Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16458
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorYu-Cheng Suen
dc.contributor.author蘇煜程zh_TW
dc.date.accessioned2021-06-07T18:15:50Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citationReferences
1. D. J. Kim and D. Y. Ryu, N. A. Bojarczuk, J. Karasinski, S. Guha, S. H. Lee, and J. H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy,” J. Appl. Phys. 88, 2564 (2000).
2. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
3. M. Zhong, J. Roberts, W. Kong, A. S. Brown, and A. J. Steckl, “p-type GaN grown by phase shift epitaxy,” Appl. Phys. Lett. 104, 012108 (2014).
4. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041 (2003).
5. Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
6. C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Delta-doping optimization for high quality p-type GaN,” J. Appl. Phys. 104, 083512 (2008).
7. Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, H. Jiang, “Enhanced Mg doping efficiency in p-type GaN by indium-surfactant- assisted delta doping method,” Appl. Phys. Express 6, 041001 (2013).
8. E. C. H. Kyle, S. W. Kaun, E. C. Young, and J. S. Speck, “Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN,” Appl. Phys. Lett. 106, 222103 (2015).
9. B. Sarkar, S. Mita, P. Reddy, A. Klump, F. Kaess, J. Tweedie, I. Bryan, Z. Bryan, R. Kirste, E. Kohn, R. Collazo, and Z. Sitar, “High free carrier concentration in p-GaN grown on AlN substrates,” Appl. Phys. Lett. 111, 032109 (2017).
10. M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-dopping,” Appl. Phys. Lett. 82, 3041 (2003).
11. K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
12. T. Kinoshita, T.Obata, H. Yanagi, and S. I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
13. Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
14. Y. H. Liang, N. T. Nuhfer, and E. Towe, “Liquid-metal-enabled synthesis of aluminum-containing III-nitrides by plasma-assisted molecular beam epitaxy,” J. Vac. Sci. Technol. B 34, 02L112 (2016).
15. Y. H. Liang and E. Towe, “Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures,” Journal of Applied Physics 123, 095303 (2018).
16. X. Liu, A. Pandey, D. A. Laleyan, K. Mashooq, E. T. Reid, W. J. Shin and Z. Mi, “Charge carrier transport properties of Mg-doped Al0.6Ga0.4N grown by molecular beam epitaxy,” Semicond. Sci. Technol. 33, 085005 (2018).
17. W. Luo, B. Liu, Z. Li, Liang Li, Q. Yang, L. Pan, C. Li, D. Zhang, X. Dong, D. Peng, F. Yang, and R. Zhang, “Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy,” Appl. Phys. Lett. 113, 072107 (2018).
18. D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett. 70, 3377 (1997).
19. D. C. Look, E. R. Heller, Y. F. Yao, and C. C. Yang, “Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett. 106, 152102 (2015).
20. P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999).
21. E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 79, 2737 (2001).
22. J. Hertkorn, S. B. Thapa, T. Wunderer, F. Scholz, Z. H. Wu, Q. Y. Wei, F. A. Ponce, M. A. Moram, C. J. Humphreys, C. Vierheilig, and U. T. Schwarz, “Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 106, 013720 (2009).
23. J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-Band-gap uniaxial semiconductor heterostructures,” Science 327, 60 (2010).
24. S. Li, M. E. Ware, V. P. Kunets, M. Hawkridge, P. Minor, J. Wu, and G. J. Salamo, “Polarization induced doping in graded AlGaN films,” Phys. Status Solidi C 8, No. 7–8, 2182–2184 (2011).
25. S. Li, M. Ware, J. Wu, P. Minor, Z. Wang et al, “Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN,” Appl. Phys. Lett. 101, 122103 (2012).
26. S. Li, T. Zhang, J. Wu, Y. Yang, Z. Wang, Z. Wu, Z. Chen, and Y. Jiang, “Polarization induced hole doping in graded AlxGa1-xN (x=0.7~1) layer grown by molecular beam epitaxy,” Appl. Phys. Lett. 102, 062108 (2013).
27. P. M. Lytvyn, A. V. Kuchuk, Y. I. Mazur, C. Li, M. E. Ware, Z. M. Wang, V. P. Kladko, A. E. Belyaev, and G. J. Salamo, “Polarization Effects in Graded AlGaN Nanolayers Revealed by Current-Sensing and Kelvin Probe Microscopy,” ACS Appl. Mater. Interfaces, 10, 6755−6763 (2018).
28. C. C. Chen, “Mg-doped p-AlGaN Growth with Molecular Beam Epitaxy,” MS Thesis, National Taiwan University, October 2019.
29. D. B. Williams and C. B. Carter, Transmission Electron Microscopy: A Textbook for Material Science (New York: Springer, 2009).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16458-
dc.description.abstract基於穿透電子顯微術觀察中的能量色散X-光能譜(EDX)和d-spacing晶格分析方法,我們研究用分子束磊晶生長的六個鋁含量梯度的氮化鋁鎵樣品和三個鋁含量固定的氮化鋁鎵樣品中的鋁含量變化。生長鋁梯度氮化鋁鎵樣品可以產生極化感應的p-型行為,而固定的鋁含量樣品可當作參考來比較鋁含量變化。從能量色散X-光能譜數據,我們可以估算這些樣品中鋁含量的變化趨勢。數據可以線性擬合,但我們也觀察到鋁含量些許偏離目標值。基於局部區域繞射圖的d-spacing晶格分析,我們可以精確地計算沿c軸,a軸或m軸的局部晶格常數。
從計算的晶格常數,在氮化鋁鎵未受應變影響的假設下可以估算鋁含量。但由於獲得繞射圖案以實現高精度晶格常數需要相當大的晶體區域,因此在厚度為100-200奈米的氮化鋁鎵層內只能獲得有限的數據點。
zh_TW
dc.description.abstractBased on the energy-dispersive X-ray spectroscopy (EDX) and d-spacing crystal lattice analysis methods in transmission electron microscopy observation, we study the Al content variations in six Al-gradient AlGaN samples and three fixed Al-content AlGaN samples, all grown with molecular beam epitaxy. The Al-gradient AlGaN samples are grown for producing polarization induced p-type behaviors. The fixed Al-content samples are used as the references for comparing the Al-content variations. From the EDX data, we can estimate the variation trends of Al content in those samples. The data are well fitted with linear variation lines. However, deviations of Al content from the targeted values are observed. Based on the d-spacing crystal lattice analysis from the diffraction pattern of a local region, we can precisely evaluate the local lattice constants along the c-, a-, or m-axis. From the evaluated lattice constants, we can estimate the Al content assuming that AlGaN is un-strained. Because quite a large crystal region is required for obtaining the diffraction pattern to achieve a high-precision lattice constant, only limited data points can be obtained across an AlGaN layer of 100-200 nm in thickness.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:15:50Z (GMT). No. of bitstreams: 1
U0001-2807202017330700.pdf: 5194526 bytes, checksum: ef4e4014468b0f86e4968dd4ad1bcdf3 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsContents
誌謝................................................................... I
中文摘要................................................................ II
ABSTRACT............................................................... III
CONTENT................................................................ IV
LIST OF FIGURE......................................................... V
CHAPTER 1 INTRODUCTION................................................. 1
1.1 P-TYPE PROBLEM IN ALGAN-BASED ULTRAVIOLET LIGHT-EMITTING DIODE..... 1
1.2 POLARIZATION INDUCED P-TYPE ALGAN.................................. 2
1.3 RESEARCH MOTIVATIONS............................................... 3
1.4 THESIS STRUCTURE................................................... 4
CHAPTER 2 SAMPLE STRUCTURES AND PREPARATION............................ 5
2.1 SAMPLE STRUCTURES AND GROWTH CONDITIONS............................ 5
2.2 HALL MEASUREMENT RESULTS........................................... 5
CHAPTER 3 ENERGY-DISPERSIVE X-RAY SPECTROSCOPY STUDY................... 9
3.1 ENERGY-DISPERSIVE X-RAY SPECTROSCOPY RESULTS....................... 9
3.2 COMPARISON WITH OTHER MEASUREMENT RESULTS.......................... 10
CHAPTER 4 D-SPACING CRYSTAL LATTICE ANALYSIS........................... 28
4.1 ANALYSIS PROCEDURE................................................. 28
4.2 ANALYSIS RESULTS................................................... 30
CHAPTER 5 CONCLUSIONS.................................................. 68
REFERENCES............................................................. 69
dc.language.isoen
dc.subject氮化鋁鎵zh_TW
dc.subject穿透電子顯微鏡zh_TW
dc.subjectd-spacingen
dc.subjecttransmission electron microscopyen
dc.subjectAlGaNen
dc.title極化感應形成p-型氮化鋁鎵的穿透電子顯微研究zh_TW
dc.titleTransmission Electron Microscopy Study on Polarization Induced p-type AlGaNen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林浩雄(Hao-Hsiung Lin),黃建璋(Jian-Jang Huang),陳奕君(I-Chun Cheng),吳育任(Yuh-Renn Wu)
dc.subject.keyword穿透電子顯微鏡,氮化鋁鎵,zh_TW
dc.subject.keywordtransmission electron microscopy,AlGaN,d-spacing,en
dc.relation.page71
dc.identifier.doi10.6342/NTU202001985
dc.rights.note未授權
dc.date.accepted2020-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2807202017330700.pdf
  未授權公開取用
5.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved