Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16551
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄧哲明(Che-Ming Teng)
dc.contributor.authorChun-Han Chenen
dc.contributor.author陳俊翰zh_TW
dc.date.accessioned2021-06-07T18:20:22Z-
dc.date.copyright2012-03-02
dc.date.issued2012
dc.date.submitted2012-01-09
dc.identifier.citationBaylin SB and Jones PA (2011) A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer 11: 726-734.
Cairns RA, Harris IS and Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11: 85-95.
Carew JS, Giles FJ and Nawrocki ST (2008) Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 269: 7-17.
Castedo M, Perfettini JL, Roumier T and Kroemer G (2002) Cyclin-dependent kinase-1: linking apoptosis to cell cycle and mitotic catastrophe. Cell Death Differ 9: 1287-1293.
Catteau A, Rosewell I, Solomon E and Taylor-Papadimitriou J (2004) A short region of the promoter of the breast cancer associated PLU-1 gene can regulate transcription in vitro and in vivo. Int J Oncol 25: 5-16.
Cazzalini O, Scovassi AI, Savio M, Stivala LA and Prosperi E (2010) Multiple roles of the cell cycle inhibitor p21(CDKN1A) in the DNA damage response. Mutat Res 704: 12-20.
Chang LH, Chen CH, Huang DY, Pai HC, Pan SL and Teng CM (2011) Thrombin induces expression of twist and cell motility via the hypoxia-inducible factor-1alpha translational pathway in colorectal cancer cells. J Cell Physiol 226: 1060-1068.
Chang WL, Chang CS, Chiang PC, Ho YF, Liu JF, Chang KW and Guh JH (2010) 2-Phenyl-5-(pyrrolidin-1-yl)-1-(3,4,5-trimethoxybenzyl)-1H-benzimidazole, a benzimidazole derivative, inhibits growth of human prostate cancer cells by affecting tubulin and c-Jun N-terminal kinase. Br J Pharmacol 160: 1677-1689.
Chen C, Hyytinen ER, Sun X, Helin HJ, Koivisto PA, Frierson HF, Jr., Vessella RL and Dong JT (2003) Deletion, mutation, and loss of expression of KLF6 in human prostate cancer. Am J Pathol 162: 1349-1354.
Chen YC, Lu PH, Pan SL, Teng CM, Kuo SC, Lin TP, Ho YF, Huang YC and Guh JH (2007) Quinolone analogue inhibits tubulin polymerization and induces apoptosis via Cdk1-involved signaling pathways. Biochem Pharmacol 74: 10-19.
Chou TC and Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27-55.
Dasmahapatra G, Yerram N, Dai Y, Dent P and Grant S (2007) Synergistic interactions between vorinostat and sorafenib in chronic myelogenous leukemia cells involve Mcl-1 and p21CIP1 down-regulation. Clin Cancer Res 13: 4280-4290.
Davidson G and Niehrs C (2010) Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol 20: 453-460.
Deng X, Xiao L, Lang W, Gao F, Ruvolo P and May WS, Jr. (2001) Novel role for JNK as a stress-activated Bcl2 kinase. J Biol Chem 276: 23681-23688.
DiFeo A, Martignetti JA and Narla G (2009) The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat 12: 1-7.
Domina AM, Smith JH and Craig RW (2000) Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J Biol Chem 275: 21688-21694.
Dumontet C and Jordan MA (2010) Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov 9: 790-803.
Ehrlichova M, Vaclavikova R, Ojima I, Pepe A, Kuznetsova LV, Chen J, Truksa J, Kovar J and Gut I (2005) Transport and cytotoxicity of paclitaxel, docetaxel, and novel taxanes in human breast cancer cells. Naunyn Schmiedebergs Arch Pharmacol 372: 95-105.
El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365: 1118-1127.
Faitova J, Krekac D, Hrstka R and Vojtesek B (2006) Endoplasmic reticulum stress and apoptosis. Cell Mol Biol Lett 11: 488-505.
Fullgrabe J, Kavanagh E and Joseph B (2011) Histone onco-modifications. Oncogene 30: 3391-3403.
Galluzzi L, Larochette N, Zamzami N and Kroemer G (2006) Mitochondria as therapeutic targets for cancer chemotherapy. Oncogene 25: 4812-4830.
Galsky MD, Dritselis A, Kirkpatrick P and Oh WK (2010) Cabazitaxel. Nat Rev Drug Discov 9: 677-678.
Gascoigne KE and Taylor SS (2009) How do anti-mitotic drugs kill cancer cells? J Cell Sci 122: 2579-2585.
Goodin S (2008) Novel cytotoxic agents: epothilones. Am J Health Syst Pharm 65: S10-15.
Hari M, Loganzo F, Annable T, Tan X, Musto S, Morilla DB, Nettles JH, Snyder JP and Greenberger LM (2006) Paclitaxel-resistant cells have a mutation in the paclitaxel-binding region of beta-tubulin (Asp26Glu) and less stable microtubules. Mol Cancer Ther 5: 270-278.
Harley ME, Allan LA, Sanderson HS and Clarke PR (2010) Phosphorylation of Mcl-1 by CDK1-cyclin B1 initiates its Cdc20-dependent destruction during mitotic arrest. EMBO J 29: 2407-2420.
He J, Tohyama Y, Yamamoto K, Kobayashi M, Shi Y, Takano T, Noda C, Tohyama K and Yamamura H (2005) Lysosome is a primary organelle in B cell receptor-mediated apoptosis: an indispensable role of Syk in lysosomal function. Genes Cells 10: 23-35.
Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N and Hayashi N (2010) The Bcl-xL inhibitor, ABT-737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 52: 1310-1321.
Honore S, Pasquier E and Braguer D (2005) Understanding microtubule dynamics for improved cancer therapy. Cell Mol Life Sci 62: 3039-3056.
Inoue H, Hwang SH, Wecksler AT, Hammock BD and Weiss RH (2011) Sorafenib attenuates p21 in kidney cancer cells and augments cell death in combination with DNA-damaging chemotherapy. Cancer Biol Ther 12: 827-836.
Jackson JR, Patrick DR, Dar MM and Huang PS (2007) Targeted anti-mitotic therapies: can we improve on tubulin agents? Nat Rev Cancer 7: 107-117.
Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D (2011) Global cancer statistics. CA Cancer J Clin 61: 69-90.
Jordan MA and Wilson L (2004) Microtubules as a target for anticancer drugs. Nat Rev Cancer 4: 253-265.
Kang MH and Reynolds CP (2009) Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res 15: 1126-1132.
Knoepfler PS, Zhang XY, Cheng PF, Gafken PR, McMahon SB and Eisenman RN (2006) Myc influences global chromatin structure. EMBO J 25: 2723-2734.
Koppenol WH, Bounds PL and Dang CV (2011) Otto Warburg's contributions to current concepts of cancer metabolism. Nat Rev Cancer 11: 325-337.
Kroemer G and Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13: 472-482.
Li B, Carey M and Workman JL (2007) The role of chromatin during transcription. Cell 128: 707-719.
Liu F, Pore N, Kim M, Voong KR, Dowling M, Maity A and Kao GD (2006) Regulation of histone deacetylase 4 expression by the SP family of transcription factors. Mol Biol Cell 17: 585-597.
Livak KJ and Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408.
Llovet JM and Bruix J (2008) Molecular targeted therapies in hepatocellular carcinoma. Hepatology 48: 1312-1327.
Longo VD and Fontana L (2010) Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 31: 89-98.
Matson DR and Stukenberg PT (2011) Spindle poisons and cell fate: a tale of two pathways. Mol Interv 11: 141-150.
Maurer U, Charvet C, Wagman AS, Dejardin E and Green DR (2006) Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell 21: 749-760.
Michels J, Ellard SL, Le L, Kollmannsberger C, Murray N, Tomlinson Guns ES, Carr R and Chi KN (2010) A phase IB study of ABT-751 in combination with docetaxel in patients with advanced castration-resistant prostate cancer. Ann Oncol 21: 305-311.
Mukherjee S, Chiu R, Leung SM and Shields D (2007) Fragmentation of the Golgi apparatus: an early apoptotic event independent of the cytoskeleton. Traffic 8: 369-378.
Mund C and Lyko F (2010) Epigenetic cancer therapy: Proof of concept and remaining challenges. Bioessays 32: 949-957.
Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P, Yea S, Peix J, Deniz K, Fiel MI, Thung S, Alsinet C, Tovar V, Mazzaferro V, Bruix J, Roayaie S, Schwartz M, Friedman SL and Llovet JM (2009) Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 51: 725-733.
Omodei D and Fontana L (2011) Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 585: 1537-1542.
Park MA, Mitchell C, Zhang G, Yacoub A, Allegood J, Haussinger D, Reinehr R, Larner A, Spiegel S, Fisher PB, Voelkel-Johnson C, Ogretmen B, Grant S and Dent P (2010) Vorinostat and sorafenib increase CD95 activation in gastrointestinal tumor cells through a Ca(2+)-de novo ceramide-PP2A-reactive oxygen species-dependent signaling pathway. Cancer Res 70: 6313-6324.
Park MA, Zhang G, Martin AP, Hamed H, Mitchell C, Hylemon PB, Graf M, Rahmani M, Ryan K, Liu X, Spiegel S, Norris J, Fisher PB, Grant S and Dent P (2008) Vorinostat and sorafenib increase ER stress, autophagy and apoptosis via ceramide-dependent CD95 and PERK activation. Cancer Biol Ther 7: 1648-1662.
Pasquier E, Honore S and Braguer D (2006) Microtubule-targeting agents in angiogenesis: where do we stand? Drug Resist Updat 9: 74-86.
Perry AS, Watson RW, Lawler M and Hollywood D (2010) The epigenome as a therapeutic target in prostate cancer. Nat Rev Urol 7: 668-680.
Portela A and Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057-1068.
Rahmani M, Davis EM, Bauer C, Dent P and Grant S (2005) Apoptosis induced by the kinase inhibitor BAY 43-9006 in human leukemia cells involves down-regulation of Mcl-1 through inhibition of translation. J Biol Chem 280: 35217-35227.
Rodriguez-Paredes M and Esteller M (2011) Cancer epigenetics reaches mainstream oncology. Nat Med 17: 330-339.
Rosato RR, Almenara JA, Coe S and Grant S (2007) The multikinase inhibitor sorafenib potentiates TRAIL lethality in human leukemia cells in association with Mcl-1 and cFLIPL down-regulation. Cancer Res 67: 9490-9500.
Schuettengruber B, Simboeck E, Khier H and Seiser C (2003) Autoregulation of mouse histone deacetylase 1 expression. Mol Cell Biol 23: 6993-7004.
Siegel R, Ward E, Brawley O and Jemal A (2011) Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 61: 212-236.
Solomon SS, Majumdar G, Martinez-Hernandez A and Raghow R (2008) A critical role of Sp1 transcription factor in regulating gene expression in response to insulin and other hormones. Life Sci 83: 305-312.
Song LS, Ren GJ, Chen ZL, Chen ZH, Zhou ZN and Cheng H (2000) Electrophysiological effects of protopine in cardiac myocytes: inhibition of multiple cation channel currents. Br J Pharmacol 129: 893-900.
Tai WT, Cheng AL, Shiau CW, Huang HP, Huang JW, Chen PJ and Chen KF (2011) Signal transducer and activator of transcription 3 is a major kinase-independent target of sorafenib in hepatocellular carcinoma. J Hepatol 55: 1041-1048.
Tiwari AK, Sodani K, Wang SR, Kuang YH, Ashby CR, Jr., Chen X and Chen ZS (2009) Nilotinib (AMN107, Tasigna) reverses multidrug resistance by inhibiting the activity of the ABCB1/Pgp and ABCG2/BCRP/MXR transporters. Biochem Pharmacol 78: 153-161.
Villanueva A and Llovet JM (2011) Targeted therapies for hepatocellular carcinoma. Gastroenterology 140: 1410-1426.
Wada Y, Kaga H, Uchiito S, Kumazawa E, Tomiki M, Onozaki Y, Kurono N, Tokuda M, Ohkuma T and Orito K (2007) On the synthesis of protopine alkaloids. J Org Chem 72: 7301-7306.
Wang Q, Carroll JS and Brown M (2005) Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19: 631-642.
Wei S, Chuang HC, Tsai WC, Yang HC, Ho SR, Paterson AJ, Kulp SK and Chen CS (2009) Thiazolidinediones mimic glucose starvation in facilitating Sp1 degradation through the up-regulation of beta-transducin repeat-containing protein. Mol Pharmacol 76: 47-57.
Wei S, Kulp SK and Chen CS (2010) Energy restriction as an antitumor target of thiazolidinediones. J Biol Chem 285: 9780-9791.
Wierstra I (2008) Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun 372: 1-13.
Yamashita K, Upadhyay S, Osada M, Hoque MO, Xiao Y, Mori M, Sato F, Meltzer SJ and Sidransky D (2002) Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell 2: 485-495.
Yang J, Wei S, Wang DS, Wang YC, Kulp SK and Chen CS (2008) Pharmacological exploitation of the peroxisome proliferator-activated receptor gamma agonist ciglitazone to develop a novel class of androgen receptor-ablative agents. J Med Chem 51: 2100-2107.
Yu C, Friday BB, Lai JP, Yang L, Sarkaria J, Kay NE, Carter CA, Roberts LR, Kaufmann SH and Adjei AA (2006) Cytotoxic synergy between the multikinase inhibitor sorafenib and the proteasome inhibitor bortezomib in vitro: induction of apoptosis through Akt and c-Jun NH2-terminal kinase pathways. Mol Cancer Ther 5: 2378-2387.
Zhang G, Park MA, Mitchell C, Hamed H, Rahmani M, Martin AP, Curiel DT, Yacoub A, Graf M, Lee R, Roberts JD, Fisher PB, Grant S and Dent P (2008) Vorinostat and sorafenib synergistically kill tumor cells via FLIP suppression and CD95 activation. Clin Cancer Res 14: 5385-5399.
Zhang YX, Kong CZ, Wang HQ, Wang LH, Xu CL and Sun YH (2009) Phosphorylation of Bcl-2 and activation of caspase-3 via the c-Jun N-terminal kinase pathway in ursolic acid-induced DU145 cells apoptosis. Biochimie 91: 1173-1179.
Zinkel S, Gross A and Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13: 1351-1359.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16551-
dc.description.abstract癌症在全球來說,是已開發國家死亡原因之首,在開發中國家也高居死亡原因第二名。在台灣,惡性腫瘤自民國71年起已經連續29年高居台灣人民十大死因之首。因此,癌症對全世界人類的健康與生命無疑是一大威脅,也是科學家們亟欲解決的問題。本篇論文首先以前列腺癌為研究對象,分別針對細胞能量代謝與抗微管藥物探討其引起細胞凋亡的機轉。此外,也以肝癌細胞為對象,評估標靶藥物sorafenib與HDAC inhibitor-MPT0E028合併治療的效果。
本論文的第一部分以前列腺癌細胞株(LNCaP)為主要的研究模式,探討 energy restriction-mimetic agent (ERMA)引起細胞凋亡的機轉。我們發現新穎的ERMA-CG-12、2-dexoyglucose (2-DG)以及glucose starvation能夠經由epigenetic effect增加抑癌基因KLF6的轉錄;利用sh-RNA knockdown KLF6能夠反轉CG-12所引起的細胞凋亡。利用chromatin immunoprecipitation,我們證實KLF6轉錄增加的原因,主要與該基因啟動子附近分佈的acetyl-H3與histone H3K4Me3等histone markers增加有關。多重證據顯示,這個現象是因為Sp1的表現減少有關,進而抑制histone deacetylase (HDAC)與histone H3K4 demethylase的轉錄作用。在本篇研究中,我們釐清了能量限制與epigenetic調控抑癌基因KLF6之間的關係,此發現也提供了前列腺癌治療方面的新契機。
抗微管藥物(microtubule-targeting agent, MTA)在癌症病患的化學治療是很重要的,像是docetaxel目前被核准用來治療晚期前列腺癌的病人。然而這類的藥物在臨床上因為其抗藥性的產生,降低其廣泛的應用性,因此開發新的MTA有其急迫性。在本篇論文的第二部分,我們以人類的hormone-refractory prostate cancer (HRPC)細胞株為實驗材料,發現protopine具有抑制細胞生長以及促進細胞週期停滯在G2/M的能力,最後會引起細胞凋亡。透過 in vitro tubulin polymerization assay 以及 in situ labeling of β-tubulin的實驗,我們證實protopine為新穎的微管穩定劑(microtubule-stabilizing agent)。此外,protopine能夠活化Cdk1/cyclin B1 complex,進而增加Bcl-2的磷酸化與減少Mcl-1的表現,造成細胞凋亡。最後我們也排除了protopine是P-glycoprotein受質的可能性,且其結構較為簡單,因此protopine具有許多優點,值得當做一個先導藥物進一步開發。
Sorafenib 為一個口服的multiple tyrosine kinase inhibitor (TKI), 目前用來治療晚期renal cell carcinoma (RCC)與hepatocellular carcinoma (HCC)的病人。過去的文獻指出histone deacetylase (HDAC) inhibitor像是trichostatin A、SAHA和MS-275等,能夠在HCC細胞中引起細胞凋亡;在動物實驗中也發現能夠抑制細胞生長與血管新生作用。在本篇論文的第三部分我們利用一個新穎的HDAC inhibitor-MPT0E028合併使用sorafenib,探討其在HCC的抗癌效果。實驗結果發現subG1-phase、nucleosome fragmentation、caspase 3 activation與PARP cleavage都有增加的現象,顯示兩者併用能夠增加細胞凋亡的現象。此外,我們也利用microarray來尋找受到藥物影響的基因,並且進行訊息傳導路徑的分析。在Hep 3B xenograft的動物實驗也發現兩者併用對於tumor growth delay有明顯的幫助。綜合以上發現,我們發現MPT0E028與sorafenib合併使用的確在HCC中有協同效果,值得進一步探討其抑制細胞生長的相關機轉。
zh_TW
dc.description.abstractCancer is the leading cause of death in economically developed countries and the second leading cause of death in developing countries. Since 1982, cancer remains the top cause of death in Taiwan. Hence, cancer is undoubtedly the most life-threatening disease in the world and there is an urgeny to resolve the problem. In the first two parts of this thesis, we used prostate cancer cell lines as materials to investigate the mechanism of energy-restricted mimetic agents (ERMAs)- and protopine-induced apoptotic cell death. In the third part, we examined the synergistic effect of the targeted-therapy agent (sorafenib) and HDAC inhibitor (MPT0E028) in hepatocellular carcinoma (HCC).
In the first part of this thesis, we investigated the underlying mechanisms of ERMA-induced apoptosis in LNCaP prostate cancer cells. By using a novel thiazolidinedione-derived ERMA, CG-12, 2-deoxyglucose (2-DG) and glucose starvation, we obtained the evidence that the tumor suppressor gene Kruppel-like factor 6 (KLF6) was elevated by epigenetic activation and shRNA-mediated KLF6 knockdown abrogated the ability of CG-12-induced apoptosis. Chromatin immunoprecipitation analysis indicated that this KLF6 transcriptional activation was associated with increased histone H3 acetylation and histone H3 lysine 4 trimethylation occupancy at the promoter region. Several lines of evidence demonstrate that the enhancing effect of ERMA on these active histone marks was mediated through transcriptional repression of histone deacetylases and H3 lysine 4 demethylases by down-regulating Sp1 expression. Together, these findings underscore the intricate relationship between energy restriction and epigenetic regulation of tumor suppressor gene expression, which has therapeutic relevance to foster novel strategies for prostate cancer therapy.
Microtubule-targeting agents (MTAs) such as docetaxel, which is approved for treatment of metastatic castration-resistant prostate cancer, are important anti-cancer drugs. However, the development of drug resistance limited their extensive usefulness and there has been an impetus to develop novel agents to benefit patients with drug-resistant tumors. In the second part of this thesis, we identified that protopine exhibited an antiproliferative effect, causing cell-cycle arrest at the G2/M phase and leading to robust apoptosis in hormone refractory prostate cancer (HRPC) cells. From the in vitro tubulin polymerization assay and in situ labeling of β-tubulin in drug-treated cells, our data suggest that protopine is a novel microtubule-stabilizing agent. The data suggest that protopine increased the activity of cyclin-dependent kinase 1 (Cdk1)/cyclin B1 complex and that contributed to cell apoptosis by modulating mitochondria-mediated signaling pathways, such as Bcl-2 phosphorylation and Mcl-1 down-regulation. These findings underscore the novel effect of protopine as a microtubule-stabilizing agent with poor susceptibility to P-glycoprotein and simpler structure, which may foster novel strategies for prostate cancer therapy.
Sorafenib is an orally active multiple tyrosine kinase inhibitor (TKI) approved for the treatment of advanced renal cell carcinoma (RCC) and hepatocellular carcinoma (HCC). It has been reported that histone deacetylase (HDAC) inhibitors, such as trichostatin A, SAHA and MS-275, have been shown to induce apoptosis in HCC cells and to inhibit growth of HCC by inhibiting proliferation and tumor-related angiogenesis in vivo. In the third part of this thesis, we examined the synergistic effect by the combination of a novel HDAC inhibitor MPT0E028 with sorafenib in HCC. We observed the induction of sub-G1 phase of HCC cells, nucleosome fragmentation, caspase-3 activation as well as poly (ADP-ribose) polymerase cleavage, indicating there is an increased apoptotic cell death. Moreover, we also evaluated the genes affected by drug combination through microarray and pathway analysis. In the Hep 3B xenograft model, we found that drug combination significantly delayed the tumor growth rate. Base on these findings, we demonstrated a synergistic effect of MPT0E028 in combination with sorafenib in HCC and it is worthy of further investigating the underlying mechanism of this anti-cancer effect.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:20:22Z (GMT). No. of bitstreams: 1
ntu-101-F94443007-1.pdf: 34464987 bytes, checksum: 1948e6314c021517e4e5ed9cfedf516d (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents縮寫表................................................................................................................................i
中文摘要...........................................................................................................................1
英文摘要...........................................................................................................................3
第一章
第一節 研究動機與目的..........................................................................................5
第二節 文獻回顧......................................................................................................7
第二章 實驗材料與方法
第一節 實驗材料....................................................................................................46
第二節 實驗方法....................................................................................................48
第三章 ERMA在前列腺癌細胞中引起細胞凋亡之機轉探討
中文摘要.................................................................................................................55
英文摘要.................................................................................................................56
第一節 緒論............................................................................................................57
第二節 結果............................................................................................................58
第三節 討論............................................................................................................61
第四章 Protopine在前列腺癌細胞中引起細胞凋亡之機轉探討
中文摘要.................................................................................................................72
英文摘要.................................................................................................................73
第一節 緒論............................................................................................................74
第二節 結果............................................................................................................75
第三節 討論............................................................................................................78
第五章 利用in vitro與in vivo的方式探討sorafenib與新穎的HDAC inhibitor MPT0E028合併使用對於肝癌細胞的抑制能力
中文摘要.................................................................................................................92
英文摘要.................................................................................................................93
第一節 緒論............................................................................................................94
第二節 結果............................................................................................................95
第三節 討論............................................................................................................98
第六章 總結與展望......................................................................................................115
著作...............................................................................................................................118
參考文獻.......................................................................................................................119
dc.language.isozh-TW
dc.subject標靶治療zh_TW
dc.subject前列腺癌zh_TW
dc.subject能量限制zh_TW
dc.subject微管zh_TW
dc.subject肝癌zh_TW
dc.subjectmicrotubuleen
dc.subjectenergy restrictionen
dc.subjectprostate canceren
dc.subjecttargeted therapyen
dc.subjecthepatocellular carcinomaen
dc.titleERMAs與protopine在癌細胞中引起細胞凋亡之機轉探討以及sorafenib與MPT0E028併用之抗癌效果zh_TW
dc.titleAction mechanisms of ERMAs- and protopine-induced apoptosis and the antitumor activity of sorafenib-MPT0E028 combination in human cancer cells.en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree博士
dc.contributor.coadvisor陳慶士(Ching-Shih Chen),潘秀玲(Shiow-Lin Pan)
dc.contributor.oralexamcommittee顏茂雄(Mao-Hsiung Yen),楊春茂(Chuen-Mao Yang),黃德富(Tur-Fu Huang),顧記華(Jih-Hwa Guh)
dc.subject.keyword前列腺癌,能量限制,微管,肝癌,標靶治療,zh_TW
dc.subject.keywordprostate cancer,energy restriction,microtubule,hepatocellular carcinoma,targeted therapy,en
dc.relation.page125
dc.rights.note未授權
dc.date.accepted2012-01-10
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
33.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved