprotein precursor. Nature 411: 817-820. 62. Pelegrini, P. B., Murad, A. M., Silva, L. P., Dos Santos, R. C., Costa, F. T., Tagliari, P. D., Bloch, C. Jr., Noronha, E. F., Miller, R. N., and Franco, O. L. 2008. Identification of a novel storage glycine-rich peptide from guava (Psidium guajava) seeds with activity against Gram-negative bacteria. Peptides 29: 1271-1279. 63. Pokorny, A., and Almeida, P. F. 2005. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides. Biochemistry 44:9538-9544. 64. Peschel, A., Otto, M., Jack, R. W., Kalbacher, H., Jung, G., and Götz, F. 1999. Inactivation of the dlt operon in Staphylococcus aureus confers sensitivity to defensins, protegrins, and other antimicrobial peptides. J. Biol. Chem. 274: 8405–8410. 65. Powelson, R. L. 1960. Initiation of strawberry fruit rot caused by Botrytis cinerea. Phytopathology 50:491-494. 66. Schneider, R. W., Hall, D. H., and Grogan, R. G. 1975. Effect of bacterial speck on tomato yield and maturity. Proc. Am. Phytopathol. Soc. 2:118. 67. Smith, R., Separovic, F., Milne, T. J., Whittaker, A., Bennett, F. M., Cornell, B. A., and Makriyannis, A. 1994. Structure and orientation of the pore-forming peptide, melittin, in lipid bilayers. J. Mol. Biol. 24:456-466. 68. Tennessen, J. A. 2005. Molecular evolution of animal antimicrobial peptides: widespread moderate positive selection. J. Evol. Biol. 18:1387-1394. 69. Thevissen, K., Ferket, K. K., François, I. E., and Cammue, B. P. 2003. Interactions of antifungal plant defensins with fungal membrane components. Peptides 24: 1705-1712. 70. Travis, S. M., Anderson, N. N., Forsyth, W. R., Espiritu, C., Conway, B. D., Greenberg, E. P., McCray, P. B., Jr, Lehrer, R. I., Welsh, M. J., and Tack, B. F. 2000. Bactericidal activity of mammalian cathelicidin-derived peptides. Infect. Immun. 68:2748-2755. 71. Van de Velde, W., Zehirov, G., Szatmari, A., Debreczeny, M., Ishihara, H., Kevei, Z., Farkas, A., Mikulass, K., Nagy, A., Tiricz, H., Satiat-Jeunemaître, B., Alunni, B., Bourge, M., Kucho, K., Abe, M., Kereszt, A., Maroti, G., Uchiumi, T., Kondorosi, E., and Mergaert, P. 2010. Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122-1126. 72. Van der Weerden, N. L., Lay, F. T., and Anderson, M. A., 2008. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae. J. Biol. Chem. 21:14445-14452. 73. Van Kan, J. A., Cornelissen, B. J., and Bol, J. F. 1988. A virus-inducible tobacco gene encoding a glycine-rich protein shares putative regulatory elements with the ribulose bisphosphate carboxylase small subunit gene. Mol. Plant-Microbe Interact. 1:107-112. 74. Van Peer, R., Niemann, G. J., and Schippers, B. 1991. Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728-734. 75. Virtanen, J. A., Cheng, K. H., and Somerharju, P. 1998. Phospholipid composition of the mammalian red cell membrane can be rationalized by a superlattice model. Proc. Natl. Acad. Sci. U S A 95:4964-4969. 76. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V., Underwood, P. A. 1996. The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J. Biol. Chem. 271:10079–10086. 77. Williams, P. H. 1980. Black rot: a continuing threat to world crucifer. Plant Dis. 64:736-742. 78. Yang, D., Biragyn, A., Kwak, L. W., and Oppenheim, J. J. 2002. Mammalian defensins in immunity: more than just microbicidal. Trends Immunol. 23: 291-296. 79. Yang, D., Liu, Z. H., Tewary, P., Chen, Q., de la Rosa, G., and Oppenheim, J. J. 2007. Defensin participation in innate and adaptive immunity. Curr. Pharm. Des. 13:3131-3139. 80. Yang, Y. F. and Lyu, P. C. 2008. The proteins of plant defensin family and their application beyond plant disease control. Recent Pat. DNA Gene Seq. 2:214-218. 81. Yu, Y., Vroman, J. A., Bae, S. C., and Granick, S. 2010. Vesicle budding induced by a pore-forming peptide. J. Am. Chem. Soc. 132:195-201. 82. Zasloff , M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. 83. Zottich, U., Da Cunha, M., Carvalho A. O., Dias, G. B., Silva, N. C., Santos, I. S., do Nacimento, V. V., Miguel, E. C., Machado, O. L., Gomes, V. M. 2011. Purification, biochemical characterization and antifungal activity of a new lipid transfer protein (LTP) from Coffea canephora seeds with α-amylase inhibitor properties. Biochim. Biophys. Acta 1810:375-383. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16582 | - |
dc.description.abstract | 抗菌胜肽具有抗菌活性,由12~50 個胺基酸組成,廣泛存在於各種生物體如人類、昆蟲、植物、細菌等,可以協助生物體抵抗細菌、真菌、病毒、寄生蟲等各種病原感染。LsGRP1 (Lilium ‘Star Gazer’ glycine-rich protein)是一源自於葵百合的防禦相關蛋白,由138 個胺基酸組成;C 端序列的16%為半胱胺酸(cysteine),具有良好的抑菌能力,為一抗菌胜肽。為了解LsGRP1 的應用潛力,測試其對臺灣多種常見植物病原菌的抑制作用,發現LsGRP1 的C 端胜肽(LsGRP1C)可有效抑制Alternaria brassicicola、Botrytis cinerea 與Colletotrichum acutatum 等真菌孢子發芽,對Pseudomonas syringae pv. syringae、Xanthomonas campestris pv.vesicatoria 與Clavibacter michiganensis 等細菌則有致死的作用。於植體上,LsGRP1C 可在甘藍葉片及草莓花瓣分別抑制黑斑病及灰黴病的發展,並可抑制P. syringae pv. syringae 在番茄葉片上的感染。進一步探討LsGRP1C 的抑菌機制,以掃描式電子顯微鏡觀察細菌細胞外部形態的變化,發現處理LsGRP1C 的細菌表面有疣狀凸起並於細菌周圍出現許多球狀物;藉由螢光染劑SYTOX green 觀察LsGRP1C 對細菌細胞的影響,發現此抗菌胜肽可造成細菌細胞膜穿孔。 | zh_TW |
dc.description.abstract | Antimicrobial peptides (AMPs) are a class of small host defense peptides, normally 12 to 50 amino acids, with antimicrobial activity against bacteria, fungi, viruses, parasites and other pathogenic microorganisms on humans, insects, plants, etc. LsGRP1 (Lilium ‘Star Gazer’ glycine-rich protein) is a plant defense-related protein derived from Lilium, consisting of 138 amino acids with 16% cysteine in C-terminal region. Antimicrobial activity of the synthetic C-terminal LsGRP1 (LsGRP1C) had been shown previously. To understand the potential applications of this peptide, its inhibitory abilities to a variety of plant pathogens were assayed and found to inhibit spore germination of Alternaria brassicicola, Botrytis cinerea, and Colletotrichum acutatum. In addition, this peptide caused bacterial cell death in Pseudomonas syringae pv. syringae, Xanthomonas campestris pv. vesicatoria, and Clavibacter michiganensis., In planta assays showed that this synthetic LsGRP1C inhibited symptom developments of cabbage black spot, strawberry gray mold, and tomato bacterial leaf spot. For investigation of the antibacterial mechanism, bacterial cell surface was examined by scanning electron microscopy, and the results showed that LsGRP1C caused protrusion of bacterial surface and formation of spherical bodies aside of bacterial cells. Examination with fluorescent dye SYTOX green showed that this AMP could increase membrane permeability of the target bacterial cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-07T18:22:00Z (GMT). No. of bitstreams: 1 ntu-100-R98633012-1.pdf: 4990654 bytes, checksum: 1b4f9ef53d2d7f74c7ab288c8d40e6ae (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 壹、中文摘要 1
貳、英文摘要 2 参、前 言 4 肆、前人研究 6 一、 植物之富含甘胺酸蛋白(glycine-rich protein, GRP) 6 二、 抗菌胜肽的結構及理化特性 6 三、 抗菌胜肽在農業上的應用 7 四、 抗菌胜肽之抗生機制 9 五、 病害防治標的 12 六、 酵母菌蛋白質表現系統 13 伍、材料與方法 15 一、 真菌菌株培養與保存 15 二、 細菌菌株培養與保存 15 三、 酵母菌菌株培養與保存 16 四、 人工合成LsGRP1 C端胜肽 (LsGRP1C) 16 五、 植物栽植與處理 16 六、 LsGRP1C抑制細菌與酵母菌能力測試 17 七、 LsGRP1C抑制真菌能力試驗 17 八、 以掃描式電子顯微鏡觀察LsGRP1C對細菌之作用 18 九、 植物體上LsGRP1C抑制Alternaria brassicicola試驗 18 十、 以染色觀察葉片上真菌之侵入情形 19 十一、 植體上LsGRP1C抑制Botrytis cinerea試驗 19 十二、 LsGRP 1C之細胞毒性試驗 20 十三、 藉由螢光染劑SYTOX green觀察LsGRP1C對細菌與酵母菌細胞膜之影響 20 十四、 以酵母菌表現LsGRP1C之分子選殖 20 1. 細菌質體DNA之小量製備法 20 2. DNA瓊脂精膠體電泳分析 21 3. 引子設計 21 4. 聚合酵素連鎖反應 22 5. TA cloning 22 6. 大腸桿菌勝任細胞製備 22 7. 大腸桿菌細胞轉形 23 8. 大腸桿菌轉形株之篩選 23 9. 限制酵素切割 23 10. DNA片段的回收與純化 24 11. DNA黏接反應 24 12. 酵母菌勝任細胞製備 25 13. 酵母菌細胞轉形 25 14. 酵母菌菌落聚合酵素連鎖反應之增幅篩選 25 十五、 利用酵母菌表現LsGRP1C 26 1. 胞內蛋白質萃取 26 2. Tricine-SDS-聚丙烯醯胺膠體分析 27 3. 酵母菌表現LsGRP1C蛋白質產物純化流程 28 4. 西方墨點法分析(western blot)及抗體偵測 28 陸、結 果 29 一、 LsGRP1C之生體外抑菌能力分析 30 二、 LsGRP1C之植體上抑菌能力分析 30 三、 LsGRP1C對哺乳類紅血球之作用 32 四、 LsGRP1C對細菌細胞之作用 32 五、 以酵母菌表現LsGRP1C之分子選殖及蛋白質產物分析 33 柒、討 論 34 捌、參考文獻 42 玖、圖表集 56 表一、LsGRP1C生體外抑制細菌活性 56 表二、LsGRP1C生體外抑制真菌活性 57 表三、LsGRP1C對細菌之50%抑制濃度 59 表四、LsGRP1C對真菌之50%抑制濃度 60 表五、LsGRP1C對哺乳類紅血球毒性測試 61 表六、酵母菌表現系統引子對序列 62 圖一、LsGRP1胺基酸序列 63 圖二、LsGRP1C抑制甘藍黑斑病之病徵比較 64 圖三、LsGRP1C抑制甘藍黑斑病之病斑直徑比較 65 圖四、不同處理時間對LsGRP1C抑制甘藍黑斑病之影響 66 圖五、處理LsGRP1C對甘藍黑斑病菌感染甘藍葉之影響 67 圖六、甘藍葉上LsGRP1C對黑斑病菌孢子發芽之影響 68 圖七、草莓花灰黴病罹病等級 69 圖八、不同濃度LsGRP1C對草莓花灰黴病病徵發展之影響 70 圖九、不同濃度LsGRP1C對草莓花及幼果灰黴病病徵發展之影響 71 圖十、LsGRP1C前處理對灰黴病菌感染草莓花之影響 72 圖十一、LsGRP1C前處理與後處理對灰黴病菌感染草莓之影響 73 圖十二、LsGRP1C後處理時間對灰黴病菌感染草莓花之影響 74 圖十三、蘭花灰黴病罹病等級 75 圖十四、不同濃度LsGRP1C對蘭花灰黴病病徵發展之影響 76 圖十五、LsGRP1C抑制番茄細菌性斑點病之病徵比較 77 圖十六、LsGRP1C對Pseudomonas syringae細胞外型之影響(高菌量) 78 圖十七、LsGRP1C對Pseudomonas syringae細胞外型之影響(低菌量) 79 圖十八、LsGRP1C對Xanthomonas campestris pv. vesicatoria細胞外型之影響(低菌量) (I) 80 圖十九、LsGRP1C對Xanthomonas campestris pv. vesicatoria細胞外型改變之影響(低菌量) (II) 81 圖二十、LsGRP1C對Xanthomonas campestris pv. campestris 細胞外型之影響(高菌量) ………………………………………………………………………..82 圖二十一、LsGRP1C處理不同時間對Xanthomonas campestris pv. campestris 細胞外型之影響(高菌量) 83 圖二十二、LsGRP1C對Pseudomonas syringae細胞膜之透化 之作用 84 圖二十三、LsGRP1C對Xanthomonas campestris pv. vesicatoria細胞膜之透化作用 ………………………………………………………………………..85 圖二十四、LsGRP1C對Xanthomonas campestris pv. campestris細胞膜之透化作用 ………………………………………………………………………..86 圖二十五、利用Pichia pastoris表現LsGRP1C之建構流程圖 87 圖二十六、利用西方點漬法確認酵母菌表現LsGRP1C蛋白質產物 88 圖二十七、LsGRP1C與pepR胺基酸序列比較 89 拾、附 錄 90 一、質體pPICZB示意圖 91 二、pPICZB酵素切位示意圖 92 | |
dc.language.iso | zh-TW | |
dc.title | 百合防禦相關蛋白LsGRP1之胜肽片段抗菌活性與機制探討 | zh_TW |
dc.title | Study of antimicrobial activity and mechanism of Lilium
defense-related protein LsGRP1-derived peptide | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭安秀,許元勳,吳蕙芬 | |
dc.subject.keyword | 抗菌胜?LsGRP1 C端胜?抗菌分析, | zh_TW |
dc.subject.keyword | Antimicrobial peptide,C-terminal peptide of LsGRP1,antimicrobial assay, | en |
dc.relation.page | 92 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-11-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 植物病理與微生物學研究所 | zh_TW |
顯示於系所單位: | 植物病理與微生物學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 4.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。