Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16447
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠(Chih-Chung Yang)
dc.contributor.authorYu-Wei Linen
dc.contributor.author林育葳zh_TW
dc.date.accessioned2021-06-07T18:15:17Z-
dc.date.copyright2020-08-04
dc.date.issued2020
dc.date.submitted2020-07-29
dc.identifier.citation1.M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N.Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2011).
2.T. F. Kent, S. D. Carnevale, A. T. M. Sarwar, P. J. Phillips, R. F. Klie, and R. C. Myers, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25, 455201 (2014).
3.M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Express 5, 082101 (2012).
4.T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10, 031002 (2017).
5.H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3, 031002 (2010).
6.D. J. Kim and D. Y. Ryu, N. A. Bojarczuk, J. Karasinski, S. Guha, S. H. Lee, and J. H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy,” J. Appl. Phys. 88, 2564 (2000).
7.K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
8.M. Zhong, J. Roberts, W. Kong, A. S. Brown, and A. J. Steckl, “p-type GaN grown by phase shift epitaxy,” Appl. Phys. Lett. 104, 012108 (2014).
9.M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041 (2003).
10.Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
11.C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Delta-doping optimization for high quality p-type GaN,” J. Appl. Phys. 104, 083512 (2008).
12.Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, H. Jiang, “Enhanced Mg doping efficiency in p-type GaN by indium-surfactant- assisted delta doping method,” Appl. Phys. Express 6, 041001 (2013).
13.E. C. H. Kyle, S. W. Kaun, E. C. Young, and J. S. Speck, “Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN,” Appl. Phys. Lett. 106, 222103 (2015).
14.B. Sarkar, S. Mita, P. Reddy, A. Klump, F. Kaess, J. Tweedie, I. Bryan, Z. Bryan, R. Kirste, E. Kohn, R. Collazo, and Z. Sitar, “High free carrier concentration in p-GaN grown on AlN substrates,” Appl. Phys. Lett. 111, 032109 (2017).
15.M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett. 82, 3041 (2003).
16.K. B. Nam, M. L. Nakarmi, J. Li, J. Y. Lin, and H. X. Jiang, “Mg acceptor level in AlN probed by deep ultraviolet photoluminescence,”Appl. Phys. Lett. 83, 878 (2003).
17.T. Kinoshita, T.Obata, H. Yanagi, and S. I. Inoue, “High p-type conduction in high-Al content Mg-doped AlGaN,” Appl. Phys. Lett. 102, 012105 (2013).
18.Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett. 106, 162102 (2015).
19.Y. H. Liang, N. T. Nuhfer, and E. Towe, “Liquid-metal-enabled synthesis of aluminum-containing III-nitrides by plasma-assisted molecular beam epitaxy,” J. Vac. Sci. Technol. B 34, 02L112 (2016).
20.Y. H. Liang and E. Towe, “Heavy Mg-doping of (Al,Ga)N films for potential applications in deep ultraviolet light-emitting structures,” Journal of Applied Physics 123, 095303 (2018).
21.X. Liu, A. Pandey, D. A. Laleyan, K. Mashooq, E. T. Reid, W. J. Shin and Z. Mi, “Charge carrier transport properties of Mg-doped Al0.6Ga0.4N grown by molecular beam epitaxy,” Semicond. Sci. Technol. 33, 085005 (2018).
22.W. Luo, B. Liu, Z. Li, Liang Li, Q. Yang, L. Pan, C. Li, D. Zhang, X. Dong, D. Peng, F. Yang, and R. Zhang, “Enhanced p-type conduction in AlGaN grown by metal-source flow-rate modulation epitaxy,” Appl. Phys. Lett. 113, 072107 (2018).
23.D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett. 70, 3377 (1997).
24.D. C. Look, E. R. Heller, Y. F. Yao, and C. C. Yang, “Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett. 106, 152102 (2015).
25.P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett. 75, 2444 (1999).
26.E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett. 79, 2737 (2001).
27.J. Hertkorn, S. B. Thapa, T. Wunderer, F. Scholz, Z. H. Wu, Q. Y. Wei, F. A. Ponce, M. A. Moram, C. J. Humphreys, C. Vierheilig, and U. T. Schwarz, “Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy,” J. Appl. Phys. 106, 013720 (2009).
28.J. Simon, V. Protasenko, C. Lian, H. Xing, and D. Jena, “Polarization-induced hole doping in wide-Band-gap uniaxial semiconductor heterostructures,” Science 327, 60 (2010).
29.S. Li, M. E. Ware, V. P. Kunets, M. Hawkridge, P. Minor, J. Wu, and G. J. Salamo, “Polarization induced doping in graded AlGaN films,” Phys. Status Solidi C 8, No. 7–8, 2182–2184 (2011).
30.S. Li, M. Ware, J. Wu, P. Minor, Z. Wang et al, “Polarization induced pn-junction without dopant in graded AlGaN coherently strained on GaN,” Appl. Phys. Lett. 101, 122103 (2012).
31.S. Li, T. Zhang, J. Wu, Y. Yang, Z. Wang, Z. Wu, Z. Chen, and Y. Jiang, “Polarization induced hole doping in graded AlxGa1-xN (x=0.7~1) layer grown by molecular beam epitaxy,” Appl. Phys. Lett. 102, 062108 (2013).
32.P. M. Lytvyn, A. V. Kuchuk, Y. I. Mazur, C. Li, M. E. Ware, Z. M. Wang, V. P. Kladko, A. E. Belyaev, and G. J. Salamo, “Polarization Effects in Graded AlGaN Nanolayers Revealed by Current-Sensing and Kelvin Probe Microscopy,” ACS Appl. Mater. Interfaces, 10, 6755−6763 (2018).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16447-
dc.description.abstract我們以分子束磊晶,在氮化鎵基板上成長以極化感應產生的p-型氮化鋁鎵。藉由改變鋁含量梯度,氮化鋁鎵厚度,我們得到一系列的電洞濃度、電洞遷移率以及導電率之結果,透過XRD的量測,我們可獲得鋁的含量,在厚度為200奈米的樣品內,當鋁含量由75%降至34%,我們可以獲得9.4 x 10^17 cm-3的電洞濃度,27.9 cm^2/V-s 的電洞遷移率,以及0.23 Ω-cm的低電阻率。藉由降低氮化鋁鎵生長厚度去改變鋁含量梯度,可以發現隨著厚度降低,電洞濃度上升,電洞遷移率降低,導致電阻率上升,由reciprocal space mapping 量測可以得知生長在氮化鎵基板上的氮化鋁鎵,隨著鋁含量上升,應力釋放更明顯,在電洞濃度較高的樣品中,我們嘗試去摻雜鎂,雖然電洞濃度稍有增加,但由於電洞遷移率會下降,結果無法改善電阻率。zh_TW
dc.description.abstractPolarization induced p-type AlGaN on GaN template with molecular beam epitaxy is grown. By decreasing Al content from 75 through 34 % along the c-axis in the Al-gradient AlGaN layer of 200 nm in thickness, hole concentration at 9.4 x 10^17 cm^-3, hole mobility at 27.9 cm^2/V-s, and resistivity at 0.23 Ω-cm are obtained. When we increase the Al-gradient rate by reducing AlGaN thickness, hole concentration can be increased, but hole mobility is reduced, leading to an increased resistivity level. A medium Al-gradient rate can lead to the lowest resistivity. From the measurement reciprocal space mapping, it is found that the strain in the AlGaN layer is partially relaxed unless the Al content is low. In a sample of a high hole concentration, Mg doping of a medium level does not significantly improve the resistivity because hole mobility is reduced with Mg doping.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:15:17Z (GMT). No. of bitstreams: 1
U0001-2807202017341300.pdf: 4930525 bytes, checksum: d67d0fa22564d029a792c2e6d470ce17 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝................................................................................i
中文摘要...........................................................................ii
Abstract..........................................................................iii
Table of content...................................................................iv
List of figure......................................................................v
List of table....................................................................viii
Chapter 1 Introduction..............................................................1
1.1 AlGaN for fabricating ultraviolet light-emitting diode..........................1
1.2 Mg-doped p-type AlGaN...........................................................1
1.3 Polarization induced p-type AlGaN...........................................2
1.4 Research motivations............................................................3
1.5 Thesis structure................................................................4
Chapter 2 Sample Structure, Growth of AlGaN with High Al Contents, and Hall Measurement.........................................................................5
2.1 Sample structure................................................................5
2.2 Growth of AlGaN with high Al contents...........................................6
2.3 Hall measurement................................................................7
Chapter 3 Variations of p-type Behavior of AlGaN with Different Al-gradient Structures.........................................................................13
3.1 Samples of different Al-gradient structures....................................13
3.2 Hall measurement results.......................................................14
3.3 Reciprocal space mapping.......................................................16
Chapter 4 Mg Doping Effects on Polarization Induced p-type AlGaN...................48
4.1 Mg doping effects..............................................................48
4.2 Discussions....................................................................49
Chapter 5 Conclusions..............................................................55
References.........................................................................56
dc.language.isoen
dc.title以分子束磊晶研究極化感應形成p-型氮化鋁鎵zh_TW
dc.titleStudy on Polarization Induced p-type AlGaN with Molecular Beam Epitaxyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃建璋(Jian-Jang Huang),林浩雄(Hao-Hsiung Lin),吳育任(Yuh-Renn Wu),陳奕君 (I-Chun Cheng)
dc.subject.keyword分子束磊晶,zh_TW
dc.subject.keywordMBE,AlGaN,en
dc.relation.page58
dc.identifier.doi10.6342/NTU202001986
dc.rights.note未授權
dc.date.accepted2020-07-29
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
U0001-2807202017341300.pdf
  目前未授權公開取用
4.81 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved