Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16397
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳美如(Mei-Ru Chen)
dc.contributor.authorPo-Ting Liuen
dc.contributor.author劉柏廷zh_TW
dc.date.accessioned2021-06-07T18:13:00Z-
dc.date.copyright2012-09-19
dc.date.issued2012
dc.date.submitted2012-06-25
dc.identifier.citationAdell, M. A. & Teis, D. (2011). Assembly and disassembly of the ESCRT-III membrane scission complex. FEBS letters 585, 3191-3196.
Alber, F., Dokudovskaya, S., Veenhoff, L. M., Zhang, W., Kipper, J., Devos, D., Suprapto, A., Karni-Schmidt, O., Williams, R., Chait, B. T., Sali, A. & Rout, M. P. (2007). The molecular architecture of the nuclear pore complex. Nature 450, 695-701.
Besson, A., Gurian-West, M., Chen, X., Kelly-Spratt, K. S., Kemp, C. J. & Roberts, J. M. (2006). A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes & development 20, 47-64.
Bieniasz, P. D. (2006). Late budding domains and host proteins in enveloped virus release. Virology 344, 55-63.
Bieniasz, P. D. (2009). The cell biology of HIV-1 virion genesis. Cell Host Microbe 5, 550-558.
Bjerke, S. L. & Roller, R. J. (2006). Roles for herpes simplex virus type 1 UL34 and US3 proteins in disrupting the nuclear lamina during herpes simplex virus type 1 egress. Virology 347, 261-276.
Bouamr, F., Melillo, J. A., Wang, M. Q., Nagashima, K., de Los Santos, M., Rein, A. & Goff, S. P. (2003). PPPYVEPTAP motif is the late domain of human T-cell leukemia virus type 1 Gag and mediates its functional interaction with cellular proteins Nedd4 and Tsg101 [corrected]. J Virol 77, 11882-11895.
Broers, J. L., Ramaekers, F. C., Bonne, G., Yaou, R. B. & Hutchison, C. J. (2006). Nuclear lamins: laminopathies and their role in premature ageing. Physiological reviews 86, 967-1008.
Burns, L. T. & Wente, S. R. (2012). Trafficking to uncharted territory of the nuclear envelope. Curr Opin Cell Biol.
Caballe, A. & Martin-Serrano, J. (2011). ESCRT machinery and cytokinesis: the road to daughter cell separation. Traffic 12, 1318-1326.
Calistri, A., Sette, P., Salata, C., Cancellotti, E., Forghieri, C., Comin, A., Gottlinger, H., Campadelli-Fiume, G., Palu, G. & Parolin, C. (2007). Intracellular trafficking and maturation of herpes simplex virus type 1 gB and virus egress require functional biogenesis of multivesicular bodies. J Virol 81, 11468-11478.
Cano-Monreal, G. L., Wylie, K. M., Cao, F., Tavis, J. E. & Morrison, L. A. (2009). Herpes simplex virus 2 UL13 protein kinase disrupts nuclear lamins. Virology 392, 137-147.
Carlson, L. A., Briggs, J. A., Glass, B., Riches, J. D., Simon, M. N., Johnson, M. C., Muller, B., Grunewald, K. & Krausslich, H. G. (2008). Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4, 592-599.
Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y. & Tsai, C. H. (1999). Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. J Virol 73, 8857-8866.
Chen, H. Y., Fermin, A., Vardhana, S., Weng, I. C., Lo, K. F., Chang, E. Y., Maverakis, E., Yang, R. Y., Hsu, D. K., Dustin, M. L. & Liu, F. T. (2009). Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A 106, 14496-14501.
Chua, H. H., Lee, H. H., Chang, S. S., Lu, C. C., Yeh, T. H., Hsu, T. Y., Cheng, T. H., Cheng, J. T., Chen, M. R. & Tsai, C. H. (2007). Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol 81, 2459-2471.
Chuang, J. G., Su, S. N., Chiang, B. L., Lee, H. J. & Chow, L. P. (2010). Proteome mining for novel IgE-binding proteins from the German cockroach (Blattella germanica) and allergen profiling of patients. Proteomics 10, 3854-3867.
Citri, A., Harari, D., Shohat, G., Ramakrishnan, P., Gan, J., Lavi, S., Eisenstein, M., Kimchi, A., Wallach, D., Pietrokovski, S. & Yarden, Y. (2006). Hsp90 recognizes a common surface on client kinases. The Journal of biological chemistry 281, 14361-14369.
Countryman, J. & Miller, G. (1985). Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A 82, 4085-4089.
Crump, C. M., Yates, C. & Minson, T. (2007). Herpes simplex virus type 1 cytoplasmic envelopment requires functional Vps4. J Virol 81, 7380-7387.
D'Angelo, M. A. & Hetzer, M. W. (2008). Structure, dynamics and function of nuclear pore complexes. Trends Cell Biol 18, 456-466.
Dahl, K. N. & Kalinowski, A. (2011). Nucleoskeleton mechanics at a glance. Journal of cell science 124, 675-678.
de Jesus, O., Smith, P. R., Spender, L. C., Elgueta Karstegl, C., Niller, H. H., Huang, D. & Farrell, P. J. (2003). Updated Epstein-Barr virus (EBV) DNA sequence and analysis of a promoter for the BART (CST, BARF0) RNAs of EBV. The Journal of general virology 84, 1443-1450.
Demirov, D. G. & Freed, E. O. (2004). Retrovirus budding. Virus research 106, 87-102.
Desai, P. J., Pryce, E. N., Henson, B. W., Luitweiler, E. & Cothran, J. (2011). Reconstitution of the Kaposi's sarcoma-associated herpesvirus nuclear egress complex and formation of nuclear membrane vesicles by co-expression of ORF67 and ORF69 gene products. J Virol.
