Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16488
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊達
dc.contributor.authorChen-Chu Luen
dc.contributor.author呂承祖zh_TW
dc.date.accessioned2021-06-07T18:17:13Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-09
dc.identifier.citationCAS協會. 2008. CAS台灣優良農產品專刊. 行政院農業委員會. 台北. 268pp.
王健一、王自存. 1988. 大氣成分對園產品生理與生化之影響. 臺灣園藝 34: 220-248.
王憶鎧. 2005b. 截切蔬菜之處理技術及產業之應用. 園產品採後處理技術之研究與應用研討會專刊 p. 120-130.
石正中. 1999. 抗壞血酸處理對楊桃(Averrhoa carambola, L.)多酚氧化酵素活性之影響. 宜蘭技術學報 3:43-47.
行政院農業委員會農糧署. 2008. 民國96年農業統計年報.
行政院衛生署. 生食用食品類衛生標準. <http://www.doh.gov.tw>
呂美玲. 2009. 抗褐變劑對生鮮截切蘋果及蓮霧之微生物品質及色澤之影響. 國立中興大學食品暨應用生物科技學系碩士論文.
吳碧鏗. 1999. 輕度加工蔬果之保鮮-以安全性為重點. 食品工業 31(5):32-42
吳永志. 2001. 水溶性幾丁聚醣衍生物的合成及其水膠的製備. 國立清華大學化學工程研究所碩士論文.
林耕年. 1980. 應用食品化學. 復文書局 p.119.
林秀雄. 1993. 臺灣楊桃產業調查報告 臺灣省政府農林廳編印.
林文源. 1995. 幾丁聚醣抗菌作用的研究. 國立臺灣大學食品科技研究所博士論文. 202pp.
林美芸. 1996. 幾丁質與幾丁聚醣之食用安全性及幾丁聚醣對銅在大白鼠毒作用之影響. 國立海洋大學水產食品科學研究所碩士論文.
林曉榆. 2005. 幾丁聚醣處理對輕度加工番石榴楔形切塊儲架品質影響之研究. 國立臺灣大學園藝學研究所碩士論文. 87pp.
陳如茵、蔡美珠、錢明賽. 1993. 一些調理蔬果之處理與儲存. 中國園藝 39:167-175.
陳如茵. 1997. 截切蔬果之保存. 食品工業 30:13-17.
曾國良. 1994. 前處理與調氣包裝對冷藏切片楊桃及鳳梨品質的影響. 輔仁大學食品營養學系碩士論文. 127pp.
曾威博. 2010. 廣東桑果實採後生理及處理技術之研究. 國立臺灣大學園藝學研究所碩士論文. p.32-48
黃碧海. 1995. 楊桃栽培現況與未來展望. 農藥世界 144:8-13.
黃文玲. 1997. 楊桃果實褐化潛勢與多酚氧化酵素活性、過氧化酵素活性、酚類化合物濃度及可溶性蛋白質濃度之關係. 國立中興大學園藝學系碩士論文. 64pp.
黃錦城. 2005. 截切蔬果之趨勢與關鍵性技術. 食品工業 37:1-4.
劉富文. 1995. 園產品採後處理及貯藏技術. 台灣省青果合作社
劉碧鵑. 2005. 楊桃. p.149-154. In: 台灣農家要覽增訂(三版)–農作二. 行政院農委會. 臺北. 926pp.
楊芮. 2009. 幾丁聚醣被膜對截切楊桃生理及櫥架品質之影響. 國立臺灣大學園藝學研究所碩士論文. p.46-57.
錢明賽. 1989. 半加工處理之蔬果及水果. 食品工業 21(11):18-23.
謝宗其. 2000. 幾丁聚醣的製備及應用於輕度加工胡蘿蔔保鮮之研究. 私立東海大學食品科學研究所碩士論文.
謝欣彣. 2004. 幾丁聚醣膜之透氣性與對香蕉果實後熟之影響. 國立臺灣大學園藝學研究所碩士論文. 98pp.
鐘穎建. 1993. 幾丁聚醣在草莓保鮮之應用. 國立臺灣大學食品科技研究所碩士論文. 107pp.
Abadias, M.,J. Usall., M. Anguera., C. Solsona and I. Vinas. 2008. Microbiological quality of fresh, minimally-processsed fruit and vegetables, and sprouts from retail establishments. Int. J. Food Microbiol. 123: 121-129.
Alandes, L., A. Quiles, I. Perez-Munuera, I. Hernando. 2009. Improving the quality of fresh-cut apples, pears, and melons using natural additives. J. Food. Sci. 74: 90-96.
Adnan, T. A. B. T., M. A. Augustin, and H. M. Ghazali. 1986. Polyphenoloxidase from starfruit (Averrhoa carambola, L.) Pertanika 9:219-224.
Almenar, E., P. Hernandez-Munoz, J.M. Lagaron, R. Catala, and R. Gavara. 2006. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). Journal of Agricultural and Food Chemistry 54: 86-91.
Afshari-Jouybari, H., F. Asgar. 2011. Evaluation of Photoshop software potential for food colorimetry. J. Food. Eng. 106:170-175.
Baldwin, E. A. 1994. Edible coatings for fresh fruits and vegetables: past, present, and future, p. 25-64. In: Krochta, J. M., E. A. Baldwin, and M. O. Nisperos-Carriedo (eds.). Edible coatings and films to improve food quality. Technomic. USA. 379pp.
Baldwin, E. A., M. O. Nisperos-Carriedo, and R. A. Baker. 1995. Use of edible coatings to preserve quality of lightly (and slightly) processed products. Crit. Rev. Food Sci. Nutri. 35:509-524.
Baldwin, E. A., M. O. Nisperos-Carriedo, X. Chen, and R. D. Hagenmaier. 1996. Improving storage life of cut apple and potato with edible coating. Postharvest Biol. Technol. 9:151-163.
Barry-Ryan, C. and D. O’Beirne. 2000. Effects of peeling methods on the quality of ready-to-use carrots slices. Internat. J. Food Sci. Technol. 35:243-254.
Bauernfeind, J. C. 1982. Ascorbic acid technology in agricultural, pharmaceutical, food, and industrial applications, p. 395-497. In: Seib, P.A. and B. M. Tolbert (eds.). Ascorbic acid: chemistry, metabolism and uses. American Chemical Society. Washington, DC. 604pp.
Beaudry, R. M. 1999. Effect of O2 and CO2 partial pressure on selected phenomena affecting fruit and vegetable quality. Postharvest Biol. Technol. 15: 293-303.
Ben-Yehoshua, S., R. M. Beaudry, S. Fishman, S. Jayanty, and N. Mir. 2005. Modified
atmosphere packaging and control atmosphere storage, p. 61-112. In: Ben-Yehoshua, S. (ed.). Environmentally friendly technologies for agricultural produce quality. CRC Press, Boca Raton.
Beuchat, L. R. 1995. Pathogenic microorganisms associated with fresh produce. J. Food Prot. 59: 204-216.
Billaud C., S. Brun-Merimee, L. Louarme, J. Nicolas. 2004. Effect of glutathione and Maillard reaction products prepared from glucose or fructose with glutathione on polyphenoloxidase from apple-I: Enzymatic browning and enzyme activity inhibition. Food Chem 84:223–33.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Brecht, J. K. 1995. Physiology of lightly processed fruits and vegetables. HortScience 30:18-22.
Brecht, J. K., M. E. Saltveit, S. T. Talcott, K. R. Schneider, K. Felkey, and J.A. Bartz. 2004. Fresh-cut vegetables and fruits. Hortic. Rev. 30:185-251.
Breidt, F. and H. P. Fleming. 1997. Using lactic acid bacteria to improve the safety of minimally processed fruits and vegetables. Food Technol. 51:44-46.
Brown, W. 1922. On the germination and growth of fungi at various temperatures and in various concentrations of oxygen and of carbon dioxide. Ann. Bot. 36: 257-283.
Cantwell, M. I. and T. V. Suslow. 2002. Postharvest handling systems: fresh-cut fruits and vegetables, p. 445-463. In: Kader, A.A. (ed.). Postharvest technology of horticultural crops. 3rd ed. University of California Agriculture and Natural Resources. Publication 3311. USA. 535pp.
Chien, P. J., F. Sheu, and F. H. Yang. 2007a. Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J. Food Eng. 78:225-229.
Chien, P. J., F. Sheu, and H. R. Lin. 2007b. Quality assessment of low molecular weight chitosan coating on sliced red pitayas. J. Food Eng. 79:736-740.
Daniels, J. A., R. Krishnamurthi, and S. S. H. Rizvi. 1985. A review of effects of carbon-dioxide on microbial-growth and food quality. J. Food Prot. 48: 532-537.
Devlieghere, F., A. Vermeulen, and J. Debevere. 2004. Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol. 21:703-714.
Ding, P., S. H. Ahmad, and H. M. Ghazali. 2007. Changes in selected quality characteristics of minimally processed carambola (Averrhoa carambola L.) when treated with ascorbic acid. J. Sci. Food Agric. 87:702-709.
Domard, A. and M. Domard. 2002. Chitosan: structure-properties relationship and biomedical applications, p. 187-212. In: Dumitriu, S. (ed.). Polymeric biomaterials. 2nd ed. Marcel Dekker. New York. 1168pp.
Donhowe, I. G. and O. Fennema. 1994. Edible films amd coatings: characteristics, formation, definitions, and testing methods, p. 1-24. In: Krochta, J.M., E.A. Baldwin, and M.O. Nisperos-Carriedo (eds.). Edible coatings and films to improve food quality. Technomic. USA. 379pp.
Durango, A. M., N. F. F. Soares, and N.J. Andrade. 2006. Microbiologic evaluation of an edible antimicrobial coating on minimally processed carrots. Food Control 17:336-341.
Dziezak, J. D. 1986. Preservative systemin foods, antioxidants and antimicrobial agents. Food Technol. 40:94-136.
Farber, J. M. 1991. Relative effect of CO2 on the growth of food-borne microorganisms. J. Food Protec. 54:58-70.
Filar, L. J., M. G. Wirick. 1978. Bulk and solution properties of chitosan. In: Muzzarelli, R. A. A., E. R. Pariser (eds). Chitin enzymology: Proceedings of the 1st international conference on chitin/chitosan. 1st ed. London: Atec. p. 169-215.
Flath, R. A., D. R. Black., D. G. Guadagni., W. H. McFadden and T. H. Schultz. 1967: Identification and organoleptic evaluation of compounds in Deli- cious apple essence. Journal of Agricultural Food Chemistry 15: 29-35.
Garcia, E. and D. M. Barrett. 2002. Preservative treatments for fresh-cut fruits and vegetables, p. 267-303. In: Lamikanra, O. (eds). Fresh-cut fruits and vegetables. CRC Press. Florida. 467pp.
Garcia-Gimeno, R. M., C. Sanz-Martinez, J. M. Garcia-Martos, and G. Zurera-Cosano. 2002. Modeling Botrytis cinerea spores growth in carbon dioxide enriched atmospheres. J. Food Sci. 67:1904-1907.
Gennadios, A., C.L. Weller, and C. H. Gooding. 1994a. Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. J. Food Eng. 21:395-409.
Gontard, N., R. Thibault, B. Cuq, and S. Guilbert. 1996. Influence of relative humidity and film composition on oxygen and carbon dioxide permeabilities of edible films. J. Agric. Food Chem. 44:1064-1069.
Gunes, G., J. H. Hotchkiss, and C. B. Watkins. 2001. Effects of gamma irradiation on the texture of minimally processed apple slices. J. Food Sci. 66:63-67.
Grierson,W. and H. M. Vines. 1965. Carambolas for potential use in gift fruit shipments. Proc. Fla. State Hort. Soc. 78:349-353.
Hagenmaier, R. D. and P. E. Shaw. 1991. Permeability of shellac coatings to gases and water vapor. J. Agric. Food Chem. 39:825-829.
Hagenmaier, R. D. and R. A. Baker. 1997. Low-dose irradiation of cut Iceberg lettuce in modified atmosphere packaging. J. Agric. Food Chem. 45:2864-2868.
Hadwiger, L. A., D. F. Kendra, B. W. Fristensky, W. Wagoner. 1986. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In: Muzzarelli, R., C. Jeunaux, G.W. Gooday (eds). Chitin in nature and technology. 3rd ed. New York and London: Plenum. p. 209-221.
Hernandez, E. 1994. Edible coatings from lipids and resins, p. 279-303. In: Krochta, J. M., E. A. Baldwin, and M. O. Nisperos-Carriedo (eds.). Edible coatings and films to improve food quality. Technomic. USA. 379pp.
Hirano, S., C. Itakura, H. Seino, Y. Akiyama, I. Nonaka, N. Kanbara, and T. Kawakami. 1990. Chitosan as an ingredient for domestic animal feeds. J. Agric. Food Chem. 38:1214-1217.
Hoogerwerf, S. W., E. P. W. Kets, and J. Dijksterhuis. 2002. High-oxygen and high-carbon dioxide containing atmospheres inhibit growth of food associated moulds. Microbiol. 35: 419-422.
Huxsoll, C. C., H. R. Bolin. 1989. Processing and distribution alternatives for minimally processed fruits and vegetables. Food Technol. 40:117-121.
Iyidogan N. F. and Bayindirli A. 2004. Effect of L-cysteine, kojic acid and 4-hexylresorcinol combination on inhibition of enzymatic browning in Amasya apple juice. J. Food Eng. 62:299-304.
Kader, A. A. 2002. Modified atmospheres during transport and storage. p. 135-144. In: A.A. Kader (eds). Postharvest technologe of horticultural crops. University of California, Division of Agriculture & Natural Resources, Oakland, Califonia.
Kays, S. J. and R. E. Paull. 2004. Postharvest Biology. Exon Press, Athens, Georgia.
Kahn, V. 1985. Effects of proteins, protein hydrolyzates, and amino acids on O-dihydroxyphenolase activity of polyphenol oxidase of mushroom, avocado and banana. J. Food Sci. 50:111-115.
King, A.D. and H.R. Bolin. 1989. Physiological and microbiological storage stability of minimally processed fruits and vegetables. J. Food Technol. 43:132-135, 139.
Knorr, D. 1984. Use of chitinous polymers in food. Food Technol. 38:85-97.
Koide, S. S. 1998. Chitin-chitosan:properties,benefits and risks. Nutrition Research 18: 1091-1101.
Langdon, T. T. 1987. Preventing of browning in fresh prepared potatoes without the use of sulfating agents. Food Technol. 41: 64-67.
Lee, C. Y. and N. L. Smith. 1979. Blanching effect on polyphenol oxidase activity in table beets. J. Food Sci. 44:82-83, 86.
Leistner, L., W. Rodel. 1976. The stability of intermediate moisture foods with respect to microorganism. Applied Sci. p. 120-130.
Leube, J. L., P. Stossel. 1986. Chitosan and other polyamines: antifungal activity and interaction with biology membrances. In: Muzzarelli, R., C. Jeuniaux, G.W. Gooday (eds). Chitin in Nature and Technology. 3rd ed. New York and London: Plenum. p. 74-85.
Lowenadler, J. 1994. Modified atmosphere packaging, carbon dioxide, its interactions with micro-organisms and application as a food preservative: a review, SIK Report No. 603, The Swedish Institute for Food Research, Goteborg. Sweden.
Matthews, R. F. and P. O. Myers. 1995. Effect of antioxidants on browning of refrigerated carambola slices. Proc. Fla. State Hort. Soc. 108:316-320.
Ma, S. J., J. L. Silva, J. O. Hearnsberger, and J. O. Garner. 1992. Prevention of enzymatic darkening in frozen sweet potatoes (Ipomoea batatas L. Lam.) by water blanching: Relationship among darkening, phenols, and polyphenol oxidase activity. J. Agric. Food Chem. 40:864-867.
Muccdy, J. D. 1992. FDA and the use of chitin and chitosan derivatives. In: Charles, J. B., P. Sandford and J. P. Zikakis (eds). Advances in Chin and Chitosan. London and New York: Elseviser Appliced Science. p. 695-736.
Muzzerelli, R. A. 1985. Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrometry. Carbohydr. Polymers 5:461-467.
Nguyen-The, C. and F. Carlin. 1994. The microbiology of minimally process fresh fruit and vegetables. Crit. Rev. Food Sci. Nutr. 34:371-401.
Nicoli, M. C., Anese, M., & Severini, C. 1994. Combined effects in preventing enzymatic browning reactions in minimally processed fruit. J. Food Quality 17: 221-229.
Nisperos-Carriedo, M. O. 1994. Edible coatings and films based on polysaccharides, p. 305-335. In: Krochta, J.M., E.A. Baldwin, and M.O. Nisperos-Carriedo (eds.). Edible coatings and films to improve food quality. Technomic. USA. 379pp.
O’Hare, T. J. 1997. Carambola, p. 295-307. In : Mitra, S.K. (ed.). Postharvest physiology and storage of tropical and subtropical fruits. CAB Intl. Wallingford UK. 423pp.
Olivas, G. I. and G. V. Barbosa-Canovas. 2005. Edible coatings for fresh-cut fruits. Crit. Rev. Food Sci. Nutri. 45:657-670.
Oslund, C. R. and T. L. Davenport. 1983. Ethylene and carbon dioxide in ripening fruit of Averrhoa carambola. HortScience 18:229-230.
Pen, L. T. and Y. M. Jiang. 2003. Effects of chitosan coating on shelf life and quality of fresh-cut Chinese water chestnut. Lebensm.-Wiss. U.-Technol. 36:359-364.
Perez-Gago, M. B., M. Serra, and M. A. del Rio. 2006. Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biol. Technol. 39:84-92.
Perez-Gago, M. B., M. A. del Rio, and M. Serra. 2005. Effect of whey protein-beeswax edible composite coating on color change of fresh-cut persimmons cv. ‘Rojo Brillante’. Acta Hort. 682:1917-1923.
Pierpoint, W. S. 1966. The enzymatic oxidation of chlorogenic acid and some reactions of the quinone produced. Biochem. J. 98: 567-580
Pizzocaro, F., D. Torreggiani, and G. Gilardi. 1993. Inhibition of apple polyphenoloxidase (PPO) by ascorbic acid, citric acid and sodium chloride. J. Food Process. Preserv. 17:21-30.
Prange, R. K., S. K. Asiedu, J. R. Deell, and A. R. Westgarth. 1995. Quality of fundy and blomidon lowbush blueberries - effects of storage atmosphere, duration and fungal inoculation. C. J. Plant Sci. 75: 479-483.
Ponting, J.D., R. Jackson, G. Watters. 1972. Refrigerated apple slices: preservative effect of ascorbic acid, calcium and sulfites. J. Food Sci. 51:41-47.
Rabea, E. I., M.E.-T. Badawy, C. V. Stevens, G. Smagghe, and W. Steurbaut. 2003. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457-1465.
Ray, B. 2004. Fundamental food microbiology. 3rd ed. CRC press. Florida. 608pp.
Richard-Forget, F. M., Goupy, P. M. and Nicolas, J. J. 1992. Cysteine as an inhibitor of enzymatic browning. Kinetic studies. J. Agric. Food Chem. 40: 2108- 2113.
Rojas-Grau, M. A., O. Gemma., S. Robert. and O. Martin-Belloso. 2009. The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables. Int. J. Plant. Sci. Tech. 44: 875-889.
Sandford, P. A., G. Skjak-Braek and T. Anthousen. 1989. Chitosan: commercial uses and potential pplications. In Chitin and Chitosan. pp.51-69.
Sandhya, S. 2010. Modified atmosphere packaging of fresh produce:Current status and future needs. Food Sci.Technol. 43: 381-392.
Santerre, C. R., J. N. Cash, and D. J. Vannorman. 1988. Ascorbic acid/citric acid combinations in the processing of frozen apple slices. J. Food Sci. 53:1713-1716, 1736.
Scott, V. N. 1989. Interaction of factors to control microbial spoilage of refrigerated foods. Journal of Food Protection 52: 431-435.
Sitton, J. W.and M. E. Patterson. 1992. Effect of high-carbon dioxide and low-oxygen controlled atmospheres on postharvest decays of apples. Plant Dis. 76: 992-995.
Sjodin, K., E. Nilsson, A. Hallberg, and A. Tunek. 1989. Metabolism of N-acetyl-l-cysteine. Some structural requirements for the deacetylation and consequences for the oral bioavailability. Biochem. Pharmacol. 38:3981–3985.
Smith, R. B. 1992. Controlled-atmosphere storage of redcoat strawberry fruit. J. A. Soci. Hort. Sci. 117: 260-264.
Singh, S. P., V. Chonhenchob., Y. Chantarasomboon and J. Singh. 2007. Testing and evaluation of quality changes of treated fresh-cut tropical fruits packaged in thermoformed plastic containers. J. Test. Eval. 35: 522–528.
Son S., K. Moon, C. Lee. 2001. Inhibitory effects of various antibrowning agents on apple slices. Food Chem. 73:23–30.
Taniwaki, M. H., A. D. Hocking, J. I. Pitt, and G. H. Fleet. 2009. Growth and mycotoxin production by food spoilage fungi under high carbon dioxide and low oxygen atmospheres. Int. J. Food. Microbiol. 132:100-108.
Teixeira, G. H. A., J. F. Durigan, R. E. Alves, and T. J. O’Hare. 2010. Used of modified atmosphere to extend shelf life of fresh-cut carambola (Averrhoa carambola L. cv. Fwang Tung) Acta Hort. 864:329-336.
Teixeira, G. H. A., J. F. Durigan, R. E. Alves, and T. J. O’Hare. 2008. Response of minimally processed carambola to chemical treatments and low-oxygen atmospheres. Postharvest Biol. Technol. 48: 415-421.
Teixeira, G. H. A., J.F. Durigan, R. E. Alves, and T.J. O’Hare. 2007. Use of modified atmosphere to extend shelf life of fresh-cut carambola (Averrhoa carambola L. cv. Fwang Tung). Postharvest Biol. Technol. 44:80-85.
Teixeira, G. H. A., J. F. Durigan, R. E. Alves, and T. J. O’Hare. 2005. Use of carambola (Averrhoa carambola L. ‘Fwang Tung’) fruit at two stages of maturity for fresh-cut products. Acta Hort. 682:1901-1907.
Teranishi, R., R. G. Buttery and N. Schamp. 1987. The significance of low threshold odor compounds in aroma research. In: Martens, M.; Dalen, G. A.; Russwurm, H. ed. Flavour science and technol-ogy. pp. 515-527.
Toivonen, P. M. A. and D. A. Brummell. 2008. Biochemical bases of appearance and texture changes in fresh-cut fruit and vegetables. Postharvest Biol. Technol. 48:1-14.
Toivonen, P. M. A. and J. R. DeEll. 2002. Physiology of fresh-cut fruits and vegetables, p. 91-123. In: Lamikanra, O. (ed.). Fresh-cut fruits and vegetables. CRC Press. Florida. 467pp.
Vargas, M., C. Pastor, A. Chitalt, D. J. McClements, and C. Gonzalez-Martinez. 2008. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. Nutri. 48:496-511.
Vojdani, F. and A. Torres. 1990. Potassium sorbate permeability of methylcellulose and hydroxypropyl methylcellulose coatings: effects of fatty acids. J. Food Sci. 55:841-846.
Walsh, F. C., T. R. Ralph, M. L. Hitchman, J. P. Millington. 1994. The review of L-cystine and L-cysteine. J. Elec. Chem. 375:1-15.
Watada, A. E., K. Abe and N. Yamuchi. 1990. Physiological activities of partially processed fruits and vegetables. Food Technol. 44:116, 118, 120-122.
Watada, A. E., N. P. Ko, and D. A. Minott. 1996. Factors affecting quality of fresh-cut
horticultural products. Postharvest Biol. Technol. 9:115-125.
Weller, A., C. A. Sims, R. F. Matthews, R. P. Bates, and J.K. Brecht. 1997. Browning susceptibility and changes in composition during storage of carambola slices. J. Food Sci. 62:256-260.
Weller, A., R. P. Bates, R.F. Matthews, C. A. Sims, and J. K. Brecht. 1995. Evaluation of carambola cultivars for the lightly processed marked. Proc. Florida Sta. Hort. Soc. 108:320–324.
Whistler, R. L. and J. R. Daniel. 1990. Functions of polysaccharides in foods, p. 395-424. In: Branen, A.L., P.M. Davidson, and S. Salminen (eds.). Food additives. Marcel Dekker. New York. 736pp.
Whitaker, J. R. and Lee, C. Y. 1995. Recent advances in chemistry of enzymatic browning. p.2-7 In: Lee, C. Y. and Whitaker, J. R. (eds.). Enzymatic browning and its prevention. ACS Symposium Series 600, Washington, DC, American Chemical Society.
Willats, W. G., L. McCartney., W. Mackie and J. P. Knox. 2001. Pectin: cell biology and prospects for functional analysis. Plant Mol. Biol. 47: 9–27.
Wong, D. W. S., S. J. Tillin, J.S. Hudson, and A.E. Pavlath. 1994. Gas exchange in cut apples with bilayer coatings. J. Agric. Food Chem. 42:2278-2285.
Zakaria, M. B., W. M. W. Muda and M. P. Abdullah 1995. Chitin and Chitosan the versatile environmentally friendly modern materials. Penerbit University Kebansaan, Malagsia.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16488-
dc.description.abstract楊桃(Averrhoa carambola L.)為酢醬草科(Oxalidaceae)五斂子屬多年生常綠性大灌木,在臺灣主要作為鮮食甜點消費,果實橫切面呈星形,適合作為水果盤、沙拉、盤飾,具有發展為截切產品潛力。由於楊桃截切後外果皮邊緣褐變相當快速,僅需2小時便能觀察到褐化現象,是影響楊桃品質劣變的主要問題。此外,截切楊桃組織受傷面積增加、組織液滲漏,導致微生物滋長,影響食品安全與櫥架壽命。目前國內關於截切楊桃產品保鮮技術的資料並不多,因此本論文試驗目的在探討抗褐化劑與改變大氣組成處理技術應用在截切甜味種楊桃產品保鮮及延長櫥架壽命的效益。
本試驗針對含SH基之抗氧化劑N-乙醯-L-半胱胺酸(N-acetyl-l-cysteine;NAC)、L-半胱胺酸(L-cysteine;Cys)與L-半胱胺酸鹽酸鹽(L-cysteine hydrochloride;CysH)應用於抑制截切‘紅龍’楊桃褐變之可能性與使用浸漬濃度,並添加到幾丁聚醣可食性被膜觀察其抑制褐化之相容性及對楊桃切片品質之影響。對照組截切‘紅龍’楊桃外果皮切邊L*值於5℃貯藏2天便明顯降低褐變。貯前以0.5% NAC溶液浸泡處理1分鐘之樣品能有效抑制切邊褐化至少達10天,其外果皮切邊L*值維持在50.6,與截切當日沒有明顯差異;再提高NAC濃度並無法增進抑制褐化效果。而CysH浸泡處理濃度0.7%以上對截切‘紅龍’楊桃L*值即具有顯著褐變抑制效果,其切邊L*值於貯藏第10天維持在57.9,且與截切當日L*值62.5無顯著差異。
楊桃切片貯藏於5℃ O2濃度5%以下氣調處理組後皆具抑制嗜溫好氧菌生長效果,貯藏第8日總生菌數便顯著低於對照組;至第10日O2濃度5%以下處理約在3.46~3.62 log CFU g-1,與對照組4.29 log CFU g-1差異明顯。黴菌及酵母菌之菌數各組間並無顯著差異存在,貯藏後第10日之黴菌及酵母菌含量約在5.03~5.11 log CFU g-1之間,超出法令安全標準而喪失商品價值。顯示真菌是楊桃切片汙染主要的微生物,0.5~12.9%O2濃度並不會對黴菌及酵母菌生長造成顯著抑制效果。
為釐清CO2於抑菌方面的效果,本試驗以O2濃度2%結合不同濃度的CO2進行調查,而黴菌及酵母菌菌數結果顯示,CO2濃度5%以上處理於5℃貯藏8日菌數約在4.05~4.23 log CFU g-1之間,與空氣處理組、2%O2+0%CO2處理組之4.47~4.62 log CFU g-1具有顯著性差異,2%O2+5%CO2處理於貯藏後16日由於生菌數5.08 log CFU g-1,櫥架壽命結束;2%O2+10%CO2、2%O2+15%CO2、2%O2+20% CO2處理則分別於貯藏後18、20日由於生菌數超標失去商品價值,而CO215%與20%間差異不顯著,且不會影響品質。15%以上CO2氣調處理貯後第2日便有顯著乙醛生成,其值3.75~5.21 μL L-1,與空氣處理組之值0.11 μL L-1有顯著差異;貯藏第8日2%O2+20%CO2處理乙醛生成更顯著高於2%O2+15%CO2組。而CO2高於5%處理組貯藏2日乙醇含量便高於空氣處理組,乙醇累積量與氣調環境CO2濃度成正比。由於2% O2 +15% CO2與2%O2 +20%CO2抑菌效果類似,且明顯優於其他處理組,而前者誘導乙醇及乙醛累積情況較後者輕微,因此判定2%O2+15%CO2為本試驗截切‘紅龍’楊桃最佳氣調貯藏條件。
以厚度100 μm低密度聚乙烯(LDPE)、700 μm聚丙烯(PP)袋分別盛裝150 g、300 g‘紅龍’楊桃切片,進行被動(passive)或主動(active)氣變包裝在5℃進行調查。被動包裝無論盛裝150 g或是300 g楊桃切片,因包裝內達到穩定氣體環境之速率較慢,無法達到O2 2 % + CO2 15%氣體組成,導致楊桃切片暴露於不適當的高O2濃度(>2%)/低CO2濃度(<15%)環境較久,無法發揮抑菌效果;主動包裝中盛裝150 g的楊桃切片,無論LDPE或PP袋皆無法維持理想的氣體環境,而盛裝300 g的LDPE、PP袋內平均氣體濃度分別為3.53%O2 + 12.67%CO2 與5.11%O2 + 13.97%CO2,皆可延長截切楊桃壽命由8日至14日,兩組於抑菌效果、乙醛及乙醇生成皆無顯著差異,故選用較接近目標氣體濃度之LDPE袋與CysH結合,觀察是否具有同時抑菌及抑制褐化發生之效果。
截切‘紅龍’ 與‘馬來西亞8號’楊桃貯前浸泡1% CysH溶液1分鐘,以厚度100 μm LDPE袋進行O2 2% + CO2 15%主動氣變包裝處理,在5℃評估櫥架壽命。兩品種楊桃切片外果皮切邊L*值在整個貯藏期間並無顯著下降,維持在60左右,於貯藏2日起便與對照組出現顯著差異。抑制微生物生長方面,於‘紅龍’與‘馬來西亞8號’皆由於經主動氣變包裝處理,而延長櫥架壽命,主動氣變包裝使‘紅龍’楊桃黴菌及酵母菌數超出5 log CFU•g-1法訂標準日期由10日延長至16日;‘馬來西亞8號’楊桃則由8日延長至12日。CysH貯前浸泡處理加上O2 2% + CO2 15%主動氣變包裝技術,可同步解決褐變及微生物滋長兩大楊桃切片劣變問題,值得截切楊桃保鮮處理作業之參考。
zh_TW
dc.description.abstractThe carambola (Averrhoa carambola L.) is a large evergreen shrub belonging to Oxalidaceae. In Taiwan the fruit is primarily marketed for fresh consumption and has great potential as a fresh-cut produce. Tissue discoloration is the most important factor in the deterioration of fresh-cut starfruit. Browning of the cut surface around the exocarp occurs rapidly and is evident as early as 2 h after cutting. Sap released from the cut surface also renders the produce susceptible to microbial contamination, thus raising concerns about food safety and affecting its shelf life. Little information is currently available about the postharvest technology of fresh-cut starfruit. This thesis devotes to investigations on the use of anti-browning agent and atmosphere modification for prolonging the shelf-life of fresh-cut sweet cultivar of starfruit.
The feasibility of using anti-browning agents containing SH functional group, namely N-acetyl-l-cysteine (NAC), L-cysteine (Cys), and L-cysteine hydrochloride (CysH) to inhibit browning in fresh-cut ‘Hong Long’ starfruit was studied. Experiments were conducted to investigate the effective concentrations of these agents for use in immersion treatments, as well as the effect of incorporating them into chitosan edible film on the browning and quality of starfruit slices. Control treatment comprises storing slices of ‘Hong Long’ starfruit at 5℃. The L* value around the exocarp of cut surface decreased markedly in control after 2 d and browning was observed. Immersing the slices in 0.5% NAC for 1 min before storage effectively inhibited browning for at least 10 d, and resulted in L*value of 50.6 around the exocarp of cut surface, which was not significantly different from that obtained immediately after cutting. Increasing NAC concentration beyond 0.5% did not increase the anti-browning effect. Immersion in solutions containing 0.7% CysH or higher significantly inhibited browning, and resulted in L*value of 57.9 around the exocarp of cut surface after 10 d of storage, which was not significantly different from the L* value of 62.5 obtained on the day of cutting.
Controlled atmosphere containing 5% oxygen (O2) inhibited the growth of mesophilic aerobic microbes on starfruit slices stored at 5℃, where the total viable count was lower on Day 8 of storage compared with control. On Day 10, total viable count in controlled atmosphere treatments containing 5% O2 or lower ranged 3.46-3.62 log CFU g-1, which was significantly lower than 4.29 log CFU g-1 in control. There was no difference among treatments in the viable count of molds and yeasts with total counts of these ranging 5.03-5.11 log CFU g-1 on Day 10 of storage, which was beyond the safety limit allowable by law and rendered the product unmarketable. This shows that fungi are the main factor in the microbial contamination of starfruit slices. Oxygen concentrations of 0.5-12.9% did not inhibit molds and yeasts significantly.
To investigate the inhibitory effect of carbon dioxide on microbes, different carbon dioxide concentrations were provided for storage while maintaining 2% oxygen. Carbon dioxide (CO2) concentration of 5% or higher at 5℃ resulted in mold and yeast combined count range of 4.05-4.23 log CFU g-1 on Day 8 of storage, which was significantly lower than 4.47-4.62 log CFU g-1 obtained with storage in air and 2% O2+0% CO2. Starfruit slices in the 2% O2+5% CO2 treatment reached the end of their shelf life on Day 16 because total viable count reached 5.08 log CFU g-1. The ends of shelf life in the 2% O2+10% CO2, 2% O2+15% CO2, and 2% O2+20% CO2 treatments were 18, 20, and 20 days after storage, respectively, upon which the total viable count exceeded the allowable limit and the produce became unmarketable. No difference in shelf life and quality was observed between 15% and 20% CO2 treatments. Carbon dioxide concentration of 15% or higher resulted in significant acetaldehyde production, ranging 3.75-5.21 μL L-1 on Day 2 after storage. Meanwhile acetaldehyde concentration was only 0.11 μL L-1 in the air treatment. Acetaldehyde production was significantly different between the 20% and 15% CO2 treatments 8 d after storage. On Day 2 of storage, higher levels of ethanol were present in treatments with CO2 concentrations of 5% and higher compared with the air treatment. There was positive correlation between accumulation of ethanol and CO2 concentration in the storage atmosphere. The 2% O2+15% CO2 and 2% O2+20% CO2 treatments inhibited microbial growth to a similar extent and were superior to other treatments in this respect, while accumulation of acetaldehyde and ethanol was induced to a lesser extent in 2% O2+15% CO2. Therefore, it is concluded that 2% O2+15% CO2 is the optimal controlled atmosphere condition for storage of fresh-cut ‘Hong Long’ starfruit.
Passive or active modified atmosphere conditions at 5℃ were investigated by packing 150 g or 300 g of sliced ‘Hong Long’ starfruit in 100 μm LDPE and 700 μm PP packaging. Passive packaging could not attain O2 2 % + CO2 15% either with 150 g or 300 g starfruit slices due to slow attainment of stable gaseous environment. Therefore with passive packaging the starfruit slices were exposed to undesirably high O2 level (>2%) and low CO2 level (<15%) for a longer period and thus microbial growth was not inhibited effectively. With active packaging, an ideal gaseous environment could not be attained by 150 g starfruit slices either when LDPE or PP bags were used. However, active packaging of 300 g starfruit slices in LDPE and PP bags resulted in 3.53%O2 + 12.67%CO2 and 5.11%O2 + 13.97%CO2&not;, respectively and increased the shelf life of the fresh-cut starfruit from 8 d to 14 d, with no significant difference in microbial growth inhibition and production of acetaldehyde and ethylene between the two types of bags used. However since LDPE packaging resulted in gaseous condition closer to the target concentrations, it was combined with CysH dipping treatment to investigate whether microbial growth and tissue discoloration could be inhibited simultaneously.
Dipping treatment of 1% CysH was combined with active modified atmosphere packaging in 100 μm LDPE bags injected with O2 2% + CO2 15% to study their effects on the shelf life at 5℃ of the cultivars ‘Hong Long’ and ‘Malaysia’ starfruit. In both cultivars L* values around the exocarp of cut surface did not decrease significantly throughout the storage period; the values remained at approximately 60 and became significantly different from control after 2 d of storage. Modified atmosphere packaging also increased the shelf life of both cultivars, whereby in ‘Hong Long’ the time taken for mold and yeast count to exceed the 5 log CFU•g-1 allowable limit was lengthened from 10 d to 16 d, whereas in ‘Malaysia’ it was lengthened from 8 d to 12 d. Combining 1% CysH dipping treatment before storage with O2 2% + CO2 15% active modified atmosphere packaging could solve both browning and microbial growth, which are the two main deterioration factors in fresh-cut starfruit, and therefore serves as a valuable reference for the postharvest procedure of this produce.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:17:13Z (GMT). No. of bitstreams: 1
ntu-101-R98628208-1.pdf: 2407267 bytes, checksum: 395c1518f55823214e74677ac8978631 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員審定書…………………………………………………………………………i
誌謝……………………………………………………………………………………...ii
中文摘要 ..................................................................................................................... iii
英文摘要 ..................................................................................................................... vi
第一章 前言 ................................................................................................................ 1
第二章 前人研究 ........................................................................................................ 3
壹、楊桃概況....................................................................................................... 3
貳、截切蔬果....................................................................................................... 6
參、幾丁聚醣之介紹 ......................................................................................... 14
肆、截切楊桃研究現況 ..................................................................................... 18
第三章 含硫氫基抗氧化劑處理抑制截切楊桃褐化之效果 ..................................... 20
前言 .................................................................................................................... 20
材料與方法 ........................................................................................................ 21
結果 .................................................................................................................... 26
討論 .................................................................................................................... 31
第四章 改變大氣組成處理抑制截切楊桃微生物生長之效果 ................................. 61
前言 .................................................................................................................... 61
材料方法 ............................................................................................................ 63
結果 .................................................................................................................... 68
討論 .................................................................................................................... 74
第五章 結論 ............................................................................................................ 106
參考文獻 .................................................................................................................. 109
附 錄 ...................................................................................................................... 123
dc.language.isozh-TW
dc.title含硫氫基抗氧化劑與改變大氣組成處理對截切楊桃之品質與櫥架壽命的影響zh_TW
dc.titleEffects of SH-containing Antioxidant and Atmosphere Modification on Quality and Shelf Life of Fresh-cut Carambola (Averrhoa carambola L.) Fruits.en
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee石正中,許明仁
dc.subject.keyword截切楊桃,半胱氨酸,氣調貯藏,氣變包裝,zh_TW
dc.subject.keywordfresh-cut carambola,cysteine,control atmosphere,modified atmosphere package,en
dc.relation.page131
dc.rights.note未授權
dc.date.accepted2012-02-10
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
2.35 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved