請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16401完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭士康(Shyh-Kang Jeng) | |
| dc.contributor.author | Yi-Chen Wang | en |
| dc.contributor.author | 王逸辰 | zh_TW |
| dc.date.accessioned | 2021-06-07T18:13:12Z | - |
| dc.date.copyright | 2012-10-22 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-06-21 | |
| dc.identifier.citation | [1]J. Vlahos, “Surveillance society: New high-tech cameras are watching you,” Popular Mechanics, pp. 64–69, 2008.
[2]P. Antonakaki, D. Kosmopoulos, and S. J. Perantonis. “Detecting abnormal human behaviour using multiple cameras,” Signal Processing, vol. 89, issue 9: pp. 1723 – 1738, 2009. [3]V. Chandola, A Banerjee, and V Kumar, “Anomaly Detection: A Survey,” Journal of ACM Computing Surveys (CSUR), vol. 41, issue 3, no. 15, 2009. [4]A. Shen, R. Tong, Y. Deng. “Application of Classification Models on Credit Card Fraud Detection,” Intl. Conf. Service Systems and Service Management, pp. 1–4, June 2007. [5]V. Mahadevan, W. Li, V. Bahalodia, N. Vasconcelos, “Anomaly Detection in Crowded Scenes,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1975 – 1981, 2010. [6]V. Saligrama, J. Konrad, Pierre-Marc Jodoin, “Video Anomaly Identification,” IEEE Signal Processing Magazine, vol. 27, issue: 5, pp. 18 – 33, 2010. [7]C. Brax, L. Niklasson, and M. Smedberg. “Finding behavioural anomalies in public areas using video surveillance data,” Conf. International Conference on Information Fusion, pp.1 –8, 2008. [8]S. Calderara, C. Alaimo, A. Prati, and R. Cucchiara. “A real-time system for abnormal path detection,” Conf. Imaging for Crime Detection and Prevention (ICDP), pp. 1–6, 2009. [9]I. Ivanov, F. Dufaux, T. M. Ha, and T. Ebrahimi. “Towards generic detection of unusual events in video surveillance,” Conf. Advanced Video and Video Surveillance (AVSS), pp. 61–66, 2009. [10]K. Smith, P. Quelhas, and D. Gatica-Perez, “Detecting abandoned luggage items in a public space,” in Proc. IEEE Performance Evaluation of Tracking and Surveillance Workshop (PETS), pp. 75-82, 2006. [11]A. Basharat, A. Gritai, and M. Shah, “Learning Object Motion Patterns for Anomaly Detection and Improved Object Detection,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1 – 8, 2008. [11]A. Basharat, A. Gritai, and M. Shah, “Learning Object Motion Patterns for Anomaly Detection and Improved Object Detection,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 1 – 8, 2008. [12]S. Wu, B. E. Moore, M. Shah, “Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2054 – 2060, 2010. [13]J. Kim and K Grauman, “Observe Locally, Infer Globally: a Space-Time MRF for Detection Abnormal Activities with Incremental Update,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 2921 – 2928, 2009. [14]V. Reddy, C. Sanderson, Brian C. Lovell, “Improved Anomaly Detection in Crowded Scenes via Cell-based Analysis of Foreground Speed, Size and Texture,” Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 55 – 61, 2011. [15]R. Mehran, A. Oyama, M. Shah, “Abnormal Crowd Behavior Detection using Social Force Model,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 935 – 942, 2009. [16]X. Cui, Q. Liu, M. Gao, D. N. Metaxas. “Abnormal Detection Using Interaction Energy Potentials,” in Proc. Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3161- 3167, 2011. [17]O. Barnich and M. Van Droogenbroeck, “ViBe: A Universal Background Subtraction Algorithm for Video Sequences,” IEEE Transaction on Image Processing, pp. vol. 20, issue: 6, 1709 – 1724, 2011. [18]C. Liu, “Beyond Pixels: Exploring New Representations and Applications for Motion Analysis,” Doctoral Thesis. Massachusetts Institute of Technology. May 2009. [19]J. B. Tenenbaum, V. d. Silva, J. C. Langford, “A Global Geometric Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290 no. 5500 pp. 2319-2323, 2000. [20]J. L. Barron, D. J. Fleet, and S. S. Beauchemin. “Systems and experiment performance of optical flow techniques,” International Journal of Computer Vision (IJCV), pp. 43-77, 1994. [21]M. J. Black and P. Anandan, “The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields,” in Proc. Conf. Computer Vision and Image Understanding (CVIU), pp. 75-104, 1996. [22]D. G. Lowe. “Object Recognition from Local Scale-invariant Features,” IEEE International Conference on Computer Vision (ICCV), pp. 1150-1157, 1999. [23]H. Murase, S. K. Nayar. “Visual learning and recognition of 3-D objects from appearance,” International journal of computer vision (IJCV), vol.14, pp. 5-24, 1995. [24]Sch‥olkopf, J.C. Platt, J.Shawe-Taylor, A.J. Smola, and R.C. Williamson. “Estimating the support of a high-dimensional distribution,” Technical report, Microsoft Research, MSR-TR-99-87, 1999. [25]A. Adam, E. Rivlin, I. Shimshoni, and D. Reinitz. “Robust real-time unusual event detection using multiple fixedlocation monitors,” IEEE Transaction on Pattern Analysis and Machine Intelligence (PAMI), vol. 30, issue: 3, pp. 555-560, 2008. [26]T. Brox, A. Bruhn, N. Papenberg, and J.Weickert. “High Accuracy Optical Flow Based on a Theory for warping,” in Europe Conference on Computer Vision (ECCV), Vol. 3024, pp. 25-36, 2004. [27]M. J. Black and P. Anandan. “The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields,” Journal of Computer Vision and Image Understanding (CVIU), vol. 63, no. 1, pp. 75–104, 1996. [28]A. Bruhn and J. Weickertl, “Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods.” International Journal of Computer Vision (IJCV) 61(3), 211–231, 2005. [29]P. Meer. “Robust techniques for computer vision.” Emerging Topics for Computer Vision, pp. 107-190, 2004. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16401 | - |
| dc.description.abstract | 監視攝影機系統現在已經廣泛使用在全世界。本研究藉由電腦強大的運算能
力,對一段影像做一個初始的處理-也稱為冷開始-,找出影片當中使用者,例 如警方可能會有興趣的片段藉以減少人力資源耗費。本研究提出了以物體當作基 礎,再以光學流動來推測前後幾張畫面物體的運動趨勢,就物體時間以及空間上 面的關係進行預測,並且以物體的運動行為當作特性,以機率模型加以描述,再 分析不同物體之間的差異性,以找出影片都中可疑的片段。經過實驗之後,證明 本研究在異常行為定位上面有優異的表現。此外,本研究在未來有許多實際的應 用,例如偵測搶案、丟棄物品以及行人跌倒等異常行為。 | zh_TW |
| dc.description.abstract | Surveillance system is pervasive all over the world. In our research, We exploit
powerful computation intelligence to preprocess the video clips, also called cold-start, to filter out the clips which users, the police for example, might be interested in, in order to reduce the human resource cost. Object-based method is proposed, and optical flow is used to estimate the motion tendency in consecutive frames, to increase the spatio-temporal relations. We use motion as features, which are described using probability model. And we analyze the differences between blobs to filter out the suspicious clips in the video. Through experiments, our method has excellent performance on anomaly detection localization. Besides, in the future, some practical applications are expected, such as detection of robbery, abandoned objects and human-falling-down. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-07T18:13:12Z (GMT). No. of bitstreams: 1 ntu-101-R99942139-1.pdf: 2247114 bytes, checksum: ca4a93586648846cff93255f7a555252 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | v
CONTENTS 口試委員會審定書....................................................................................................... # 誌謝............................................................................................................................... i 中文摘要.....................................................................................................................iii ABSTRACT ................................................................................................................ iv CONTENTS ................................................................................................................. v LIST OF FIGURES .................................................................................................... vii LIST OF TABLES ....................................................................................................... ix Chapter 1 Introduction.......................................................................................... 1 1.1 Motivation and Objectives .......................................................................... 3 1.2 Related Work .............................................................................................. 4 1.2.1 Supervised Anomaly Detection.......................................................... 5 1.2.2 Unsupervised Anomaly Detection...................................................... 5 1.3 Contributions .............................................................................................. 7 1.4 Chapter Outline .......................................................................................... 7 Chapter 2 Background Knowledge ....................................................................... 8 2.1 Vibe Background Subtraction ..................................................................... 8 2.1.1 Pixel Model and Classification Process.............................................. 8 2.1.2 Background Model Initialization From a Single Frame .................... 10 2.2 Optical Flow ............................................................................................. 12 2.2.1 Formulation ..................................................................................... 12 2.2.2 Iterative Reweighted Least Square................................................... 13 2.3 Nonlinear Dimensionality Reduction ........................................................ 14 2.4 One-class Classifier .................................................................................. 17 Chapter 3 Proposed Method................................................................................ 19 3.1 Estimation of blob tendency...................................................................... 20 3.2 Feature Extraction..................................................................................... 21 3.3 Nonlinear Dimensionality Reduction ........................................................ 22 Chapter 4 Experiment Design ............................................................................. 24 4.1 Dataset...................................................................................................... 24 4.2 Evaluation Protocols ................................................................................. 25 Chapter 5 Results and Discussions...................................................................... 27 5.1 Frame Level Protocol................................................................................ 27 5.2 Pixel Level Protocol.................................................................................. 29 Chapter 6 Conclusions......................................................................................... 31 REFERENCES ........................................................................................................... 32 | |
| dc.language.iso | en | |
| dc.subject | 監視攝影機系 | zh_TW |
| dc.subject | 異常行為 | zh_TW |
| dc.subject | 冷開始 | zh_TW |
| dc.subject | 光學流動 | zh_TW |
| dc.subject | 機率模型 | zh_TW |
| dc.subject | probability model | en |
| dc.subject | Surveillance system | en |
| dc.subject | cold-start | en |
| dc.subject | anomaly | en |
| dc.subject | optical flow | en |
| dc.title | 利用前景運動資訊之異常行為定位偵測 | zh_TW |
| dc.title | Anomaly Detection Localization via Foreground Motion
Information | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖弘源(Hong-Yuan Mark, Liao),林彥宇(Yen-Yu, Lin) | |
| dc.subject.keyword | 監視攝影機系,冷開始,異常行為,光學流動,機率模型, | zh_TW |
| dc.subject.keyword | Surveillance system,cold-start,anomaly,optical flow,probability model, | en |
| dc.relation.page | 35 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2012-06-21 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf 未授權公開取用 | 2.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