Doyotte, A., Russell, M. R., Hopkins, C. R. & Woodman, P. G. (2005). Depletion of TSG101 forms a mammalian 'Class E' compartment: a multicisternal early endosome with multiple sorting defects. Journal of cell science 118, 3003-3017.
Farina, A., Feederle, R., Raffa, S., Gonnella, R., Santarelli, R., Frati, L., Angeloni, A., Torrisi, M. R., Faggioni, A. & Delecluse, H. J. (2005). BFRF1 of Epstein-Barr virus is essential for efficient primary viral envelopment and egress. J Virol 79, 3703-3712.
Farnsworth, A., Wisner, T. W., Webb, M., Roller, R., Cohen, G., Eisenberg, R. & Johnson, D. C. (2007). Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci U S A 104, 10187-10192.
Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W. & Delecluse, H. J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. The EMBO journal 19, 3080-3089.
Fisher, D. Z., Chaudhary, N. & Blobel, G. (1986). cDNA sequencing of nuclear lamins A and C reveals primary and secondary structural homology to intermediate filament proteins. Proc Natl Acad Sci U S A 83, 6450-6454.
Foster, T. P. & Kousoulas, K. G. (1999). Genetic analysis of the role of herpes simplex virus type 1 glycoprotein K in infectious virus production and egress. J Virol 73, 8457-8468.
Fraile-Ramos, A., Pelchen-Matthews, A., Risco, C., Rejas, M. T., Emery, V. C., Hassan-Walker, A. F., Esteban, M. & Marsh, M. (2007). The ESCRT machinery is not required for human cytomegalovirus envelopment. Cellular microbiology 9, 2955-2967.
Freed, E. O. (2002). Viral late domains. J Virol 76, 4679-4687.
Fuchs, W., Klupp, B. G., Granzow, H., Osterrieder, N. & Mettenleiter, T. C. (2002). The interacting UL31 and UL34 gene products of pseudorabies virus are involved in egress from the host-cell nucleus and represent components of primary enveloped but not mature virions. J Virol 76, 364-378.
Fujii, K., Hurley, J. H. & Freed, E. O. (2007). Beyond Tsg101: the role of Alix in 'ESCRTing' HIV-1. Nat Rev Microbiol 5, 912-916.
Gallagher, E., Gao, M., Liu, Y. C. & Karin, M. (2006). Activation of the E3 ubiquitin ligase Itch through a phosphorylation-induced conformational change. Proc Natl Acad Sci U S A 103, 1717-1722.
Gao, M. & Karin, M. (2005). Regulating the regulators: control of protein ubiquitination and ubiquitin-like modifications by extracellular stimuli. Molecular cell 19, 581-593.
Gershburg, E. & Pagano, J. S. (2008). Conserved herpesvirus protein kinases. Biochimica et biophysica acta 1784, 203-212.
Gershburg, E., Raffa, S., Torrisi, M. R. & Pagano, J. S. (2007). Epstein-Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407-5412.
Gill, D. J., Teo, H., Sun, J., Perisic, O., Veprintsev, D. B., Emr, S. D. & Williams, R. L. (2007). Structural insight into the ESCRT-I/-II link and its role in MVB trafficking. The EMBO journal 26, 600-612.
Gong, M. & Kieff, E. (1990). Intracellular trafficking of two major Epstein-Barr virus glycoproteins, gp350/220 and gp110. J Virol 64, 1507-1516.
Gonnella, R., Farina, A., Santarelli, R., Raffa, S., Feederle, R., Bei, R., Granato, M., Modesti, A., Frati, L., Delecluse, H. J., Torrisi, M. R., Angeloni, A. & Faggioni, A. (2005). Characterization and intracellular localization of the Epstein-Barr virus protein BFLF2: interactions with BFRF1 and with the nuclear lamina. J Virol 79, 3713-3727.
Granato, M., Feederle, R., Farina, A., Gonnella, R., Santarelli, R., Hub, B., Faggioni, A. & Delecluse, H. J. (2008). Deletion of Epstein-Barr virus BFLF2 leads to impaired viral DNA packaging and primary egress as well as to the production of defective viral particles. J Virol 82, 4042-4051.
Haglund, K., Sigismund, S., Polo, S., Szymkiewicz, I., Di Fiore, P. P. & Dikic, I. (2003). Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5, 461-466.
Hamirally, S., Kamil, J. P., Ndassa-Colday, Y. M., Lin, A. J., Jahng, W. J., Baek, M. C., Noton, S., Silva, L. A., Simpson-Holley, M., Knipe, D. M., Golan, D. E., Marto, J. A. & Coen, D. M. (2009). Viral mimicry of Cdc2/cyclin-dependent kinase 1 mediates disruption of nuclear lamina during human cytomegalovirus nuclear egress. PLoS Pathog 5, e1000275.
Hardwick, J. M., Lieberman, P. M. & Hayward, S. D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. J Virol 62, 2274-2284.
Heidecker, G., Lloyd, P. A., Fox, K., Nagashima, K. & Derse, D. (2004). Late assembly motifs of human T-cell leukemia virus type 1 and their relative roles in particle release. J Virol 78, 6636-6648.
Hoelz, A., Debler, E. W. & Blobel, G. (2011). The structure of the nuclear pore complex. Annual review of biochemistry 80, 613-643.
Hoger, T. H., Zatloukal, K., Waizenegger, I. & Krohne, G. (1990). Characterization of a second highly conserved B-type lamin present in cells previously thought to contain only a single B-type lamin. Chromosoma 99, 379-390.
Huang, F., Kirkpatrick, D., Jiang, X., Gygi, S. & Sorkin, A. (2006). Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Molecular cell 21, 737-748.
Hunter, T. (2007). The age of crosstalk: phosphorylation, ubiquitination, and beyond. Molecular cell 28, 730-738.
Hurley, J. H., Boura, E., Carlson, L. A. & Rozycki, B. (2010). Membrane budding. Cell 143, 875-887.
Hurley, J. H. & Hanson, P. I. (2010). Membrane budding and scission by the ESCRT machinery: it's all in the neck. Nature reviews Molecular cell biology 11, 556-566.
Hurley, J. H. & Ren, X. (2009). The circuitry of cargo flux in the ESCRT pathway. The Journal of cell biology 185, 185-187.
Hutchison, C. J., Alvarez-Reyes, M. & Vaughan, O. A. (2001). Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes? Journal of cell science 114, 9-19.
Ichimura, T., Yamamura, H., Sasamoto, K., Tominaga, Y., Taoka, M., Kakiuchi, K., Shinkawa, T., Takahashi, N., Shimada, S. & Isobe, T. (2005). 14-3-3 proteins modulate the expression of epithelial Na+ channels by phosphorylation-dependent interaction with Nedd4-2 ubiquitin ligase. The Journal of biological chemistry 280, 13187-13194.
Ivanchenko, S., Godinez, W. J., Lampe, M., Krausslich, H. G., Eils, R., Rohr, K., Brauchle, C., Muller, B. & Lamb, D. C. (2009). Dynamics of HIV-1 assembly and release. PLoS Pathog 5, e1000652.
Iwamura, T., Yoneyama, M., Yamaguchi, K., Suhara, W., Mori, W., Shiota, K., Okabe, Y., Namiki, H. & Fujita, T. (2001). Induction of IRF-3/-7 kinase and NF-kappaB in response to double-stranded RNA and virus infection: common and unique pathways. Genes to cells : devoted to molecular & cellular mechanisms 6, 375-388.
Jackson, A. L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., Johnson, J. M., Lim, L., Karpilow, J., Nichols, K., Marshall, W., Khvorova, A. & Linsley, P. S. (2006). Position-specific chemical modification of siRNAs reduces 'off-target' transcript silencing. RNA 12, 1197-1205.
Johnson, D. C. & Baines, J. D. (2011). Herpesviruses remodel host membranes for virus egress. Nat Rev Microbiol 9, 382-394.
Jouvenet, N., Simon, S. M. & Bieniasz, P. D. (2011a). Visualizing HIV-1 assembly. Journal of molecular biology 410, 501-511.
Jouvenet, N., Zhadina, M., Bieniasz, P. D. & Simon, S. M. (2011b). Dynamics of ESCRT protein recruitment during retroviral assembly. Nat Cell Biol 13, 394-401.
Junying, J., Herrmann, K., Davies, G., Lissauer, D., Bell, A., Timms, J., Reynolds, G. M., Hubscher, S. G., Young, L. S., Niedobitek, G. & Murray, P. G. (2003). Absence of Epstein-Barr virus DNA in the tumor cells of European hepatocellular carcinoma. Virology 306, 236-243.
Kikonyogo, A., Bouamr, F., Vana, M. L., Xiang, Y., Aiyar, A., Carter, C. & Leis, J. (2001). Proteins related to the Nedd4 family of ubiquitin protein ligases interact with the L domain of Rous sarcoma virus and are required for gag budding from cells. Proc Natl Acad Sci U S A 98, 11199-11204.
Klupp, B., Altenschmidt, J., Granzow, H., Fuchs, W. & Mettenleiter, T. C. (2008). Glycoproteins required for entry are not necessary for egress of pseudorabies virus. J Virol 82, 6299-6309.
Klupp, B. G., Granzow, H., Fuchs, W., Keil, G. M., Finke, S. & Mettenleiter, T. C. (2007). Vesicle formation from the nuclear membrane is induced by coexpression of two conserved herpesvirus proteins. Proc Natl Acad Sci U S A 104, 7241-7246.
Klupp, B. G., Granzow, H. & Mettenleiter, T. C. (2000). Primary envelopment of pseudorabies virus at the nuclear membrane requires the UL34 gene product. J Virol 74, 10063-10073.
Krosky, P. M., Baek, M. C. & Coen, D. M. (2003). The human cytomegalovirus UL97 protein kinase, an antiviral drug target, is required at the stage of nuclear egress. J Virol 77, 905-914.
Lata, S., Schoehn, G., Jain, A., Pires, R., Piehler, J., Gottlinger, H. G. & Weissenhorn, W. (2008). Helical structures of ESCRT-III are disassembled by VPS4. Science 321, 1354-1357.
Lata, S., Schoehn, G., Solomons, J., Pires, R., Gottlinger, H. G. & Weissenhorn, W. (2009). Structure and function of ESCRT-III. Biochemical Society transactions 37, 156-160.
Lee, C. P., Chen, J. Y., Wang, J. T., Kimura, K., Takemoto, A., Lu, C. C. & Chen, M. R. (2007). Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. J Virol 81, 5166-5180.
Lee, C. P. & Chen, M. R. (2010). Escape of herpesviruses from the nucleus. Reviews in medical virology 20, 214-230.
Lee, C. P., Huang, Y. H., Lin, S. F., Chang, Y., Chang, Y. H., Takada, K. & Chen, M. R. (2008). Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. J Virol 82, 11913-11926.
Leuzinger, H., Ziegler, U., Schraner, E. M., Fraefel, C., Glauser, D. L., Heid, I., Ackermann, M., Mueller, M. & Wild, P. (2005). Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 79, 13047-13059.
Lin, C. T., Wong, C. I., Chan, W. Y., Tzung, K. W., Ho, J. K., Hsu, M. M. & Chuang, S. M. (1990). Establishment and characterization of two nasopharyngeal carcinoma cell lines. Laboratory investigation; a journal of technical methods and pathology 62, 713-724.
Makarova, O., Kamberov, E. & Margolis, B. (2000). Generation of deletion and point mutations with one primer in a single cloning step. BioTechniques 29, 970-972.
Marschall, M., Marzi, A., aus dem Siepen, P., Jochmann, R., Kalmer, M., Auerochs, S., Lischka, P., Leis, M. & Stamminger, T. (2005). Cellular p32 recruits cytomegalovirus kinase pUL97 to redistribute the nuclear lamina. The Journal of biological chemistry 280, 33357-33367.
Martin-Serrano, J. (2007). The role of ubiquitin in retroviral egress. Traffic 8, 1297-1303.
Martin-Serrano, J., Eastman, S. W., Chung, W. & Bieniasz, P. D. (2005). HECT ubiquitin ligases link viral and cellular PPXY motifs to the vacuolar protein-sorting pathway. The Journal of cell biology 168, 89-101.
Martin-Serrano, J. & Neil, S. J. (2011). Host factors involved in retroviral budding and release. Nat Rev Microbiol 9, 519-531.
Martin-Serrano, J., Zang, T. & Bieniasz, P. D. (2001). HIV-1 and Ebola virus encode small peptide motifs that recruit Tsg101 to sites of particle assembly to facilitate egress. Nature medicine 7, 1313-1319.
Martin-Serrano, J., Zang, T. & Bieniasz, P. D. (2003). Role of ESCRT-I in retroviral budding. J Virol 77, 4794-4804.
Mauser, A., Holley-Guthrie, E., Zanation, A., Yarborough, W., Kaufmann, W., Klingelhutz, A., Seaman, W. T. & Kenney, S. (2002). The Epstein-Barr virus immediate-early protein BZLF1 induces expression of E2F-1 and other proteins involved in cell cycle progression in primary keratinocytes and gastric carcinoma cells. J Virol 76, 12543-12552.
McDonald, B. & Martin-Serrano, J. (2009). No strings attached: the ESCRT machinery in viral budding and cytokinesis. Journal of cell science 122, 2167-2177.
McGeoch, D. J., Rixon, F. J. & Davison, A. J. (2006). Topics in herpesvirus genomics and evolution. Virus research 117, 90-104.
Mekhail, K. & Moazed, D. (2010). The nuclear envelope in genome organization, expression and stability. Nature reviews Molecular cell biology 11, 317-328.
Mettenleiter, T. C. (2002). Herpesvirus assembly and egress. J Virol 76, 1537-1547.
Mettenleiter, T. C. (2004). Budding events in herpesvirus morphogenesis. Virus research 106, 167-180.
Mettenleiter, T. C., Klupp, B. G. & Granzow, H. (2009). Herpesvirus assembly: an update. Virus research 143, 222-234.
Milbradt, J., Auerochs, S. & Marschall, M. (2007). Cytomegaloviral proteins pUL50 and pUL53 are associated with the nuclear lamina and interact with cellular protein kinase C. The Journal of general virology 88, 2642-2650.
Milbradt, J., Auerochs, S., Sticht, H. & Marschall, M. (2009). Cytomegaloviral proteins that associate with the nuclear lamina: components of a postulated nuclear egress complex. The Journal of general virology 90, 579-590.
Mori, Y., Koike, M., Moriishi, E., Kawabata, A., Tang, H., Oyaizu, H., Uchiyama, Y. & Yamanishi, K. (2008). Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9, 1728-1742.
Morita, E. & Sundquist, W. I. (2004). Retrovirus budding. Annual review of cell and developmental biology 20, 395-425.
Mou, F., Forest, T. & Baines, J. D. (2007). US3 of herpes simplex virus type 1 encodes a promiscuous protein kinase that phosphorylates and alters localization of lamin A/C in infected cells. J Virol 81, 6459-6470.
Muranyi, W., Haas, J., Wagner, M., Krohne, G. & Koszinowski, U. H. (2002). Cytomegalovirus recruitment of cellular kinases to dissolve the nuclear lamina. Science 297, 854-857.
Murphy, J. M., Korzhnev, D. M., Ceccarelli, D. F., Briant, D. J., Zarrine-Afsar, A., Sicheri, F., Kay, L. E. & Pawson, T. (2007). Conformational instability of the MARK3 UBA domain compromises ubiquitin recognition and promotes interaction with the adjacent kinase domain. Proc Natl Acad Sci U S A 104, 14336-14341.
Nakayama, K. I. & Nakayama, K. (2006). Ubiquitin ligases: cell-cycle control and cancer. Nature reviews Cancer 6, 369-381.
Nickerson, D. P., West, M. & Odorizzi, G. (2006). Did2 coordinates Vps4-mediated dissociation of ESCRT-III from endosomes. The Journal of cell biology 175, 715-720.
Nixon, R. A. & Cataldo, A. M. (2006). Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. Journal of Alzheimer's disease : JAD 9, 277-289.
Obita, T., Saksena, S., Ghazi-Tabatabai, S., Gill, D. J., Perisic, O., Emr, S. D. & Williams, R. L. (2007). Structural basis for selective recognition of ESCRT-III by the AAA ATPase Vps4. Nature 449, 735-739.
Padula, M. E., Sydnor, M. L. & Wilson, D. W. (2009). Isolation and preliminary characterization of herpes simplex virus 1 primary enveloped virions from the perinuclear space. J Virol 83, 4757-4765.
Parkinson, N., Ince, P. G., Smith, M. O., Highley, R., Skibinski, G., Andersen, P. M., Morrison, K. E., Pall, H. S., Hardiman, O., Collinge, J., Shaw, P. J. & Fisher, E. M. (2006). ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 67, 1074-1077.
Patnaik, A., Chau, V. & Wills, J. W. (2000). Ubiquitin is part of the retrovirus budding machinery. Proc Natl Acad Sci U S A 97, 13069-13074.
Pawliczek, T. & Crump, C. M. (2009). Herpes simplex virus type 1 production requires a functional ESCRT-III complex but is independent of TSG101 and ALIX expression. J Virol 83, 11254-11264.
Peeters, B., de Wind, N., Broer, R., Gielkens, A. & Moormann, R. (1992). Glycoprotein H of pseudorabies virus is essential for entry and cell-to-cell spread of the virus. J Virol 66, 3888-3892.
Peng, L., Ryazantsev, S., Sun, R. & Zhou, Z. H. (2010). Three-dimensional visualization of gammaherpesvirus life cycle in host cells by electron tomography. Structure 18, 47-58.
Pfleger, K. D. & Eidne, K. A. (2003). New technologies: bioluminescence resonance energy transfer (BRET) for the detection of real time interactions involving G-protein coupled receptors. Pituitary 6, 141-151.
Pfleger, K. D. & Eidne, K. A. (2006). Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nature methods 3, 165-174.
Pfleger, K. D., Seeber, R. M. & Eidne, K. A. (2006). Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nature protocols 1, 337-345.
Pincetic, A. & Leis, J. (2009). The Mechanism of Budding of Retroviruses From Cell Membranes. Advances in virology 2009, 6239691-6239699.
Pornillos, O., Garrus, J. E. & Sundquist, W. I. (2002). Mechanisms of enveloped RNA virus budding. Trends Cell Biol 12, 569-579.
Raiborg, C. & Stenmark, H. (2009). The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445-452.
Raymond, C. K., Howald-Stevenson, I., Vater, C. A. & Stevens, T. H. (1992). Morphological classification of the yeast vacuolar protein sorting mutants: evidence for a prevacuolar compartment in class E vps mutants. Molecular biology of the cell 3, 1389-1402.
Reynolds, A. E., Liang, L. & Baines, J. D. (2004). Conformational changes in the nuclear lamina induced by herpes simplex virus type 1 require genes U(L)31 and U(L)34. J Virol 78, 5564-5575.
Reynolds, A. E., Ryckman, B. J., Baines, J. D., Zhou, Y., Liang, L. & Roller, R. J. (2001). U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 75, 8803-8817.
Reynolds, A. E., Wills, E. G., Roller, R. J., Ryckman, B. J. & Baines, J. D. (2002). Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 76, 8939-8952.
Rogers, S., Wells, R. & Rechsteiner, M. (1986). Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234, 364-368.
Ruiss, R., Jochum, S., Wanner, G., Reisbach, G., Hammerschmidt, W. & Zeidler, R. (2011). A VLP-based Epstein-Barr Virus vaccine. J Virol.
Santarelli, R., Farina, A., Granato, M., Gonnella, R., Raffa, S., Leone, L., Bei, R., Modesti, A., Frati, L., Torrisi, M. R. & Faggioni, A. (2008). Identification and characterization of the product encoded by ORF69 of Kaposi's sarcoma-associated herpesvirus. J Virol 82, 4562-4572.
Sarisky, R. T., Gao, Z., Lieberman, P. M., Fixman, E. D., Hayward, G. S. & Hayward, S. D. (1996). A replication function associated with the activation domain of the Epstein-Barr virus Zta transactivator. J Virol 70, 8340-8347.
Seet, B. T., Dikic, I., Zhou, M. M. & Pawson, T. (2006). Reading protein modifications with interaction domains. Nature reviews Molecular cell biology 7, 473-483.
Seigneurin, J. M., Vuillaume, M., Lenoir, G. & De-The, G. (1977). Replication of Epstein-Barr virus: ultrastructural and immunofluorescent studies of P3HR1-superinfected Raji cells. J Virol 24, 836-845.
Sette, P., Jadwin, J. A., Dussupt, V., Bello, N. F. & Bouamr, F. (2010). The ESCRT-associated protein Alix recruits the ubiquitin ligase Nedd4-1 to facilitate HIV-1 release through the LYPXnL L domain motif. J Virol 84, 8181-8192.
Shields, S. B. & Piper, R. C. (2011). How ubiquitin functions with ESCRTs. Traffic 12, 1306-1317.
Shtanko, O., Watanabe, S., Jasenosky, L. D., Watanabe, T. & Kawaoka, Y. (2011). ALIX/AIP1 is required for NP incorporation into Mopeia virus Z-induced virus-like particles. J Virol 85, 3631-3641.
Simpson-Holley, M., Colgrove, R. C., Nalepa, G., Harper, J. W. & Knipe, D. M. (2005). Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol 79, 12840-12851.
Skibinski, G., Parkinson, N. J., Brown, J. M., Chakrabarti, L., Lloyd, S. L., Hummerich, H., Nielsen, J. E., Hodges, J. R., Spillantini, M. G., Thusgaard, T., Brandner, S., Brun, A., Rossor, M. N., Gade, A., Johannsen, P., Sorensen, S. A., Gydesen, S., Fisher, E. M. & Collinge, J. (2005). Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature genetics 37, 806-808.
Strack, B., Calistri, A., Craig, S., Popova, E. & Gottlinger, H. G. (2003). AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell 114, 689-699.
Tandon, R., AuCoin, D. P. & Mocarski, E. S. (2009). Human cytomegalovirus exploits ESCRT machinery in the process of virion maturation. J Virol 83, 10797-10807.
Thompson, M. P. & Kurzrock, R. (2004). Epstein-Barr virus and cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 10, 803-821.
Valencia, S. M. & Hutt-Fletcher, L. M. (2012). Important but differential roles for actin in trafficking of Epstein-Barr virus in B cells and epithelial cells. J Virol 86, 2-10.
Vogt, V. M. (2000). Ubiquitin in retrovirus assembly: actor or bystander? Proc Natl Acad Sci U S A 97, 12945-12947.
Wen, C. L., Chen, K. Y., Chen, C. T., Chuang, J. G., Yang, P. C. & Chow, L. P. (2012). Development of an AlphaLISA assay to quantify serum core-fucosylated E-cadherin as a metastatic lung adenocarcinoma biomarker. Journal of proteomics.
Williams, R. L. & Urbe, S. (2007). The emerging shape of the ESCRT machinery. Nature reviews Molecular cell biology 8, 355-368.
Wills, E., Mou, F. & Baines, J. D. (2009). The U(L)31 and U(L)34 gene products of herpes simplex virus 1 are required for optimal localization of viral glycoproteins D and M to the inner nuclear membranes of infected cells. J Virol 83, 4800-4809.
Wilson, K. L. & Berk, J. M. (2010). The nuclear envelope at a glance. Journal of cell science 123, 1973-1978.
Wollert, T., Wunder, C., Lippincott-Schwartz, J. & Hurley, J. H. (2009a). Membrane scission by the ESCRT-III complex. Nature 458, 172-177.
Wollert, T., Yang, D., Ren, X., Lee, H. H., Im, Y. J. & Hurley, J. H. (2009b). The ESCRT machinery at a glance. Journal of cell science 122, 2163-2166.
Wu, Y. M., Yan, J., Chen, L. L., Sun, W. L. & Gu, Z. Y. (2006). Infection frequency of Epstein-Barr virus in subgingival samples from patients with different periodontal status and its correlation with clinical parameters. Journal of Zhejiang University Science B 7, 876-883.
Yang, C., Zhou, W., Jeon, M. S., Demydenko, D., Harada, Y., Zhou, H. & Liu, Y. C. (2006). Negative regulation of the E3 ubiquitin ligase itch via Fyn-mediated tyrosine phosphorylation. Molecular cell 21, 135-141.
Zhai, Q., Landesman, M. B., Chung, H. Y., Dierkers, A., Jeffries, C. M., Trewhella, J., Hill, C. P. & Sundquist, W. I. (2012). Activation of the retroviral budding factor ALIX. J Virol 85, 9222-9226.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/16397-
dc.description.abstractEB病毒(Epstein-Barr virus)順利感染細胞後,進入溶裂期時,病毒DNA會在宿主細胞核中複製,之後被病毒的核殼蛋白(capsid proteins)包裹,組裝成病毒核殼體(nucleocapsid)。先前的研究中發現,EB病毒所轉譯出的兩種核膜相關性蛋白BFRF1以及BFLF2,對於核殼體的出核(nuclear egress)過程是重要的。然而,目前的研究對於這些大型的病毒核殼體如何穿越結構緻密的板蛋白複合體(nuclear lamina)以及內、外核膜,並進入細胞質以利進一步的病毒顆粒成熟及修飾的過程,仍不清楚。本研究中發現在有EB病毒複製的NA細胞中,病毒蛋白BFRF1會使ESCRT (cellular endosomal sorting complex required for transport)機制中的Alix蛋白聚集至細胞核附近,並在核膜及細胞質中的液泡(vesicle)構造上有共位的現象發生。進一步利用單一基因轉染的方式,發現BFRF1單獨表現時,即有能力利用ESCRT機制來形成由核膜衍伸出的液泡構造。除了表現ESCRT機制的決定因子—顯性抑制(dominant negative)形態的Vps4,也在Alix基因抑制的細胞中,發現BFRF1形成液泡結構的能力消失,並且使病毒的核殼體堆積在細胞核中無法出核。結果證實了Alix對於BFRF1液泡結構形成的重要性,並發現多個BFRF1上的結構域和Alix蛋白上的Bro及PRR結構域,對於兩者之間的交互作用是重要的,並證實EB病毒會藉由病毒蛋白BFRF1的幫助,使ESCRT機制中的Alix蛋白聚集到核膜來幫助病毒核殼體的出核。另一方面,藉由阻擋細胞當中自由形式泛素(ubiquitin)的形成,或是表現病毒激酶BGLF4,就能阻止BFRF1形成液泡結構,暗示BFRF1蛋白上磷酸化(phosphorylation)及泛素化(ubiquitination)後修飾之間的交互調控,對於BFRF1所主導的功能是重要的。總而言之,在本研究中發現,EBV的BFRF1蛋白會協同細胞內的ESCRT機制,調節細胞核膜的結構,來幫助EB病毒核殼體能夠順利出核。zh_TW
dc.description.abstractAfter DNA replication and encapsidation, the nucleocapsids of Epstein-Barr virus (EBV) must translocate from the nucleus to the cytoplasm. Viral BFRF1 and BFLF2 are nuclear envelope-associated viral proteins indispensable for the nuclear egress of nucleocapsids. Knowledge regarding how large size nucleocapsids pass through the compact nuclear lamina and double-layered nuclear membranes for subsequent cytoplasmic maturation is only emerging recently. In the first part of this study, the cellular endosomal sorting complex required for transport (ESCRT) component Alix was found to be recruited to the nuclear rim and periphery, and colocalized with viral BFRF1 protein at nuclear membrane and vesicle-like structures in EBV replicating NA cells. In the transient transfection system, BFRF1 expression alone induces vesicle formation from nucleus-associated membrane by recruiting ESCRT machinery to the nuclear membrane. Expression of the dominant negative form of Vps4, which is the major determinant for ESCRT machinery, or knockdown Alix not only abolishes the BFRF1-induced vesicle formation, but also leads to the accumulation of nucleocapsid proteins in nucleus. Alix is crucial for BFRF1-mediated vesicle formation. Multiple domains within BFRF1 contribute to Alix recruitment, and both Bro and PRR domains of Alix interact with BFRF1, suggesting that BFRF1 recruits the ESCRT components through Alix for the membrane scission during the nuclear egress process of EBV. In the second part of this study, the depletion of free ubiquitin pool by proteasome inhibitor MG132 or expression of viral BGLF4 kinase blocks the BFRF1-induced vesicle formation, indicating the coordination between ubiquitination and phosphorylation may be crucial for BFRF1 mediated functions. Taken together, this study indicates that BFRF1 cooperates with cellular ESCRT machinery to modulate nuclear membrane structure for the nuclear egress of EBV.en
dc.description.provenanceMade available in DSpace on 2021-06-07T18:13:00Z (GMT). No. of bitstreams: 1
ntu-101-R99445122-1.pdf: 10445137 bytes, checksum: e3da3fa815e562e4ce91e93fb886c21e (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract IV
Contents VI
1. Introduction 1
1.1 Epstein-Barr Virus 1
1.1.1 Classification, structure and associated diseases 1
1.1.2 EBV life cycle 1
1.2 Nuclear egress of Herpesviruses 2
1.2.1 Escape of herpesviruses from the nucleus 2
1.2.2 Nuclear membrane 3
1.2.3 Crossing the nuclear lamina 4
1.2.4 Primary envelopment 5
1.2.5 De-envelopment 6
1.2.6 Re-envelopment and assembly of tegument on capsids 6
1.2.7 EBV encoded BFRF1 and BFLF2 7
1.3 The ESCRT machinery 8
1.3.1 The compositions of ESCRTs 9
1.3.2 ESCRTs in cytokinesis 10
1.3.3 ESCRTs in viral budding 11
1.3.4 Contribution of Ubiquitin to ESCRT-dependent viral release 12
1.3.5 The role of ESCRTs in herpesvirus maturation 13
1.4 Protein modification and protein-protein interactions 14
1.4.1 Post-translational modification 14
1.4.2 Crosstalk between phosphorylation and ubiquitination 15
1.4.3 PTM-dependent interactions 15
1.5 Specific aims 16
2. Materials and methods 17
2.1 Cell culture, virus induction and transfection. 17
2.2 Isolation of secreted EBV particles and DNA extraction 17
2.3 Quantitative real-time PCR (qPCR) analysis. 18
2.4 Immunoblotting of EBV proteins. 18
2.5 Plasmids construction. 19
2.6 Indirect immunofluorescence. 20
2.7 Transmission electron microscopy (TEM) analysis. 21
2.8 Co-immunoprecipitation assay. 22
2.9 Subcellular fractionation of viral DNA and capsid proteins. 22
2.10 Analysis of BFRF1 multimerization by native PAGE. 23
2.11 BERT assay 23
2.12 BGLF4 Knock-Out bacmid contruct 24
2.13 In gel digestion 25
2.14 LTQ OrbiTrap Velos Mass Spectrometer analysis and protein identification 25
3. Results 27
3.1 The ESCRT machinery is recruited by the viral BFRF1 protein to the nuclear associated membrane for the maturation of Epstein-Barr virus 27
3.1.1 EBV reactivation reorganizes the nuclear envelope and induces cytoplasmic punctate structure formation 27
3.1.2 Expression of EBV BFRF1 reorganizes the nuclear membrane and induces vesicle formation from the nucleus-associated membrane 28
3.1.3 The compositions of BFRF1-induced cytoplasmic vesicles 29
3.1.4 TEM analysis of cells with EBV BFRF1 expression 30
3.1.5 The ESCRT machinery regulates EBV maturation 30
3.1.6 The ESCRT machinery regulates the distribution of BFRF1 in EBV reactivated NA cells 31
3.1.7 Expression of dominant negative Vps4 caused the accumulation of viral DNA and major capsid proteins in the nucleus. 33
3.1.8 EBV reactivation redistributes the ESCRT-associated protein Alix 33
3.1.9 Functional domain mapping of BFRF1 and BFLF2 required for interaction, vesicle formation 34
3.1.10 The subcellular distribution of HSV-1 UL34 and UL31, and amino acid sequence alignment of EBV BFRF1 homologs 35
3.1.11 BFRFl and serial deletion mutants exhibits different expressing pattern and multiple domains of BFRF1 are responsible for the interaction with Alix and vesicle formation 36
3.1.12 Multiple domains of BFRF1 are responsible for the reorganization of the nuclear envelope 37
3.1.13 Alix is responsible for BFRF1-derived cytoplasmic vesicle formation. 38
3.1.14 Alix siRNA, dominant negative Vps4 and BFRF1 mutants cause the accumulation of viral DNA and major capsid proteins in the nucleus 39
3.1.15 BFRF1 forms dimers or multimers for vesicles formation. 41
3.1.16 A hypothetical model of EBV BFRF1 and cellular ESCRT components in vesicle formation and modulation of the nuclear membrane 41
3.2 The modification of EBV nuclear membrane-associated protein BFRF1 43
3.2.1 The effect of MG132 on cytoplasmic vesicles formation formed by coexpression of BFRF1 and BFLF2 43
3.2.2 The proteasome inhibitor MG132 effect on BFRF1-derived vesicles formation 44
3.2.3 The ubiquitination on BFRF1 44
3.2.4 To identify the ubiquitination site(s) on BFRF1 and the E3 ligase responsible for ubiquitination of BFRF1 45
3.2.5 BGLF4 induces distribution change of the nuclear membrane-associated proteins BFRF1 and BFLF2 47
3.2.6 The effect of BGLF4 kinase on the interaction between BFRF1 and BFLF2 48
3.2.7 Generation of BGLF4 knockout bacmid clone 50
4. Discussions 51
4.1 The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr virus 51
4.2 The modification of EBV nuclear membrane-associated protein BFRF1 57
5. Figures 61
Fig. 1. EBV reactivation induces cytoplasmic punctate structures colocalizing with redistributed Lamin A/C and Emerin. 61
Fig. 2. EBV BFRF1 reorganizes the nuclear membrane and induces vesicle formation from the altered membrane. 62
Fig. 3. EBV reactivation induces the redistribution of LaminA/C and nucleoporins. 63
Fig. 4. The detection of subcellular distribution of BFRF1 with organelle markers in transfected HeLa cells. 64
Fig. 5. TEM analysis of cells with EBV BFRF1 expression. 65
Fig. 6. The ESCRT machinery regulates Epstein-Barr virus maturation. 66
Fig. 7. The ESCRT machinery regulates the distribution of BFRF1 during EBV reactivation. 67
Fig. 8. Expression of dominant negative Vps4 causes the accumulation of viral nucleocapsids in the nucleus. 68
Fig. 9. Localization of the ESCRT-associated protein Alix is changed during EBV reactivation. 69
Fig. 10. Functional domain mapping for interaction, vesicle formation, ubiquitination and phosphorylation in BFRF1 and BFLF2. 70
Fig. 11. The subcellular distribution of HSV-1 UL34 and UL31, and amino acid sequence alignment of EBV BFRF1 homologs. 72
Fig. 12. Immunofluorescence analysis of the expressing patterns of WT BFRF1 or serial deletion mutants, and their colocalization with Alix. 74
Fig. 13. Analysis of the WT BFRF1 and serial deletion mutants expression patterns, and the colocalization with Alix under confocal microscopy. 75
Fig. 14. The interaction of BFRF1 or serial deletion mutants with Alix. 76
Fig. 15. The interaction of Alix or serial deletion mutants with BFRF1. 77
Fig. 16. Immunofluorescence analysis of the WT BFRF1 or serial deletion mutants expression pattern, and their colocalization with Emerin. 78
Fig. 17. Analysis of the expression pattern of WT BFRF1 or serial deletion mutants, and the colocalization with Emerin under confocal microscopy. 79
Fig. 18. Knockdown of Alix expression abolishes BFRF1 induced vesicle formation. 80
Fig. 19. The effect of Alix siRNA, BFRF1∆ESR or Vps-DN expression on the distribution of the viral genomes and capsid proteins. 81
Fig. 20. Knockdown of Alix with siAlix induces the accumulation of BcLF1 in the nucleus. 82
Fig. 21. Expression of BFRF1∆ID or BFRF1∆ESR mutant abolishes the formation of punctate structures in the cytoplasm and redistributes Alix ,Emerin and BcLF1 in cells replicating the virus. 83
Fig. 22. EBV BFRF1 forms dimers or multimers. 84
Fig. 23. A hypothetical model of EBV BFRF1 and cellular ESCRT components in vesicle formation and modulation of the nuclear membrane. 85
Fig. 24. The proteasome inhibitor MG132 induces the redistribution and accumulation of BFRF1 and BFLF2 at the perinuclear space. 86
Fig. 25. Analysis of the MG132 effect on the distribution of BFRF1 and BFLF2 by confocal microscopy. 87
Fig. 26. Ubiquitin depletion by MG132 treatment inhibits cytoplasmic BFRF1-derived vesicles formation. 88
Fig. 27. Analysis of the distribution of BFRF1 and Alix under MG132 treatment, and restores BFRF1-induced vesicles formation and the cytoplasmic distribution of Alix in the presence of Myc-Ub. 89
Fig. 28. The distribution of BFRF1 and Emerin in the presence of MG132 treatment and overexpression of Myc-ubiquitin. 90
Fig. 29. Immunoprecipitation of BFRF1 and Myc-Ub in the presence of DMSO or MG132. 91
Fig. 30. Ubiquitination of BFRF1 does not lead to the Ubiquitin-proteasome degradation pathway. 92
Fig. 31. Analyze BFRF1 modification by Mass Spectrometer analysis. 93
Fig. 32. To identify the ubiquitination site (s) on BFRF1. 94
Fig. 33. BFRF1 is coimmunoprecipitated with Nedd4 family E3 ligase. 95
Fig. 34. BGLF4 induces distribution changes of the nuclear membrane-associated proteins BFRF1 and BFLF2. 96
Fig. 35. Detection of the dynamic interaction level changes of BFRF1 and BLFL2 using Bioluminescence resonance energy transfer (BRET) assay. 97
Fig. 36. Construction of pGS284-BGLF4stop plasmid. 98
Fig. 37. Construction of BGLF4stop-P2089 bacmid. 99
Fig. 38. A model of BFRF1 functional domains. 100
6. Tables 101
Table 1. Plasmids used in this study 101
Table 2. Oligonucleotides primers used in this study 102
7. References 103
dc.language.isoen
dc.titleEB病毒核膜相關蛋白在病毒出核過程之研究zh_TW
dc.titleFunctional study of Epstein-Barr virus nuclear envelope-associated proteins in the virus nuclear egressen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周綠蘋,黃麗華,李明學,龔秀妮
dc.subject.keywordEB病毒,核殼體出核,BFRF1蛋白,ESCRT機制,磷酸化,泛素化,zh_TW
dc.subject.keywordEpstein-Barr virus,nuclear egress,BFRF1,The ESCRT machinery,phosphorylation,ubiquitination,en
dc.relation.page114
dc.rights.note未授權
dc.date.accepted2012-06-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf
  目前未授權公開取用
10.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved