請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16417完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蘇銘嘉(Ming-Jai Su) | |
| dc.contributor.author | Hui-Chun Ku | en |
| dc.contributor.author | 辜惠君 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:13:58Z | - |
| dc.date.copyright | 2012-09-18 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-13 | |
| dc.identifier.citation | Arakawa M, Mita T, Azuma K, Ebato C, Goto H, Nomiyama T, et al. (2010) Inhibition of monocyte adhesion to endothelial cells and attenuation of atherosclerotic lesion by a glucagon-like peptide-1 receptor agonist, exendin-4. Diabetes
Ban K, Kim KH, Cho CK, Sauve M, Diamandis EP, Backx PH, et al. (2010) Glucagon-like peptide (GLP)-1(9-36)amide-mediated cytoprotection is blocked by exendin(9-39) yet does not require the known GLP-1 receptor. Endocrinology 151: 1520-1531 Ban K, Noyan-Ashraf MH, Hoefer J, Bolz SS, Drucker DJ, Husain M (2008) Cardioprotective and vasodilatory actions of glucagon-like peptide 1 receptor are mediated through both glucagon-like peptide 1 receptor-dependent and -independent pathways. Circulation 117: 2340-2350 Barragan JM, Rodriguez RE, Blazquez E (1994) Changes in arterial blood pressure and heart rate induced by glucagon-like peptide-1-(7-36) amide in rats. Am J Physiol 266: E459-466 Bellis A, Castaldo D, Trimarco V, Monti MG, Chivasso P, Sadoshima J, et al. (2009) Cross-talk between PKA and Akt protects endothelial cells from apoptosis in the late ischemic preconditioning. Arterioscler Thromb Vasc Biol 29: 1207-1212 Bendet N, Scapa E, Cohen O, Bloch O, Aharoni D, Ramot Y, et al. (2004) Enhanced glucose-dependent glucagon-like peptide-1 and insulin secretion in Crohn patients with terminal ileum disease is unrelated to disease activity or ileal resection. Scand J Gastroenterol 39: 650-656 Bhashyam S, Fields AV, Patterson B, Testani JM, Chen L, Shen YT, et al. (2010) Glucagon-like peptide-1 increases myocardial glucose uptake via p38alpha MAP kinase-mediated, nitric oxide-dependent mechanisms in conscious dogs with dilated cardiomyopathy. Circ Heart Fail 3: 512-521 Blanco J, Muriel-Bombin A, Sagredo V, Taboada F, Gandia F, Tamayo L, et al. (2008) Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Crit Care 12: R158 Boonacker E, Van Noorden CJ (2003) The multifunctional or moonlighting protein CD26/DPPIV. Eur J Cell Biol 82: 53-73 Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM (2005) Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes 54: 146-151 Burley DS, Hamid SA, Baxter GF (2007) Cardioprotective actions of peptide hormones in myocardial ischemia. Heart Fail Rev 12: 279-291 Chen WP, Tzeng HJ, Ku HC, Ho YJ, Lee SS, Su MJ (2010) Thaliporphine ameliorates cardiac depression in endotoxemic rats through attenuating TLR4 signaling in the downstream of TAK-1 phosphorylation and NF-kappaB signaling. Naunyn Schmiedebergs Arch Pharmacol 382: 441-453 Chisholm C, Greenberg GR (2002) Somatostatin-28 regulates GLP-1 secretion via somatostatin receptor subtype 5 in rat intestinal cultures. Am J Physiol Endocrinol Metab 283: E311-317 Cobb MH (1999) MAP kinase pathways. Prog Biophys Mol Biol 71: 479-500 Combettes MM (2006) GLP-1 and type 2 diabetes: physiology and new clinical advances. Curr Opin Pharmacol 6: 598-605 De Backer D, Creteur J, Silva E, Vincent JL (2003) Effects of dopamine, norepinephrine, and epinephrine on the splanchnic circulation in septic shock: which is best? Crit Care Med 31: 1659-1667 Dokken BB, Hilwig WR, Teachey MK, Panchal RA, Hubner K, Allen D, et al. (2010) Glucagon-like peptide-1 (GLP-1) attenuates post-resuscitation myocardial microcirculatory dysfunction. Resuscitation 81: 755-760 Doupis J, Veves A (2008) DPP4 inhibitors: a new approach in diabetes treatment. Adv Ther 25: 627-643 Doyle ME, Egan JM (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113: 546-593 Drucker DJ (2006) The biology of incretin hormones. Cell Metab 3: 153-165 Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368: 1696-1705 East JM (2000) Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology (review). Mol Membr Biol 17: 189-200 Fadini GP, Avogaro A (2011) Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol 55: 10-16 Farmer MR, Roberts RE, Gardiner SM, Ralevic V (2003) Effects of in vivo lipopolysaccharide infusion on vasoconstrictor function of rat isolated mesentery, kidney, and aorta. J Pharmacol Exp Ther 306: 538-545 Fehmann HC, Goke R, Goke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide-I and glucose-dependent insulin releasing polypeptide. Endocr Rev 16: 390-410 Felies M, von Horsten S, Pabst R, Nave H (2004) Neuropeptide Y stabilizes body temperature and prevents hypotension in endotoxaemic rats. J Physiol 561: 245-252 Fields AV, Patterson B, Karnik AA, Shannon RP (2009) Glucagon-like peptide-1 and myocardial protection: more than glycemic control. Clin Cardiol 32: 236-243 Frantz S, Ertl G, Bauersachs J (2007) Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nat Clin Pract Cardiovasc Med 4: 444-454 Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101: 660-667 Grieve DJ, Cassidy RS, Green BD (2009) Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1: potential therapeutic benefits beyond glycaemic control? Br J Pharmacol 157: 1340-1351 Gros R, You X, Baggio LL, Kabir MG, Sadi AM, Mungrue IN, et al. (2003) Cardiac function in mice lacking the glucagon-like peptide-1 receptor. Endocrinology 144: 2242-2252 Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogen-activated protein kinase by H2O2. Role in cell survival following oxidant injury. J Biol Chem 271: 4138-4142 Hansen L, Hartmann B, Bisgaard T, Mineo H, Jorgensen PN, Holst JJ (2000) Somatostatin restrains the secretion of glucagon-like peptide-1 and -2 from isolated perfused porcine ileum. Am J Physiol Endocrinol Metab 278: E1010-1018 Hansen L, Hartmann B, Mineo H, Holst JJ (2004) Glucagon-like peptide-1 secretion is influenced by perfusate glucose concentration and by a feedback mechanism involving somatostatin in isolated perfused porcine ileum. Regul Pept 118: 11-18 Harkavyi A, Whitton PS (2010) Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection. Br J Pharmacol 159: 495-501 Hauser GJ, Myers AK, Dayao EK, Zukowska-Grojec Z (1993) Neuropeptide Y infusion improves hemodynamics and survival in rat endotoxic shock. Am J Physiol 265: H1416-1423 Hayes MR, De Jonghe BC, Kanoski SE (2010) Role of the glucagon-like-peptide-1 receptor in the control of energy balance. Physiol Behav 100: 503-510 Hearse DJ, Bolli R (1992) Reperfusion induced injury: manifestations, mechanisms, and clinical relevance. Cardiovasc Res 26: 101-108 Hua F, Ha T, Ma J, Li Y, Kelley J, Gao X, et al. (2007) Protection against myocardial ischemia/reperfusion injury in TLR4-deficient mice is mediated through a phosphoinositide 3-kinase-dependent mechanism. J Immunol 178: 7317-7324 Hui H, Nourparvar A, Zhao X, Perfetti R (2003) Glucagon-like peptide-1 inhibits apoptosis of insulin-secreting cells via a cyclic 5'-adenosine monophosphate-dependent protein kinase A- and a phosphatidylinositol 3-kinase-dependent pathway. Endocrinology 144: 1444-1455 Iwai T, Ito S, Tanimitsu K, Udagawa S, Oka J (2006) Glucagon-like peptide-1 inhibits LPS-induced IL-1beta production in cultured rat astrocytes. Neurosci Res 55: 352-360 Jones SB, Romano FD (1990) Myocardial beta adrenergic receptor coupling to adenylate cyclase during developing septic shock. Circ Shock 30: 51-61 Juhaszova M, Zorov DB, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Role of glycogen synthase kinase-3beta in cardioprotection. Circ Res 104: 1240-1252 Kang KA, Chae S, Koh YS, Kim JS, Lee JH, You HJ, et al. (2005) Protective effect of puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biol Pharm Bull 28: 1154-1160 Kervran A, Blache P, Bataille D (1987) Distribution of oxyntomodulin and glucagon in the gastrointestinal tract and the plasma of the rat. Endocrinology 121: 704-713 Ku HC, Chen WP, Su MJ (2010) GLP-1 signaling preserves cardiac function in endotoxemic Fischer 344 and DPP4-deficient rats. Naunyn Schmiedebergs Arch Pharmacol 382: 463-474 Ku HC, Chen WP, Su MJ (2011) DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion. Naunyn Schmiedebergs Arch Pharmacol 384: 197-207 Kumar A, Thota V, Dee L, Olson J, Uretz E, Parrillo JE (1996) Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. J Exp Med 183: 949-958 Kuo LE, Abe K, Zukowska Z (2007) Stress, NPY and vascular remodeling: Implications for stress-related diseases. Peptides 28: 435-440 Lambeir AM, Scharpe S, De Meester I (2008) DPP4 inhibitors for diabetes--what next? Biochem Pharmacol 76: 1637-1643 Leone M, Martin C (2008) Vasopressor use in septic shock: an update. Curr Opin Anaesthesiol 21: 141-147 Levy RJ (2007) Mitochondrial dysfunction, bioenergetic impairment, and metabolic down-regulation in sepsis. Shock 28: 24-28 Li Y, Tweedie D, Mattson MP, Holloway HW, Greig NH Enhancing the GLP-1 receptor signaling pathway leads to proliferation and neuroprotection in human neuroblastoma cells. J Neurochem 113: 1621-1631 Marik PE, Raghavan M (2004) Stress-hyperglycemia, insulin and immunomodulation in sepsis. Intensive Care Med 30: 748-756 Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192: 1-15 Martinez MC, Muller B, Stoclet JC, Andriantsitohaina R (1996) Alteration by lipopolysaccharide of the relationship between intracellular calcium levels and contraction in rat mesenteric artery. Br J Pharmacol 118: 1218-1222 Michel MC, Fliers E, Van Noorden CJ (2008) Dipeptidyl peptidase IV inhibitors in diabetes: more than inhibition of glucagon-like peptide-1 metabolism? Naunyn Schmiedebergs Arch Pharmacol 377: 205-207 Morimoto C, Schlossman SF (1998) The structure and function of CD26 in the T-cell immune response. Immunol Rev 161: 55-70 Mullonkal CJ, Toledo-Pereyra LH (2007) Akt in ischemia and reperfusion. J Invest Surg 20: 195-203 Nguyen HB, Rivers EP, Abrahamian FM, Moran GJ, Abraham E, Trzeciak S, et al. (2006) Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Ann Emerg Med 48: 28-54 Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, et al. (2004a) Recombinant glucagon-like peptide-1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing-induced dilated cardiomyopathy. Circulation 110: 955-961 Nikolaidis LA, Elahi D, Shen YT, Shannon RP (2005) Active metabolite of GLP-1 mediates myocardial glucose uptake and improves left ventricular performance in conscious dogs with dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 289: H2401-2408 Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, et al. (2004b) Effects of glucagon-like peptide-1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109: 962-965 Nishihara M, Miura T, Miki T, Tanno M, Yano T, Naitoh K, et al. (2007) Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol 43: 564-570 Noyan-Ashraf MH, Momen MA, Ban K, Sadi AM, Zhou YQ, Riazi AM, et al. (2009) GLP-1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58: 975-983 Oeseburg H, de Boer RA, Buikema H, van der Harst P, van Gilst WH, Sillje HH (2010) Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A. Arterioscler Thromb Vasc Biol 30: 1407-1414 Ohnuma K, Dang NH, Morimoto C (2008) Revisiting an old acquaintance: CD26 and its molecular mechanisms in T cell function. Trends Immunol 29: 295-301 Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ (1994) Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43: 535-539 Ossum A, van Deurs U, Engstrom T, Jensen JS, Treiman M (2009) The cardioprotective and inotropic components of the postconditioning effects of GLP-1 and GLP-1(9-36)a in an isolated rat heart. Pharmacol Res 60: 411-417 Parratt JR (1998) Nitric oxide in sepsis and endotoxaemia. J Antimicrob Chemother 41 Suppl A: 31-39 Prabhu SD (2004) Cytokine-induced modulation of cardiac function. Circ Res 95: 1140-1153 Qiu HB, Yang Y, Zhou SX, Liu SH, Zheng RQ (2001) Prognostic value of dobutamine stress test in patients with septic shock. Acta Pharmacol Sin 22: 71-75 Quoyer J, Longuet C, Broca C, Linck N, Costes S, Varin E, et al. (2009) GLP-1 mediates antiapoptotic effect by phosphorylating Bad through a beta-arrestin 1-mediated ERK1/2 activation in pancreatic beta-cells. J Biol Chem 285: 1989-2002 Ravassa S, Zudaire A, Diez J (2012) GLP-1 and cardioprotection. From bench to bedside. Cardiovasc Res Ravingerova T, Matejikova J, Neckar J, Andelova E, Kolar F (2007) Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart. Mol Cell Biochem 297: 111-120 Read PA, Hoole SP, White PA, Khan FZ, O'Sullivan M, West NE, et al. (2011) A pilot study to assess whether glucagon-like peptide-1 protects the heart from ischemic dysfunction and attenuates stunning after coronary balloon occlusion in humans. Circ Cardiovasc Interv 4: 266-272 Read PA, Khan FZ, Heck PM, Hoole SP, Dutka DP (2010) DPP-4 Inhibition by Sitagliptin Improves the Myocardial Response to Dobutamine Stress and Mitigates Stunning in a Pilot Study of Patients with Coronary Artery Disease. Circ Cardiovasc Imaging Riedemann NC, Guo RF, Ward PA (2003) Novel strategies for the treatment of sepsis. Nat Med 9: 517-524 Russell JA (2006) Management of sepsis. N Engl J Med 355: 1699-1713 Sauve M, Ban K, Momen MA, Zhou YQ, Henkelman RM, Husain M, et al. (2010) Genetic deletion or pharmacological inhibition of dipeptidyl peptidase-4 improves cardiovascular outcomes after myocardial infarction in mice. Diabetes 59: 1063-1073 Sokos GG, Nikolaidis LA, Mankad S, Elahi D, Shannon RP (2006) Glucagon-like peptide-1 infusion improves left ventricular ejection fraction and functional status in patients with chronic heart failure. J Card Fail 12: 694-699 Thompson MA, Ohnuma K, Abe M, Morimoto C, Dang NH (2007) CD26/dipeptidyl peptidase IV as a novel therapeutic target for cancer and immune disorders. Mini Rev Med Chem 7: 253-273 Thorens B (1992) Expression cloning of the pancreatic beta cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci U S A 89: 8641-8645 Ussher JR, Lopaschuk GD (2008) The malonyl CoA axis as a potential target for treating ischaemic heart disease. Cardiovasc Res 79: 259-268 Vila Petroff MG, Egan JM, Wang X, Sollott SJ (2001) Glucagon-like peptide-1 increases cAMP but fails to augment contraction in adult rat cardiac myocytes. Circ Res 89: 445-452 Vyas AK, Yang KC, Woo D, Tzekov A, Kovacs A, Jay PY, et al. (2011) Exenatide improves glucose homeostasis and prolongs survival in a murine model of dilated cardiomyopathy. PLoS One 6: e17178 Wang X, Martindale JL, Liu Y, Holbrook NJ (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333 ( Pt 2): 291-300 Zanotti-Cavazzoni SL, Hollenberg SM (2009) Cardiac dysfunction in severe sepsis and septic shock. Curr Opin Crit Care 15: 392-397 Zaruba MM, Theiss HD, Vallaster M, Mehl U, Brunner S, David R, et al. (2009) Synergy between CD26/DPP-IV inhibition and G-CSF improves cardiac function after acute myocardial infarction. Cell Stem Cell 4: 313-323 Zhao T, Parikh P, Bhashyam S, Bolukoglu H, Poornima I, Shen YT, et al. (2006) Direct effects of glucagon-like peptide-1 on myocardial contractility and glucose uptake in normal and postischemic isolated rat hearts. J Pharmacol Exp Ther 317: 1106-1113 Zhu X, Bernecker OY, Manohar NS, Hajjar RJ, Hellman J, Ichinose F, et al. (2005) Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 33: 598-604 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16417 | - |
| dc.description.abstract | 攝食會刺激GLP-1分泌降低血糖,但DPP4酵素很快的將GLP-1切斷,使其失去調控血糖功能。抑制DPP4酵素活性可提升血液中GLP-1含量,所以在臨床上DPP4抑制劑及GLP-1類似物已用於治療糖尿病。除了調控血糖外,GLP-1訊息也被發現能夠改善心血管系統相關疾病,所以我們以動物及細胞實驗模擬人類疾病,探討DPP4基因突變是否影響心血管功能。
以成年大鼠實驗:wild-type為野生種,DchcHsd-DPP IV為DPP4基因缺陷大鼠。DPP4活性在DPP4基因缺陷大鼠中只有野生種的三分之一。動物實驗是比較兩種動物面臨內毒素血症及心肌梗塞的耐受性。心臟功能是以心導管偵測心臟壓力及體積來評估。為了探討GLP-1訊息傳遞路徑,有些組別中使用GLP-1類似物(exendin-4)或其受器阻斷劑(exendin-(9-39))。動物血清及心臟組織在模擬疾病實驗結束後收集儲存。細胞實驗是分離兩種大鼠心臟細胞,並探討細胞對抗H2O2產生氧化壓力的能力,以細胞存活量、胞內自由基含量及細胞凋零相關路徑活化作為評估。 以靜脈注射10mg/kg內毒素誘導內毒素血症,模擬敗血症的大量發炎反應。所有實驗都在施打四小時後進行分析。在野生種大鼠中,內毒素造成心臟功能減弱,這與減少心臟中cAMP含量、phospholamban磷酸化及減弱血管對交感神經興奮劑反應有關。DPP4基因缺陷能改善內毒素血症時心血管功能,這與動物體內產生較多GLP-1有關,因為這結果與外給GLP-1類似物(exendin-4)的保護作用相符合:在野生種大鼠施打exendin-4能夠有效改善內毒素血症所引起的心血管功能降低現象。而且DPP4基因缺陷或是GLP-1類似物亦能改善內毒素血症造成的多重器官衰竭及降低死亡率。總之,這個實驗證明了在面臨內毒素血症時DPP4基因缺陷能使血液中分泌高含量的GLP-1以達保護效果。 在心臟梗塞的動物實驗中,大鼠冠狀動脈綑綁45分鐘接續鬆開兩小時,模擬心臟缺血再灌流。與野生種大鼠相比,DPP4大鼠在面臨心臟缺血再灌流後能維持較佳的作功能力,和較少的梗塞壞死面積,並伴隨心臟受損相關生化數值降低(LDH、ANP和BNP);而GLP-1受器拮抗劑(exendin-(9–39))會減弱上述保護效果,並減少心臟缺血再灌流後AKT及其下游蛋白GSK-3β磷酸化及GLUT4表現量。然而特別的是:給予DPP4大鼠 exendin-(9–39),雖會使心肌梗塞面積升高,但相較於野生種大鼠仍具有保護作用,這意味著與GLP-1受器無關路徑也參與其中。因此由這實驗可得知,DPP4基因缺陷對於心肌梗塞具有保護作用,這作用與GLP-1受器依賴路徑有關或無關。 DPP4基因缺陷在內毒素血症及心臟缺血再灌流都具保護作用,但機轉是因為單純的降低DPP4活性而放大GLP-1訊息,還是降低DPP4活性導致功能上改變而誘導新的路徑,並未釐清。所以接下來的實驗,是分離兩種大鼠心臟細胞,探討其對抗H2O2所造成的氧化壓力能力。 心臟細胞由兩種成年大鼠中分離,以H2O2處理,並外給GLP-1探討其中機轉。DPP4基因缺陷會減少H2O2誘導的胞內自由基產生、Bax/Bcl2比例及caspase-3活性,並改善H2O2所造成的細胞死亡。外給GLP-1於野生種心臟細胞能藉由磷酸化AKT,有效減少H2O2造成的細胞死亡;並且這保護作用完全被GLP-1受器拮抗劑阻擋,顯示在此GLP-1依存路徑的重要性。但是DPP4基因缺陷的心臟細胞面臨氧化壓力時,會增加AKT磷酸化,而外加GLP-1並沒有再額外增加磷酸化,顯示在DPP4基因缺陷時會另外活化與GLP-1無關的保護路徑。 由上述這幾個實驗證實:DPP4基因缺陷會導致體內含有較高濃度的GLP-1,能有效對抗內毒素血症及心肌梗塞所造成的心臟功能降低。這保護機制與GLP-1受器依賴作用相關或無關。其中GLP-1受器依賴作用是經由磷酸化AKT來降低心臟損傷。DPP4抑制劑與GLP-1類似物除了能調控血糖外,對於糖尿病患心血管系統有相當好的保護作用,甚至能作為敗血症及心肌梗塞疾病新型預防或治療用藥。 | zh_TW |
| dc.description.abstract | Dipeptidyl peptidase-4 (DPP4) enzyme inhibition has been reported to increase plasma glucagon-like peptide-1 (GLP-1) level for controlling postprandial glucose concentration. Both DPP4 inhibitors and GLP-1 analogue have been approved as antihyperglycemic agents in the treatment of diabetes. In addition to the insulinotropic effect, GLP-1 signaling was discovered for the improvement of cardiovascular disease. We examined whether genetic mutation of DPP4 influence cardiac response in both animal model experiments and cell studies.
Adult Fischer 344 (wild type) and DchcHsd-DPP IV (served as DPP4 deficiency) rats were used. DPP4 activity of DPP4-deficient rats is about one third of that in wild-type rats. Animal model experiments of endotoxemia and myocardial infarction were performed and compared in two kinds of rats. Cardiac function was assessed by pressure-volume loop monitoring. In some studies, GLP-1 analogue (exendin-4) or receptor antagonist (exendin-(9-39)) were used to identify the signaling of the protective effect. The blood plasma samples were collected and the hearts were harvested at the end of the experimental model. Adult cardiomyocyte was also isolated in two kinds of rats, and the effects of H2O2 induced ROS stress were compared. Cell viability, ROS staining, and proapoptotic signaling were executed to determine the response to H2O2. Endotoxemia was induced by the administration of lipopolysaccharide (LPS, 10 mg/kg, i.v.), and all the experiments were performed after 4 h of treatment. LPS-induced suppression of cardiovascular function in wild-type rats was associated with a significant reduction in cardiac cAMP level, phosphorylation of phospholamban, and attenuation of aortic contractile response to phenylephrine. DPP4-deficient rats had better preservation of cardiovascular function than wild-type rats during endotoxemia, which was correlated with a more prominent elevation of GLP-1 signaling. These findings coincided with the pretreatment of GLP-1 analogue, exendin-4, where the deterioration of cardiovascular function during endotoxemia was significantly reversed in wild-type rats. Furthermore, the benefit of DPP4 deficiency or GLP-1 analogue not only preserved cardiovascular function but also alleviated multiple organ injury and improved survival rate during endotoxemia. In brief, this study demonstrated that the resistance to LPS in DPP4-deficient rats seems to be derived from the higher GLP-1 production, while exendin-4 exerts protective effect in endotoxemia. For the myocardial infarction experimental models, rats were subjected to 45 min of coronary artery occlusion, and followed by reperfusion for 2 h. As compared to wild-type rats, after ischemia/reperfusion (I/R), DPP4-deficient rats had better cardiac performance in association with less infarct size and cardiac injury markers (LDH, ANP, and BNP), which could be attenuated by exendin-(9–39), a GLP-1 receptor antagonist. Exendin-(9–39) could diminish the increased phosphorylation levels of myocardial AKT and GSK-3β as well as the higher expression of GLUT4 in post-infarcted DPP4-deficient rats. However, exendin-(9–39) could not completely abrogate the less infarct size in DPP4-deficient rats as compared with that in wild-type rats, implicating the involvement of GLP-1 receptor-independent pathway. Accordingly, this study demonstrated that the benefit of cardiac protective action against I/R injury in DPP4-deficient rats, which is mediated through both GLP-1 receptor-dependent and receptor-independent mechanisms. DPP4-deficient rats show resistance to endotoxemia and ischemia/reperfusion. However, the decrease of DPP4 activity simply augmented the GLP-1 signaling or that such decrease resulted in a functional change or induced new signaling pathways remain unclear. With above reasons, we compared two kinds of cardiomyocytes under oxidative stress induced by H2O2. Cardiomyocytes were isolated from two kinds of rats. The effect of H2O2-induced ROS stress was performed in the presence or absence of GLP-1. DPP4-deficient cardiomyocytes were found to be resistant to H2O2-induced cell death via diminishing ROS level, Bax/Bcl-2 ratio, and caspase-3 activity. GLP-1 was also shown to decrease H2O2-induced cell death in wild-type cardiomyocytes via increasing the phosphorylation of AKT, which was abolished by exendin-(9–39), suggesting the importance of GLP-1 receptor dependent pathway. However, GLP-1 did not further increase phosphorylation of AKT against H2O2-induced stress in DPP4-deficient cardiomyocyte, indicating a crucial role of GLP-1-independent mechanism in these events. These several studies suggest that higher GLP-1 concentration in DPP4 mutant rats may contribute to the resistance to LPS and myocardial infarction. The protective effect is associated with both GLP-1 receptor -dependent and -independent pathway. The receptor dependent pathway is via increasing phosphorylation of AKT to ameliorate cardiac injury. In addition to the blood glucose controlling effect, GLP-1 receptor agonist or DPP4 inhibitor may exert cardioprotective effect in diabetes, and possibly be used as a preventive or even as a novel therapeutic agent in septic shock and myocardial infarction. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:13:58Z (GMT). No. of bitstreams: 1 ntu-101-D97443002-1.pdf: 2504767 bytes, checksum: 87b654ed5edb0611bc87837ca6dfa46c (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | Contents
Abbreviations i Abstract in Chinese iii Abstract in English vi Chapter 1- Introduction 1 1-1 Motivation 2 1-2 Literature Reviews 3 1-3 Figures 6 Chapter 2 - GLP-1 signaling preserves cardiac function in endotoxemic Fischer 344 and DPP4-deficient rats 11 2-1 Background and aims 12 2-2 Materials and methods 13 2-3 Results 18 2-4 Discussion 23 2-5 Figures and legends 28 Chapter 3 - DPP4 deficiency preserves cardiac function via GLP-1 signaling in rats subjected to myocardial ischemia/reperfusion 37 3-1 Background and aims 38 3-2 Materials and methods 39 3-3 Results 44 3-4 Discussion 50 3-5 Figures and legends 54 Chapter 4 - DPP4 deficiency exerts protective effect against H2O2-induced oxidative stress in isolated cardiomyocytes 61 4-1 Background and aims 62 4-2 Material and Methods 64 4-3 Results 68 4-4 Discussion 72 4-5 Figures and legends 76 Chapter 5 -Conclusion and Perspective 80 5-1 Conclusion and Perspective 81 5-2 Figures 82 References 84 Publication lists 92 | |
| dc.language.iso | en | |
| dc.subject | 心肌細胞 | zh_TW |
| dc.subject | 心臟功能 | zh_TW |
| dc.subject | 自由基 | zh_TW |
| dc.subject | 內毒素血症 | zh_TW |
| dc.subject | 缺血再灌流 | zh_TW |
| dc.subject | DPP4 | en |
| dc.subject | GLP-1 | en |
| dc.subject | ROS | en |
| dc.subject | AKT | en |
| dc.subject | cardiomyocyte | en |
| dc.subject | ischemia/ reperfusion | en |
| dc.subject | endotoxemia | en |
| dc.subject | cardiac function | en |
| dc.title | DPP4基因缺陷產生心臟保護作用之機轉探討 | zh_TW |
| dc.title | The cardioprotective effects of DPP4 deficiency | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳文彬(Wen-Pin Chen),顏茂雄(Mao-Hsiung Yen),林正一(Cheng-I Lin),吳美環(Mei-Hwan Wu) | |
| dc.subject.keyword | 心臟功能,內毒素血症,缺血再灌流,心肌細胞,自由基, | zh_TW |
| dc.subject.keyword | GLP-1,DPP4,cardiac function,endotoxemia,ischemia/ reperfusion, cardiomyocyte,AKT,ROS, | en |
| dc.relation.page | 92 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-06-14 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 藥理學研究所 | zh_TW |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
