Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭士康(Shyh-Kang Jeng)
dc.contributor.authorYi-Chen Wangen
dc.contributor.author王逸辰zh_TW
dc.date.accessioned2021-06-07T18:13:12Z-
dc.date.copyright2012-10-22
dc.date.issued2012
dc.date.submitted2012-06-21
dc.identifier.citation[1]J. Vlahos, “Surveillance society: New high-tech cameras are watching you,” Popular Mechanics, pp. 64–69, 2008.
[2]P. Antonakaki, D. Kosmopoulos, and S. J. Perantonis. “Detecting abnormal human behaviour using multiple cameras,” Signal Processing, vol. 89, issue 9: pp. 1723 – 1738, 2009.
[3]V. Chandola, A Banerjee, and V Kumar, “Anomaly Detection: A Survey,” Journal of ACM Computing Surveys (CSUR), vol. 41, issue 3, no. 15, 2009.
[4]A. Shen, R. Tong, Y. Deng. “Application of Classification Models on Credit Card Fraud Detection,” Intl. Conf. Service Systems and Service Management, pp. 1–4, June 2007.
[5]V. Mahadevan, W. Li, V. Bahalodia, N. Vasconcelos, “Anomaly Detection in Crowded Scenes,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1975 – 1981, 2010.
[6]V. Saligrama, J. Konrad, Pierre-Marc Jodoin, “Video Anomaly Identification,” IEEE Signal Processing Magazine, vol. 27, issue: 5, pp. 18 – 33, 2010.
[7]C. Brax, L. Niklasson, and M. Smedberg. “Finding behavioural anomalies in public areas using video surveillance data,” Conf. International Conference on Information Fusion, pp.1 –8, 2008.
[8]S. Calderara, C. Alaimo, A. Prati, and R. Cucchiara. “A real-time system for abnormal path detection,” Conf. Imaging for Crime Detection and Prevention (ICDP), pp. 1–6, 2009.
[9]I. Ivanov, F. Dufaux, T. M. Ha, and T. Ebrahimi. “Towards generic detection of unusual events in video surveillance,” Conf. Advanced Video and Video Surveillance (AVSS), pp. 61–66, 2009.
[10]K. Smith, P. Quelhas, and D. Gatica-Perez, “Detecting abandoned luggage items in a public space,” in Proc. IEEE Performance Evaluation of Tracking and Surveillance Workshop (PETS), pp. 75-82, 2006.
[11]A. Basharat, A. Gritai, and M. Shah, “Learning Object Motion Patterns for Anomaly Detection and Improved Object Detection,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1 – 8, 2008.
[11]A. Basharat, A. Gritai, and M. Shah, “Learning Object Motion Patterns for Anomaly Detection and Improved Object Detection,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1 – 8, 2008.
[12]S. Wu, B. E. Moore, M. Shah, “Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2054 – 2060, 2010.
[13]J. Kim and K Grauman, “Observe Locally, Infer Globally: a Space-Time MRF for Detection Abnormal Activities with Incremental Update,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2921 – 2928, 2009.
[14]V. Reddy, C. Sanderson, Brian C. Lovell, “Improved Anomaly Detection in Crowded Scenes via Cell-based Analysis of Foreground Speed, Size and Texture,” Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 55 – 61, 2011.
[15]R. Mehran, A. Oyama, M. Shah, “Abnormal Crowd Behavior Detection using Social Force Model,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 935 – 942, 2009.
[16]X. Cui, Q. Liu, M. Gao, D. N. Metaxas. “Abnormal Detection Using Interaction Energy Potentials,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3161- 3167, 2011.
[17]O. Barnich and M. Van Droogenbroeck, “ViBe: A Universal Background Subtraction Algorithm for Video Sequences,” IEEE Transaction on Image Processing, pp. vol. 20, issue: 6, 1709 – 1724, 2011.
[18]C. Liu, “Beyond Pixels: Exploring New Representations and Applications for Motion Analysis,” Doctoral Thesis. Massachusetts Institute of Technology. May 2009.
[19]J. B. Tenenbaum, V. d. Silva, J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290 no. 5500 pp. 2319-2323, 2000.
[20]J. L. Barron, D. J. Fleet, and S. S. Beauchemin. “Systems and experiment performance of optical flow techniques,” International Journal of Computer Vision (IJCV), pp. 43-77, 1994.
[21]M. J. Black and P. Anandan, “The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields,” in Proc. Conf. Computer Vision and Image Understanding (CVIU), pp. 75-104, 1996.
[22]D. G. Lowe. “Object Recognition from Local Scale-invariant Features,” IEEE International Conference on Computer Vision (ICCV), pp. 1150-1157, 1999.
[23]H. Murase, S. K. Nayar. “Visual learning and recognition of 3-D objects from appearance,” International journal of computer vision (IJCV), vol.14, pp. 5-24, 1995.
[24]Sch‥olkopf, J.C. Platt, J.Shawe-Taylor, A.J. Smola, and R.C. Williamson. “Estimating the support of a high-dimensional distribution,” Technical report, Microsoft Research, MSR-TR-99-87, 1999.
[25]A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. “Robust real-time unusual event detection using multiple fixedlocation monitors,” IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), vol. 30, issue: 3, pp. 555-560, 2008.
[26]T. Brox, A. Bruhn, N. Papenberg, and J.Weickert. “High Accuracy Optical Flow Based on a Theory for warping,” in Europe Conference on Computer Vision (ECCV), Vol. 3024, pp. 25-36, 2004.
[27]M. J. Black and P. Anandan. “The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields,” Journal of Computer Vision and Image Understanding (CVIU), vol. 63, no. 1, pp. 75–104, 1996.
[28]A. Bruhn and J. Weickertl, “Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods.” International Journal of Computer Vision (IJCV) 61(3), 211–231, 2005.
[29]P. Meer. “Robust techniques for computer vision.” Emerging Topics for Computer Vision, pp. 107-190, 2004.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16401-
dc.description.abstract監視攝影機系統現在已經廣泛使用在全世界。本研究藉由電腦強大的運算能
力,對一段影像做一個初始的處理-也稱為冷開始-,找出影片當中使用者,例
如警方可能會有興趣的片段藉以減少人力資源耗費。本研究提出了以物體當作基
礎,再以光學流動來推測前後幾張畫面物體的運動趨勢,就物體時間以及空間上
面的關係進行預測,並且以物體的運動行為當作特性,以機率模型加以描述,再
分析不同物體之間的差異性,以找出影片都中可疑的片段。經過實驗之後,證明
本研究在異常行為定位上面有優異的表現。此外,本研究在未來有許多實際的應
用,例如偵測搶案、丟棄物品以及行人跌倒等異常行為。
zh_TW
dc.description.abstractSurveillance system is pervasive all over the world. In our research, We exploit
powerful computation intelligence to preprocess the video clips, also called cold-start,
to filter out the clips which users, the police for example, might be interested in, in order
to reduce the human resource cost. Object-based method is proposed, and optical flow is
used to estimate the motion tendency in consecutive frames, to increase the
spatio-temporal relations. We use motion as features, which are described using
probability model. And we analyze the differences between blobs to filter out the
suspicious clips in the video. Through experiments, our method has excellent
performance on anomaly detection localization. Besides, in the future, some practical
applications are expected, such as detection of robbery, abandoned objects and
human-falling-down.
en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:13:12Z (GMT). No. of bitstreams: 1
ntu-101-R99942139-1.pdf: 2247114 bytes, checksum: ca4a93586648846cff93255f7a555252 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsv
CONTENTS
口試委員會審定書....................................................................................................... #
誌謝............................................................................................................................... i
中文摘要.....................................................................................................................iii
ABSTRACT ................................................................................................................ iv
CONTENTS ................................................................................................................. v
LIST OF FIGURES .................................................................................................... vii
LIST OF TABLES ....................................................................................................... ix
Chapter 1 Introduction.......................................................................................... 1
1.1 Motivation and Objectives .......................................................................... 3
1.2 Related Work .............................................................................................. 4
1.2.1 Supervised Anomaly Detection.......................................................... 5
1.2.2 Unsupervised Anomaly Detection...................................................... 5
1.3 Contributions .............................................................................................. 7
1.4 Chapter Outline .......................................................................................... 7
Chapter 2 Background Knowledge ....................................................................... 8
2.1 Vibe Background Subtraction ..................................................................... 8
2.1.1 Pixel Model and Classification Process.............................................. 8
2.1.2 Background Model Initialization From a Single Frame .................... 10
2.2 Optical Flow ............................................................................................. 12
2.2.1 Formulation ..................................................................................... 12
2.2.2 Iterative Reweighted Least Square................................................... 13
2.3 Nonlinear Dimensionality Reduction ........................................................ 14
2.4 One-class Classifier .................................................................................. 17
Chapter 3 Proposed Method................................................................................ 19
3.1 Estimation of blob tendency...................................................................... 20
3.2 Feature Extraction..................................................................................... 21
3.3 Nonlinear Dimensionality Reduction ........................................................ 22
Chapter 4 Experiment Design ............................................................................. 24
4.1 Dataset...................................................................................................... 24
4.2 Evaluation Protocols ................................................................................. 25
Chapter 5 Results and Discussions...................................................................... 27
5.1 Frame Level Protocol................................................................................ 27
5.2 Pixel Level Protocol.................................................................................. 29
Chapter 6 Conclusions......................................................................................... 31
REFERENCES ........................................................................................................... 32
dc.language.isoen
dc.subject監視攝影機系zh_TW
dc.subject異常行為zh_TW
dc.subject冷開始zh_TW
dc.subject光學流動zh_TW
dc.subject機率模型zh_TW
dc.subjectprobability modelen
dc.subjectSurveillance systemen
dc.subjectcold-starten
dc.subjectanomalyen
dc.subjectoptical flowen
dc.title利用前景運動資訊之異常行為定位偵測zh_TW
dc.titleAnomaly Detection Localization via Foreground Motion
Information
en
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖弘源(Hong-Yuan Mark, Liao),林彥宇(Yen-Yu, Lin)
dc.subject.keyword監視攝影機系,冷開始,異常行為,光學流動,機率模型,zh_TW
dc.subject.keywordSurveillance system,cold-start,anomaly,optical flow,probability model,en
dc.relation.page35
dc.rights.note未授權
dc.date.accepted2012-06-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  未授權公開取用
2.19 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved