Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16473
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor杜宜殷
dc.contributor.authorXin-Fen HUen
dc.contributor.author胡馨分zh_TW
dc.date.accessioned2021-06-07T18:16:30Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-14
dc.identifier.citation杜宜殷. 1996 .蝴蝶蘭花瓣老化相關基因之選殖及分析. 國立台灣大學園藝學研究所博士論文
盧美君. 1998 . 蝴蝶蘭ACC合成酶和ACC氧化酶基因之選殖及分析. 國立台灣大學園藝學研究所博士論文
余又勋、劉娟旭、劉玲. 2008.花衰老相關的乙烯信號轉殖基因研究發展. 生物技術通訊 19:1-3
林運辰. 2006 .香蕉重泛素及β-1,3-葡聚醣酶基因啟動子活性分析. 國立台灣大學園藝學研究所碩士論文
劉怡君. 2005. 文心蘭黃色素生合成相關基因之選殖與分析. 國立台灣大學園藝學研究所碩士論文
曾秋蓮、徐杰、伊濡萍、董宇亮. 2004 .花衰老過程中的生理變化及對花衰老的凋零. 亞熱帶植物科學 33:73-76.
宋品慧. 2004. 蘭花花器表達基因之啟動子活性分析. 國立台灣大學園藝學研究所碩士論文
Anhthu Q. B., and D. O. Sharman. 1998. Three 1-aminocyclopropane-1 -carboxylate synthase genes regulated by primary and secondary pollination signals in orchid flowers. Plant Physiol. 116:419–428.
Clough S.J.and B.A.F .1998.Floral dip: a simplified method for Agrobacterium-
mediated transformation of Arabidopsis thaliana.Plant J 16:735-743
Doorn, V. W. G., and E. J. Woltering. 2007. Physiology and molecular biology of petal senescence. J. Exp. Bot. 1-28.
Eiichiro et al.,2006.Yellow flowers generated by expression of the aurone biosynthetic pathway.PNAS 103:11075-11080.
Have, T. A., and E. J. Woltering. 1997. Ethylene biosynthetic genes are differentially expressed during carnation flower senescence. Plant Mol. Bio . 34:89–97.
Hangsik, M., and A. M. Callahan. 2004. Developmental regulation of peach ACC oxidase promoter- GUS fusions in transgenic tomato fruits. J. of Exp. Bota. 18:1-10.
Howitt, C. A., and B. J. Pogson. 2006 Carotenoid accumulation and function in seeds and non-green tissues. Plant Cell Environ. 29: 435–445.
Johnson, P. R., and J. R. Ecker. 1998. The ethylene gas signal transduction pathway: a molecular perspective. Annu. Rev. Genet. 32:227–54.
Kenichi, S., Yamada T., Suzuki T., Shimizu K., and K. Ichimura. 2009. InPSR26, a putative membrane protein, regulates programmed cell death during petal senescence in Japanese Morning Glory. Plant Physiol. 149:816–824.
Kim, Y. J., S. H. Lee, and K. Y. Park. 2004. A leader intron and 115-bp promoter region necessary for expression of the carnation S-adenosylmethionine decarboxylase gene in the pollen of transgenic tobacco. FEBS Let 578:229–235.
Kishimoto, S., T. Maoka., K. Sumitomo., A. Ohmiya. 2005 Analysis of carotenoid composition in petals of calendula (Calendula officinalis L.). Biosci Biotech Biochem. 69:2122–2128.
Kishimoto, S., T. Maoka., M. Nakayama., A. Ohmiya., 2004 Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochem. 65: 2781–2787.
Kondo, T. K., A. Yoshida., T. Nakagawa. 1992. Structural basis of blue 2 color development in flower petals from Commelina communis. Nature. 358: 515-518.
McMurchie, E. J., W. B. McGlasson, and I. L. Easks. 1972. Treatment of fruit with propylene gives information about the bisgenesis of ethylene. Nature 237:
235-236.
Mitsuhara, I., M. Uqaki, H. Hirochika, M. Ohshima, T. Murakami, Y. Gotoh,Y. Katayose, S. Nakamura, R. Honkura, S. Nishimiya, K. Ueno, A. Mochizuki, H. Tanimoto, H. Tsuqawa, Y. Otsuki, Y. Ohashi. 1996. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37: 49-59.
Morris, W. L., L. J. Ducreux, P. D. Fraser, S. Millam, M. A. Taylor. 2006. Engineering ketocarotenoid biosynthesis in potato tubers. Metab Eng 8:253–263.
Nakayama, T., K. Y. Sakakibara, T. Sato, S. Kikuchi, Y. Fukui, M. F. Mizutani, T. Ueda, M. Nakao, Y. Tanaka, T. Kusumi, and T. Nishio. 2000. Auresidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163-1166.
Nakatsuka, T., K. Mishiba, A. Yoshiko, A. Kubota, Y. Kakizaki, S. Yamamura, M. Nishihara. 2008. Flower color modification of gentian plants by RNAi-mediated gene silencing. Plant Bio. 25: 61–68.
Nielsen, K. M., D. H. Lewis., E. R. Morgan. 2003. Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca (Hook). Euphytica. 130:25–34.
Ono, E., F. M. Masako, N. Noriko, F. Yuko, Y. S. Keiko, Y. Masatsu, N. Toru, T. Takaharu, K. Takaaki, and T. Yoshikazu. 2006a. Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. USA
29:11075-11080.
Ono, E., M. Hatayama, Y. Isono, S. Takuya, R. Watanabe, K. Y. Sakakibara, M. F. Mizutani, Y. Tanaka, T. Kusumi, T. Nishino, and T. Nakayama. 2006b. Localization of a flavonoid biosynthetic polyphenol oxidase in vacuoles. Plant J. 45:133-143.
Ralley, L., E. M. Enfissi, N. Misawa, W. Schuch, P. M. Bramley, and P. D. Fraser. 2004. Metabolic engineering of ketocatenoid formation in higher plants. Plant J. 39:477–486.
Renate, M., and M. S. Bjarne. 2003. Genetic regulation of ethylene perception and signal transduction related to flower senescence. Food, Agri Environ. 1: 87-94.
Saks, Y., and J. V. Staden. 1993. Evidence for the involvement of gibberellins in developmental phenomena associated with carnation flower senescence. Plant Growth Reg. 12:105–110.
Schoenbohml, C., S. Martens., C. Eder., G. Forkmann., and B. Weisshaar. 2000. Identification of the Arabidopsis thaliana flavonoid 3’-Hydroxylase gene and functional expression of the encoded P450 Enzyme. Biol Chem. 381(8): 749-753.
Shenghua, Y., and F. D. D. Jeffrey. 2010. Differential responses of the promoters from nearly identical paralogs of loblolly pine (Pinus taeda L.) ACC oxidase to biotic and abiotic stresses in transgenic Arabidopsis thaliana. Planta. 232:873-886.
Shibuya, K., K. G. Barry, J. A. Ciardi, H. M. Loucas, B. A. Underwood, S. Nourizadeh, J. R. Ecker, H. J. Klee, and D. G. Clark . 2004 . The central role of PhEIN2 in ethylene responses throughout plant development in Petunia. Plant Physiol. 136:2900–2912.
Shibuya, K., T. Yoshioka, T. Hashiba, and S. Satoh. 2000. Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J. Exp. Bot. 51:2067–2073.
Suzuki, S., M. Nishihara, T. Nakatsuka, N. Misawa, I. Ogiwara, and S. Yamamura. 2007. Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959.
Tanaka, T., Y. Katsumoto, F. Brugliera, and J. Mason. 2005. Genetic engineering in floriculture. Plant Cell, Tissue and Organ Culture 80: 1–24.
Tanaka, Y., N. Sasaki, and A. Ohmiya. 2008. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54(4): 733-749.
Tanaka, Y., F. Brugliera., G. Kalc, M. Senior, B. Dyson., N. Nakamura, Y. Katsumoyo, and S. Chandler. 2010. Flower color modification by engineering of the flavonoid biosynthetic pathway: practical perspectives bioscience,
Biosci. Biotechnol Biochem. 74(9): 1760-1769.
Wang, N. N., S. C. Ming, and N. Li. 2005. The GUS reporter-aided analysis of the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5, and AtACS7 induced by hormones and stresses. J. Exp. Bot. 413:909–920.
William, E. 1977. Role of cytokinins in carnation flower senescence. Plant Physiol 59:707–709.
Yang, S. F., and N. E. Hoffman, 1984. Ethylene biosynthesis and its regulation in high plants. Annu. Rev. Plant Physiol. 35:155-189.
Yoshida K., T. Kondo, Y. Okazaki, and K. Katou. 1995. Cause of blue petal colour. Nature. 373: 291.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16473-
dc.description.abstract本論文分為兩部分。第一部分是建立黃花色研究平台,希望了解文心蘭金魚草素 (aureusidin) 合成酶基因功能,故將 2X CaMV 35S 及蝴蝶蘭花器專一表現基因PtACS2啟動子分別接上文心蘭金魚草素合成酶基因,轉殖至菸草,進行穩定性分析。南方氏雜交分析結果顯示,外源基因於轉殖株基因組中為單一拷貝。菸草轉殖株之外觀形態生長勢及花色與未轉殖株並無明顯差異,皆具有深粉紅色及淡粉紅色花。以高效液相層析儀分析花朵中色素的組成及含量變化,已知金魚草素之最大吸收波在405 nm,於10.98分鐘出現,2X 35Spro::OgAS1及PtACS2 pro::OgAS1轉殖株萃取物於405 nm未見明顯波峰,於370 nm則有兩個波峰,推測為Flavone或Flavonols類化合物;而PtACS2 pro::OgAS1之深色花及淺色花之第二個波峰較未轉殖株高1.7倍。
第二部分是分析不同長度的蝴蝶蘭ACC氧化酶基因PtACO1啟動子之活性,以瞭解此啟動子組織專一性或特殊誘導因子之調控區域。啟動子序列比對分析,顯示全長之PtACO1啟動子有多種保守性的反應元件 (response element), 如G-box、Sp1及BoxΙ等光調控相關、JA、GA3、ABA、乙烯及受熱誘導之熱休克元件 ( heat shock response element) 等序列。進一步將與報導基因GUS連接之不同長度啟動子構築轉殖至菸草,以南方氏雜交分析,確認轉殖片段已嵌入菸草轉殖株基因組中。分析PtACO1啟動子活性,結果顯示PtACO1啟動子於不同株齡轉殖株中均於葉片及根表現,株齡30天時,於老葉表現較幼葉強且根部表現減弱。接著利用生長調節劑處理及非生物性誘導處理探討PtACO1啟動子缺失之活性。啟動子活性分析顯示-2521到-2296間則有影響葉部表現之乾旱轉錄增強子 (enhancer)。-2296到-1676及-1676到-987之間,也各含有一個JA、GA3、BA、ABA、高溫、低溫、黑暗、高鹽相關之轉錄增強子且同時處理低溫及黑暗之結果顯示低溫增強子之作用大於黑暗增強子。-2521到-987間各有兩個淹水逆境相關之轉錄增強子及沉寂子 (silencer)。-2296到-987間含兩個乙烯相關之轉錄增強子及一個沉寂子。
zh_TW
dc.description.abstractThis thesis mainly divides into two parts. The goal of the first part is to establish a research platform for production of yellow flower. Therefore, the 2X CaMV 35S and the flower-specific PtACS2 promoter were fused with aureusidin synthase gene OgAS1 from Oncidium to OgAS1 overexpress in tobacco for functional analysis. After Agrobacterium-mediated transformation, transgenic tobaccos were confirmed by Southern analysis for identification of transgene integrity and copy number. No obvious changes in phenotype of transgenic plants. To analyze content whether aureusidin or other compound was affected by OgAS1, extracts from flowers were by high performance liquid chromatography separated and no aureusidin peak was detected at retention time 10.98 minutes under photodiode array at 405 nm. On the other hand, when detected at 370 nm, peakⅠand peakⅡin extracts from 2X 35S pro::OgAS1 and PtACS2 pro:: OgAS1 transgenic plants were higher than that of untransformed plants about 1.7 times.
The second part of this thesis is to analyze the promoter activity of ACC oxidase gene PtACO1 from Phalaenopsis. According to sequence analysis of PtACO1 promoter, putative JA-, GA3-, ABA-, ACC-, and heat-responsive elements were found. Six deletion mutants of PtACO1 promoter constructed in stable transformation vector driving reporter gene β–glucuronidase (GUS), was transformed into tobacco. After confirmed by Southern analysis for transgenesis, transgenic plants containg different promoter deletion mutant were treated with different plant growth regulators and then stained for GUS activity. The region between -2521 to -2296 contained a drought response element and could enhance the promoter activity in leaves. JA, GA3, BA, ABA, heat, cold, cold and dark, dark and high salt related enchancers localized in the region between -2296 to -1676 and -1676 to -987. The effect of the cold enhancer is stronger than that of the dark enhancer according to the results of could treatment in the dark. The region between -2521 to -987 contained four flooding response element and could enhance and silencer the promoter activity. The region between -2296 to -987 contained three ethylene response element and could enhance and silencer the promoter activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:16:30Z (GMT). No. of bitstreams: 1
ntu-101-R97628114-1.pdf: 1716038 bytes, checksum: 2d616dccea13530fa3542ce8bed65865 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書..............................................................................................i
中文摘要………………………………………………………………………..ii
英文摘要…………………………………………………………………….….iv
前言……………………………………………………………………………..xi
前人研究……………………………………………………………………… .1
一、更年性花瓣老化調控機制………………………………………………..1
二、ACC 氧化酶……………………………………………………………....2
三、啟動子活性分析…………………………………………………………...3
四、影響花色形成的因素……………………………………………………...3
1. 類黃酮 (Flavonoids) ……………………………………………..............4
2. 類胡蘿蔔素 (Carotenoids)………………………......................................6
材料與方法……………………………………………………………………...8
一、試驗材料…………………………………………………………..........….8
二、試驗方法………………………………………………………..………….8
1. 農桿菌之轉型………………………………………………………….….8
(1) 農桿菌之培養…………………………………………………………8
(2) 勝任細胞之製備………………………………………………………8.
(3) 電穿孔轉殖法……………………………………………………...….9
(4)農桿菌質體DNA抽取與檢測…………………………………...........10
2. 菸草基因轉殖與篩選……………………………………………….........10
(1) 菸草基因轉殖…………………………………………………….......11
(2) 菸草轉殖株之篩選…………………………………………………...11
3. GUS活性組織化學染色………………………………………………….12
4. 南方氏雜交分析…………………………………………………….........12
(1) 植物基因組DNA抽取…………………………………………….....12
(2) 探針之製備………………………………………………………...….13
(3) 南方氏雜交反應………………………………………………........13
5. 不同發育階段基因表現情形……………………………………………13
6. 生長調節劑誘導處理……………………………………………………14
7. 非生物性誘導物處理……………………………………………………14
8. 類黃酮之萃取及高壓液相層析儀分析……………………………....…15
(1) 類黃酮之萃取………………………………………………..….........15
(2) HPLC分析……………………………………………………............15
結果……………………………………………………………………….……16
一、文心蘭金魚草素合成酶基因功能分析…………………………….……16
1. 文心蘭金魚草素合成酶基因過量表達分析……………………...…….16
2. 菸草轉殖株外觀形態分析………............................................................16
3. 高壓液相層析儀High Pressure Liquid Chromatography (HPLC) 分
析………………………………………………………………….……..20
二、蝴蝶蘭ACC氧化酶基因之啟動子啟動子活性分析……………...……20
1. 蝴蝶蘭ACC氧化酶基因啟動子序列分析……………………….…….20
2. 蝴蝶蘭ACC氧化酶基因過量表達分析..................................................25
3. 生長發育階段對啟動子表現活性及組織特異性之影響………………26
(1) T1代生長發育階段啟動子表現情形………………………………..31
(2) 花朵發育階段啟動子表現情形………………………......................39
4. 生長調節劑對啟動子活性之影響………………………………………42
5. 非生物性誘導物處理對啟動子活性之影響……………………………47
6. 生長調節劑及非生物性誘導物處理對全長啟動子活性影響………....53
討論………………………………………………………………………….... 56
一、文心蘭金魚草素合成酶基因之HPLC分析………………………..…...56
二、蝴蝶蘭ACC氧化酶基因啟動子序列特性……………………………..56
三、全長ACC氧化酶基因啟動子於不同發育階段及組織部位表現特性..57
四、ACC氧化酶基因啟動子活性分析…………………………………….. 58
參考文獻………………………………………………………………………61
dc.language.isozh-TW
dc.subjectACC氧化&#37238zh_TW
dc.subject基因啟動子zh_TW
dc.subject基因zh_TW
dc.subject啟動子活性分析zh_TW
dc.subject文心蘭金魚草素合成&#37238zh_TW
dc.subject2X CaMV 35S 啟動子zh_TW
dc.subject花器專一性zh_TW
dc.subject啟動子zh_TW
dc.subjectpromoter deletion analysisen
dc.subjectOncidiumen
dc.subject aureusidin synthase geneen
dc.subjectHPLC analysisen
dc.subjectPhalaenopsisen
dc.subjectACC oxidase gene promoteren
dc.title文心蘭金魚草素合成酶基因功能及蝴蝶蘭ACC氧化酶基因啟動子活性之分析zh_TW
dc.titleAnalyses in Gene Function of Aureusidin Synthase from Oncidium and Promoter Activity of ACC Oxidase Gene from Phalaenopsisen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.coadvisor黃鵬林
dc.contributor.oralexamcommittee廖芳心,劉祖惠
dc.subject.keyword文心蘭金魚草素合成&#37238,基因,2X CaMV 35S 啟動子,花器專一性,啟動子,ACC氧化&#37238,基因啟動子,啟動子活性分析,zh_TW
dc.subject.keywordOncidium, aureusidin synthase gene,HPLC analysis,Phalaenopsis,ACC oxidase gene promoter,promoter deletion analysis,en
dc.relation.page65
dc.rights.note未授權
dc.date.accepted2012-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
1.68 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved