Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16431
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂育道
dc.contributor.authorHui-Hsiang Chiuen
dc.contributor.author邱暉翔zh_TW
dc.date.accessioned2021-06-07T18:14:38Z-
dc.date.copyright2012-06-27
dc.date.issued2012
dc.date.submitted2012-05-14
dc.identifier.citation[1] W. Ames, Numerical Methods for Partial Differential Euqations, 3rd edition, Academic Press, New York, 1992.
[2] T. Andersen and B. Sorensen, “GMM Estimation of A Stochastic Volatility Model: A Monte Carlo Study,” Journal of Business and Economic Statistics, Vol. 14, 1996, pp. 328–352.
[3] D. Babbel and C. Merrill, Valuation of Interest-Sensitive Financial Instruments, SOA Monograph M-FI96-1, Schaumburg, IL: The Society of Actuaries, 1996.
[4] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” Journal of Political Economy, Vol. 81, 1973, pp. 637–654.
[5] P. Boyle, “Options: A Monte Carlo Approach,” Journal of Financial Economics, Vol. 4, pp. 323–338.
[6] P. Boyle, “A Lattice Framework for Options with Two State Variables,” Journal of Financial and Quantitative Analysis, Vol. 23, 1988, pp. 1–12.
[7] M. Brennan and E. Schwartz, “Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis,” Journal of Financial and Quantitative Analysis, Vol. 13, 1978, pp. 462–474.
[8] N. Cakici and K. Topyan, “The GARCH Option Pricing Model: A Lattice Approach,” Journal of Computational Finance, Vol. 3, 2000, pp. 71-85.
[9] D. Chambers and Q. Lu, “A tree model for pricing convertible bonds with equity, interest rate, and default risk,” Journal of Derivatives, Vol. 14, 2007, pp. 25–46.
[10] Y.-C. Chen, Y.-D. Lyuu and K.-W. Wen, “The Complexity of GARCH Option Pricing Models,” Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2011. To appear in Journal of Information Science and Engineering.
[11] M. Chesney and L. Scott, “Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model,” Journal of Financial Quantitative Analysis, Vol. 24, 1989, pp. 267–284.
[12] P. Chalasani, S. Jha and I. Saias, “Approximate Option Pricing,” Algorithmica, Vol. 25, 1999, pp. 2–21.
[13] Y.-C. Chu, “Option Pricing with Stochastic Volatility,” MBA thesis, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2006.
[14] J. Cox, S. Ross and M. Rubinstein, “Option Pricing: A Simplified Approach,” Journal of Financial Economics, Vol. 7, 1979, pp. 229–263.
[15] T.-S. Dai and Y.-D. Lyuu, “The Bino-Trinomial Tree: A Simple Model for Efficient and Accurate Option Pricing,” Journal of Derivatives, Vol. 17, 2010, pp. 7–24.
[16] J. Danielsson, “Stochastic Volatility in Asset Prices: Estimation with Simulated Maximum Likelihood,” Journal of Econometrics, Vol. 64, 1994, pp. 375–400.
[17] E. Derman and I. Kani, “The Volatility Smile and Its Implied Tree,” Quantitative Strategies Research Notes, Goldman Sachs, New York, 1994.
[18] E. Derman and I. Kani, “ Implied Trinomial Trees of the Volatility Smile,” Quantitative Strategies Research Notes, Goldman Sachs, New York, 1996.
[19] J.-C. Duan, “The GARCH Option Pricing Model,” Mathematical Finance, Vol. 5, 1995, pp. 13–32.
[20] J.-C. Duan, “A Unified Theory of Option Pricing under Stochastic Volatility – from GARCH to Diffusion,” Working paper, Hong Kong University of Science and Technology, 1996.
[21] J. –C. Duan, “Augmented GARCH (p,q) process and its diffusion limit,” Journal of Econometrics, Vol. 79, 1997, 97–127.
[22] D. Duffie and P. Protter, “From Discrete to Continuous-Time Finance,” Mathematical Finance, Vol. 2, 1992, pp. 1–15.
[23] L. Eisenberg and R. Jarrow, “Option Pricing with Random Volatilities in Complete Markets,” Review of Quantitative Finance and Accounting, Vol. 4, 1994, pp. 5–17.
[24] R. Engle, “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Econometrica, Vol. 50, 1982, pp. 987–1007.
[25] R. Engle and V. Ng, “Measuring and Testing the Impact of News on Volatility,” Journal of Finance, Vol.48, 1993, pp.1749–1778.
[26] S. Figlewski and B. Gao, “The Adaptive Mesh Model: A New Approach to Efficient Option Pricing,” Journal of Financial Economics, Vol. 53, pp. 313–351.
[27] J.-P. Fouque, G. Papanicolaou and K. Sircar, “Mean-Reverting Stochastic Volatility,” International Journal of Theoretical and Applied Finance, Vol. 3, 2000, pp. 101–142.
[28] K. French, G. Schwert and R. Stambaugh, “Expected Stock Returns and Volatility,” Journal of Financial Economics, Vol. 19, 1987, pp. 3–29.
[29] S. Heston, “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options,” Review of Financial Studies, Vol. 6, 1993, pp. 327–343.
[30] J. Hilliard and A. Schwartz, “Binomial Option Pricing under Stochastic Volatility and Correlated State Variables,” Journal of Derivatives, Vol. 4, 1996, pp. 23–39.
[31] C.-T. Huang, “On Bivariate Lattices for Option Pricing under Stochastic Volatility Models,” Master’s Thesis, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2010.
[32] J. Hull, Options, Futures & Other Derivatives, 7th edition, Englewood Cliffs, NJ: Prentice Hall, 2008.
[33] J. Hull and A. White, “The Pricing of Options on Assets with Stochastic Volatility,” Journal of Finance, Vol. 42, 1987, pp. 281–300.
[34] J. Hull and A. White, “An Analysis of the Bias in Option Pricing Caused by Stochastic Volatility,” Advances in Options and Futures Research, Vol. 3, 1988, pp. 29–61.
[35] J. Hull and A. White, “Valuing Derivative Securities Using the Explicit Finite Difference Method,” Journal of Financial and Quantitative Finance, Vol. 25, 1990, pp 87–100.
[36] J. Jackwerth, “Option Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review,” Journal of Derivatives, Vol. 7, 1999, pp. 66–82.
[37] H. Johnson and D. Shanno, “Option Pricing When the Variance Is Changing,” Journal of Financial and Quantitative Analysis, Vol. 22, 1987, pp. 143–151.
[38] W.-H. Kao, Y.-D. Lyuu and K.-W. Wen, “The Hexanomial Lattice for Pricing Multi-Asset Options,” Working Paper, Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, 2012.
[39] A. Lewis, Option Valuation under Stochastic Volatility with Mathematica Code, Newport Beach, CA: Finance Press, 2000.
[40] F. Longstaff and E. Schwartz, “Valuing American Options by Simulation: A Simple Least-Square Approach,” Review of Financial Studies, Vol. 13, 2001, pp. 113–147.
[41] Y.-D. Lyuu, Financial Engineering and Computation, Cambridge, UK: Cambridge University Press, 2002.
[42] Y.-D. Lyuu and C.-J. Wang, “On the Construction and Complexity of Bivariate Lattice with Stochastic Interest Rate Models,” Computers and Mathematics with Applications, Vol. 61, 2011, pp. 1107–1121.
[43] Y.-D. Lyuu and C.-N. Wu, “Complexity of the Ritchken-Trevor-Cakici-Topyan GARCH Option Pricing Algorithm,” Proceedings of IASTED International Conference on Financial Engineering and Applications (FEA 2003), Banff, Canada, July 2–4, 2003.
[44] Y.-D. Lyuu and C.-N. Wu, “On Accurate and Provably Efficient GARCH Option Pricing Algorithms,” Quantitative Finance, Vol. 5, 2005, pp. 181–198.
[45] R. Merton, “Theory of Rational Option Pricing,” Bell Journal of Economics, Vol. 4, 1973, pp. 141–183.
[46] V. Moriggia, S. Muzzioli and C.Torricelli, “On the No-Arbitrage Condition in Option Implied Trees,” European Journal of Operational Research, Vol. 93, 2009, pp. 212–221.
[47] D. Nelson and K. Ramaswamy, “Simple Binomial Processes as Diffusion Approximations in Financial Models,” Review of Financial Studies, Vol. 3, 1990, pp. 393–430.
[48] C. Papadimitriou, Computational Complexity, Redwood, CA: Addison Wesley, 1994.
[49] P. Ritchken and R. Trevor, “Pricing Options under Generalized GARCH and Stochastic Volatility Processes,” Journal of Finance, Vol. 54, 1999, pp. 377–402.
[50] L. Scott, “Option Pricing When the Variance Changes Randomly: Theory, Estimation and an Application,” Journal of Financial and Quantitative Analysis, Vol. 22, 1987, pp. 419–438.
[51] K. Sircar and G. Papanicolaou, “Stochastic Volatility, Smile & Asymptotics,” Applied Mathematical Finance, Vol. 6, 1999, pp. 107–145.
[52] S. Shreve, Stochastic Calculus for Finance: Continuous-Time Models, New York: Springer, 2004.
[53] E. Stein and J. Stein, “Stock Price Distributions with Stochastic Volatility: An Analytic Approach,” Review of Financial Studies, Vol. 4, 1991, pp. 727–752.
[54] S. Taylor, “Modeling Stochastic Volatility: A Review and Comparative Study,” Mathematical Finance, Vol. 4, 1994, pp. 183–204.
[55] J. Tilley, “Valuing American Options in a Path Simulation Model,” Transaction of the Society of Actuaries, Vol. 45, 1993, pp. 83–104.
[56] J. G. van der Corput, “Introduction to the Neutrix Calculus,” Journal d’Analyse Mathematique, Vol. 7, 1959, pp. 281–398.
[57] C.-J. Wang, T.-S. Dai and Y.-D. Lyuu, “A Multi-Phase, Flexible and Accurate Lattice for Pricing Complex Derivatives with Multiple Market Variables,” In Proceedings of the IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr), New York City, March 29–30, 2012.
[58] J. Wiggins, “Option Values under Stochastic Volatility: Theory and Empirical Estimates,” Journal of Financial Economics, Vol. 19, 1987, pp. 351–372.
[59] R. Zvan, P. Forsyth and K. Vetzal, “Negative Coefficients in Two-Factor Option Pricing Models.” Journal of Computational Finance, Vol. 7, 2003, pp. 37–73.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16431-
dc.description.abstract隨機波動模型含標的資產價格模型與波動率模型,因此屬雙變數模型。文獻上有許多隨機波動模型,其中 Hull 和 White (1987)的模型允許標的資產價格與波動率之間存在相關性(簡稱為 HW 模型),Hilliard 和 Schwartz (1996)提出的隨機波動模型(簡稱為 HS 模型)則推廣了 HW 模型。Hilliard 和 Schwartz 先將標的資產價格及波動率轉換到兩個隨機項為常數的隨機過程,此步驟是為了保證接下來建的樹能夠接合(recombining)而有效率。我們首先證明了此轉換的唯一性,此結果本身有獨立的重要性。接著,Hilliard 和 Schwartz (1996)在新的隨機過程底下,建構出有效率的雙變數二元樹(簡稱為 HS 樹狀模型)以評價選擇權,但本論文證明 HS 樹狀模型一定會有錯誤機率,因此是不正確的。本論文提出一解決之道,先對兩隨機過程作正交化(orthogonalization),再對新產生的兩隨機過程採用雙變數樹狀模型,避免了負機率,因而能正確地評價選擇權,但此樹狀模型大小呈指數成長。最後本論文證明在 HS 模型下,任何樹狀模型之大小皆至少為次指數(sub-exponential)成長。這個隨機波動模型的次指數複雜度的結果是文獻上第一個,不但限制了 HS 模型在實務上的應用性,也對隱含樹 (implied tree)的負機率問題提供合理的解釋。zh_TW
dc.description.abstractStochastic-volatility models are bivariate because they contain two stochastic processes, one for the underlying asset and the other the variance. Many such models have been proposed. An example is Hull and White’s (1987) stochastic-volatility model, which allows nontrivial correlation between the underlying asset and the variance. Hilliard and Schwartz (1996) extend that model and give an efficient bivariate binomial tree (HS tree for short) after the two underlying processes are transformed into ones with constant diffusion terms. This transformation step is needed to make sure that the tree recombines and is efficient. This thesis proves the uniqueness of such transforms, an important result in its own right. However, this thesis proves that negative transition probabilities are inherent for the HS tree; thus it is erroneous. Then it suggests a new tree to correct it. First, it orthogonalizes the two stochastic processes. Then the mean-tracking method is employed to construct a bivariate binomial-trinomial tree. But the tree size grows exponentially. The option prices calculated by this tree are reasonably accurate. We then prove any tree for the HS model must have a sub-exponential size. This sub-exponential lower bound is the first in the literature for stochastic-volatility models. This complexity result places a severe limit on the practicality of the HS model and provides a tantalizing explanation for the implied tree’s failure to avoid negative transition probabilities.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:14:38Z (GMT). No. of bitstreams: 1
ntu-101-R98723059-1.pdf: 490575 bytes, checksum: d866baa255205bdefe786fad3c64a76a (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
第一章 緒論 1
1.1 研究目的與動機 1
1.2 論文架構 5
第二章 基本定義與結果 7
2.1 Hilliard和Schwartz (HS)的隨機波動模型 7
2.2 選擇權 8
2.3 樹的基本定義與初步結果 9
2.4 NR 轉換的唯一性 13
2.5 成長率符號 17
第三章 Hilliard和Schwartz的隨機波動模型及其樹狀模型 18
3.1 Hilliard 和Schwartz的樹狀模型 18
3.2 HS樹狀模型的跳動幅度和聯合機率 21
3.3 HS樹狀模型的基本問題 23
第四章 正交化建構雙變數樹模型 25
4.1 正交化 25
4.2 平均數追蹤法(Mean-Tracking Method) 26
4.3 建樹 28
第五章 數值結果與分析 32
第六章 HS模型之複雜度 36
6.1 複雜度結果及其蘊涵 36
6.2 HS 模型的無效率之證明 36
第七章 結論 47
附錄 48
參考文獻 50
dc.language.isozh-TW
dc.subject平均數追蹤法zh_TW
dc.subject隨機波動率zh_TW
dc.subject正交化zh_TW
dc.subjectorthogonalizationen
dc.subjectstochastic volatilityen
dc.subjectmean-tracking methoden
dc.title在隨機波動率下之雙變數樹評價模型zh_TW
dc.titleOn Bivariate Lattices for
On Bivariate Lattices for Stochastic-Volatility Option Pricing Models
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee戴天時,金國興,張經略,王釧茹
dc.subject.keyword隨機波動率,平均數追蹤法,正交化,zh_TW
dc.subject.keywordstochastic volatility,mean-tracking method,orthogonalization,en
dc.relation.page55
dc.rights.note未授權
dc.date.accepted2012-05-14
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
479.08 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved